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Abstract: The wide range and high intensity of landslides in the mining area pose a great threat to the
safety of human life and property. It is particularly important to identify and monitor them. However,
due to the serious surface damage, small landslide scale, complex background and other factors in
the mining area, it is impossible to accurately identify and detect the landslide in the mining area. It
is necessary to select an efficient detection model to detect it. In this paper, aiming at the problem
of landslide identification in mining area, the remote sensing image of mining area is obtained by
unmanned aerial vehicle (UAV), and the landslide data set of mining area is constructed by data
enhancement method. An improved YOLOv8 algorithm is proposed. By adding a mixed attention
mechanism in the channel and spatial dimensions, the detection accuracy of the model for mining
landslide is improved, and the monitoring of landslide changes in the mining area is successfully
completed. At the same time, an algorithm for locating the landslide position is proposed. Through
this algorithm, the detected landslide pixel coordinates can be converted into geodetic coordinates.
The results show that the improved YOLOv8 algorithm proposed in this paper has a recognition
accuracy of 93.10% for mining area landslides. Compared with the mAP@0.5 of the original YOLOv8
algorithm and YOLOv5 algorithm, the improved YOLOv8 algorithm has an increase of 4.2% and
5.1%. This study has realized the monitoring and positioning of the landslide in the mining area,
which can provide the necessary data support for the ecological restoration on mining area.

Keywords: landslide detection; YOLOv8; attention mechanism; monitoring of changes

1. Introduction

Landslide is a kind of geological disaster that is recognized as one of the most severe
hazards. It is widely distributed, can have a potent impact, and is particularly destructive.
Landslides represent a significant threat not only to human life and safety but also to
damage to property, environmental degradation, and resource depletion [1]. For instance,
there is a deep loess landslide that took place in Zaoling, Shanxi Province, China, on
15 March 2019, resulting in the loss of 20 lives and injuring 13 people [2]. On 3 July 2021, a
landslide occurred in the Izu Mountain region of Shizuoka County, Japan, which resulted
in the loss of 26 lives, and devastated 131 residences [3].

Shanxi is in the north-central part of China. The terrain is the loess gully area. This is
a special geological structure between the plain area and the plateau area. The geological
conditions in this area are quite complex. As a major coal province, Shanxi Province has a
coal-bearing area of about 6.2 × 104 km2 and about 1000 coal mines [4]. For a long time,
human engineering activities have become increasingly active. Mineral resources have been
continuously exploited, and the scale of mining area construction has been continuously
expanded, which has led to more frequent occurrence of geological disasters. Shanxi
Province has become a serious province of mining landslide geological disasters [5,6].
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After the landslide disaster occurs, accurate and rapid acquisition of landslide location
information is very important for subsequent rescue and governance work [7]. Indeed,
the rapid identification and location of landslide-prone areas has become an urgent issue
that needs to be addressed. However, with the latest advancements in remote sensing
and artificial intelligence technologies, it has become feasible to utilize remote sensing
technology to identify regions susceptible to landslides. This innovative approach can
not only reduce the risk of loss of life and property damage, but also provide essential
information to aid in disaster response and relief efforts. Huang et al. used high-resolution
satellite images to extract landslide information through object-oriented analysis technology,
selected appropriate feature parameters to construct classification rules, and completed
landslide identification [8]. Based on the GeoEye-1 satellite data, Ding et al. used the object-
oriented classification method to complete the rapid identification of landslide disasters
according to the spectral and shape characteristics of landslides [9].

In the paper of Wang et al., a three-dimensional reconstruction and disaster identifica-
tion classification method of slope based on UAV oblique photography was proposed, and
the three-dimensional model of slope was reconstructed by using UAV multi-view images.
Combined with PointNet++ classification neural network algorithm, the intelligent identifi-
cation of landslide is realized [10]. In the work by Cai et al., they put forward a modeling
methodology that employs convolutional neural networks (CNN) and integrates terrain
characteristics. To construct landslide samples, they combined terrain factors with Landsat
OLI remote sensing images. A lightweight convolutional neural network (FN-CNN) was
designed, and the optimal model was trained to identify landslides [11]. Xin et al. used
optical remote sensing images, digital elevation model (DEM) data, geological data and
rainfall data to construct a landslide multi-source data set and designed a multi-source
heterogeneous data preprocessing process and fusion model. Then, the Res-UNet model is
constructed to realize the recognition of landslide [12].

The purpose of this study is to use the improved YOLO algorithm, combined with the
high-resolution and large-scale characteristics of UAV low-altitude remote sensing images,
to establish a landslide sample database in the mining area, and to realize the identification
and location of mining landslides in the mining area. Currently, there exists a wide array
of algorithms for landslide recognition that are based on optical remote sensing images.
However, there remain certain shortcomings in the application of landslide recognition
methods that rely on low-altitude remote sensing images captured by UAV particularly
in mining regions. Most of the existing work only completes the content of landslide
identification [13]. In the context of mining areas, precise positioning of landslides using
UAV images is essential to gather the necessary data required for subsequent ecological
restoration efforts in these areas.

2. Study Area and Data Collection
2.1. Study Area

The research area is Sunjiagou Coal Mine, located in Baode County, Xinzhou City,
Shanxi Province. Geographical coordinates: east longitude: 111◦06′55′′–111◦09′16′′; north
latitude: 38◦49′34′′–38◦51′19′′. The study area exhibits a maximum elevation of 1160 m, a
minimum elevation of 1028 m, and an average elevation of 1095 m. This area is located
in the eastern part of the Yellow River, the northwest edge of Shanxi, which belongs to
the Zhongshan loess landform. The terrain is undulating, the valleys are crisscrossed,
the terrain is seriously cut, and the vegetation is poor. The regular mining operations
have altered the inertia exerted on the slope, resulting in surface deformation, heightened
fissures, and accelerated landslide formation. The location of the research site is shown in
Figure 1.
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Figure 1. Location of the study area.

2.2. Data Collection

In this paper, the orthophoto of the region is obtained by UAV. The equipment
is FEIMA D2000 UAV (Figure 2a) equipped with a D-CAM2000 visible light module
(Figure 2b), which is manufactured by Shenzhen Feima Robotics Co., Ltd., China. The
standard take-off weight is 2800 g, and the standard load is 200 g. The detailed parameters
of UAV platform and aerial photography module are shown in Table 1. The use of variable
height flight mode can ensure the consistency of image resolution. The experimental area
was captured through aerial photography following the predetermined flight path, and
finally 10 digital orthophoto maps (DOM) of the study area were obtained. Collection time
and data format are shown in Table 2.
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Table 1. UAV platform and aerial survey module.

D2000 D-CAM2000

Take-off weight 2.8 kg Camera model SONY a6000
Standard load 200 g Efficiency pixel 2430 million

Endurance time 74 min Sensor size 23.5 × 15.6 mm (aps-c)
Measurement radius 20 km Camera lens 25 mm
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Table 2. Data record table.

Time Format Area (km2)

22 July 2022 TIF 13.87
22 August 2022 TIF 13.86

22 September 2022 TIF 13.90
22 October 2022 TIF 13.75

22 November 2022 TIF 13.87
22 December 2022 TIF 13.88

23 January 2023 TIF 13.70
23 February 2023 TIF 13.82

23 March 2023 TIF 13.88
23 April 2023 TIF 13.85

3. Method

The purpose of our study is to build a deep learning database using UAV images
of surface landslides in mining areas. The goal is to enhance the detection speed and
accuracy of the model, enabling it to identify and detect landslides from UAV images.
By obtaining the geographic location of the landslide, it becomes possible to monitor the
changes occurring in the landslide in the mining area. This provides valuable data to
support the later ecological restoration of the mining area.

3.1. Construct a Landslide Sample Data Set

The original data for the landslide sample data set consists of UAV images with a
spatial resolution of 0.05 m. The accurate location of the landslide is determined by field
investigation, as shown in Figure 3. We used Real-time kinematic (RTK) to survey the
landslide in the study area and obtained the latitude and longitude coordinates of the
landslide area. In the study area, UAV images were collected at different time periods to
obtain a Digital Orthophoto Map (DOM). Table 2 lists the specific details of the acquisition
date, parameters, and other related information of the UAV image during each DOM
generation process. The orthographic image is a three-channel (RGB) data. The landslide
samples are screened, and the image of the landslide area is obtained by cutting, and it is
scaled to 1280 × 1280 pixels to obtain the landslide samples.
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Figure 3. Field survey.

Enhancing the data of landslide samples can augment the diversity of training data,
thereby enhancing the generalization capability of the model. Two fundamental approaches
for enhancing data include geometric transformation and color transformation techniques.
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The heterogeneity of remote sensing image collection arises from variations in both
data acquisition time and the diversity of acquisition environments. It is necessary to
perform color transformation on the orthophoto image to eliminate the influence of color
deviation on the performance of the convolutional neural network model. In addition,
geometric transformation techniques can be employed to allow the deep learning model
to observe the landslide from various perspectives. As a result, the robustness of the
model is enhanced. We use LabelImg to mark the landslide area in the landslide sample in
YOLO format.

3.1.1. Geometric Transformation

Geometric transformation involves applying various transformations to the geometric
information of an image, such as rotation, scaling, translation, and shearing, to generate
a new transformed image. These transformations can modify the spatial properties, ori-
entation, and scale of the image, allowing the model to observe the data from different
angles and perspectives. The geometric transformations used in this paper include rotation,
vertical and horizontal flips. They are shown in Figure 4b–d.
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Rotary transformation is a kind of rigid body transformation, which rotates the image
with a point as the axis to obtain a new image.

Image reversal is an image processing operation used to change the direction or
perspective of the image. The image can be flipped horizontally and vertically. Typically,
this procedure is executed by utilizing the central axis of the image as the focal point. The
image coordinate system is centered at the origin of the image, where the positive x-axis
extends towards the right and the positive y-axis extends downward.

The variables x and y denote the coordinates in the original image, while x′ and y′

represent the coordinates in the inverted image. In this coordinate system, the principle of
image flipping is as follows:

Vertical flipping: The image is flipped up and down with the image center as the
central axis. x′

y′

1

 =

1 0 0
0 −1 h − 1
0 0 1

x
y
1

 (1)
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After flipping, the new coordinates of each pixel are (x′, y′), where the calculation
formula of x′ is x′ = x, and the calculation formula of y′ is y′ = h − 1 − y. The variable h
represents the vertical dimension of the image, which quantifies the number of rows in
the image.

Horizontal flipping: The image is flipped left and right with the image center as the
central axis. x′

y′

1

 =

−1 0 w − 1
0 1 0
0 0 1

x
y
1

 (2)

After flipping, the new coordinate of each pixel is (x′, y′), where the calculation formula
of x′ is x′ = w − 1− x, and the calculation formula of y′ is y′ = y. The variable w represents
the horizontal dimension of the image, which measures the width of the image in terms of
columns or pixels.

3.1.2. Color Transformation

Color transformation is to change the content of the image. This method used in this
paper is to change the brightness, contrast and saturation of the image, and add Gaussian
noise. As shown in Figure 4e–h.

Brightness adjustment refers to the operation of changing the brightness of the image.
The brightness adjustment operation can increase the recognition ability of the model for
objects under different illumination conditions.

Contrast adjustment is an operation to change the image contrast. The contrast
adjustment operation can increase the recognition ability for different object texture and
detail features.

Saturation adjustment is usually the operation of changing image contrast. Saturation
denotes the intensity or luminosity of the color, and its value spans from 0 to 100%. When
the saturation is 0, the color shows a gray effect; when the saturation is 100%, the color is
the purest and most saturated.

Gaussian noise refers to a kind of noise that exhibits a probability density function
following a Gaussian distribution, also known as a normal distribution. This noise is
present at every point and possesses a deterministic location, but the amplitude of the noise
is random.

3.2. Landslide Detection Method in Mining Area
3.2.1. YOLOv8 Model

The surface damage of the mining area is more serious, and many false detections
and missed detections are prone to occur when identifying landslides. At the same time,
the small scale and complex background of a single landslide also increase the difficulty
of detection. These problems make it impossible to accurately identify and detect mining
landslides in UAV images. Therefore, it is necessary to select a more effective detection
model to detect mining landslides. YOLO (You Only Look Once) is a target detection model
that can directly obtain the category probability and position coordinates of different targets
by only one convolutional neural network, which can better distinguish the target area
and background area. The YOLO series generally includes YOLO, YOLO9000, YOLOv3,
YOLOv4, YOLOv5, YOLOv6, YOLOv7 and YOLOv8. In this study, the YOLOv8 target
detection model is used, which can be roughly divided into four parts: input, backbone,
neck and head. The network structure is showed in Figure 5.

YOLOv8 has more advantages than previous versions:

1. Compared with YOLOv5 and YOLOv7 algorithms, YOLOv8 has greatly improved
training time and detection accuracy, and the weight file of the model is only 6 MB,
which can be deployed to any embedded device. It can meet the needs of real-time
detection with its fast and efficient performance.
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2. Since the YOLOv8 algorithm is an inherited version of YOLOv5, it provides models of
different scales such as n, s, m, l, and x to meet the needs of different scenarios. While
the accuracy is greatly improved, it can be smoothly trained and installed on various
hardware platforms.

3. On the input side, the YOLOv8 uses Mosaic data enhancement [14], adaptive anchor
box calculation [15] and other methods. The Mosaic data enhancement technique
involves splicing images using random scaling, random cropping, and random ar-
rangement to augment the detection data set. Through differential computation,
reverse updating, and other operations, the calculation of adaptive anchor box en-
ables the determination of optimal anchor frame values.

4. At the output end, the YOLOv8 uses the decoupling head to replace the previous
coupling head, decouples the classification and regression into two independent
branches, and makes the task more focused through decoupling, which solves the
problem of inaccurate positioning and classification errors in complex backgrounds.
At the same time, the YOLOv8 also borrows the idea of DFL [16] and uses the Anchor-
free target detection method [17] to make the network focus on the adjacent points of
the target position faster, so that the prediction box is closer to the actual bounding
box area.
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3.2.2. Embedding Attention Mechanism

For the past few years, the attention mechanism has gained significant popularity and
has been extensively utilized in various domains, such as image processing [18,19], speech
recognition [20], and language processing [21,22], where it has shown excellent results. It
can allocate distinct weights to various channels or regions within the space. This facilitates
the model’s ability to concentrate on extracting crucial information. For the specific task of
mining landslide recognition, we hope to enable the network to focus on the landslide area
in both channel and space without increasing the complexity of the model. Therefore, we
choose the Convolutional Block Attention Module (CBAM), whose structure is shown in
Figure 6.
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(1) Channel attention module (CAM)

This module can direct its focus towards significant information within an image
that assists in landslide identification within the mining area. This module effectively
compresses the spatial dimensions H and W while maintaining the unaltered channel
dimension C. The calculation process of the CAM is illustrated in Figure 7.
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F is input into the module, and F passes through the MaxPool (maximum pooling)
layers and the AvgPool (average pooling) layers in parallel to obtain the maximum pooling
feature Fc

max and the average pooling feature Fc
avg. The feature is propagated forward to the

shared Multilayer Perceptron (MLP). After MLP, the features are added at the element-wise
level, and the nonlinear transformation is performed by the Sigmoid function to obtain the
channel attention feature Mc, which is shown in the Equation (3):

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(3)

where Fc
avg and Fc

max represent the average pooling feature and the maximum pooling
feature, and σ represents the sigmoid function.

(2) Spatial Attention Module (SAM)

By using the spatial correlation of features, this module is introduced to pay attention
to the location information of landslides in the picture, and the channel attention features
are effectively supplemented. Maintain the spatial dimensions H and W unchanged, and
compress the channel dimension C.

In Figure 8, the F′ passes through MaxPool and AvgPool along the channel direction to
acquire the cross-channel spatial feature maps F′s

max and F′s
avg.
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Channel splicing and 7 × 7 convolution are performed on F′s
max and F′s

avg, and they are
transformed into single-channel feature maps. Nonlinear transformation is performed by
sigmoid function to obtain spatial attention feature Ms, as shown in Equation (4):

Ms(F′) = σ( f 7×7([AvgPool(F′); MaxPool(F′)]))

= σ( f 7×7([F′s
avg; F′s

max]))
(4)

where σ is the sigmoid function, and f 7×7 is the convolution operation with a convolution
kernel of 7 × 7.

3.3. Landslide Identification Results Positioning Method

In this study, the problem of excessive image range in the study area was solved by
using deep learning algorithm to automatically identify landslides. In order to input the
image into the network, it has to be cropped. However, the cropped image will result in
the loss of image coordinate information, which in turn affects the geographical location
identification and positioning of the landslide.

To address this issue, the current investigation puts forth a novel methodology to
attain the geolocation of landslides during the deep learning process. In this method, the
coordinate system used in the original image is the geographic coordinate system, and
the appropriate projection coordinate system is selected according to the different study
areas. The purpose of this is to be able to accurately obtain the location information of
the landslide.

First of all, through the image segmentation technology, the acquired image is cut.
The cropped image is divided into n rows and m columns, as shown in Figure 9a. Then,
the deep learning algorithm is used to identify the landslide of each cropped image. Not
only to identify the landslide itself, the algorithm also stores the geographic coordinate
information of each clipped image.

In order to locate the landslide geographically, we will use the known geographic
reference points and pixel coordinate system for calibration. By matching with the reference
points in the image, we can restore the geographic coordinate information of the cropped
image. By employing this technique, we can obtain the accurate position of the landslide
in the geographical space, so as to realize the geographical location identification and
positioning of the landslide. {

X = l(X3−X1)
m

Y = k(Y3−Y1)
n

(5)

where X and Y represent the upper left corner coordinates of the required image, and
k and l represent the number of rows and columns of the required image in the entire
cropped image. According to this formula, we can get the coordinates of the corner of the
cropped image.
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The image through the network will lose the projection coordinate information, and the
identified target position is its coordinate in the pixel coordinate system. The coordinates
(u1, v1) represent the upper left corner of the detection box, while the coordinates (u3, v3)
represent the lower right corner. These coordinates define the boundaries of the detection
box, allowing for precise localization of the landslide within the image. As shown in
Figure 9b.  U = X1 +

l(X3−X1)
m

V = Y1 +
k(Y3−Y1)

n

(6)

where U and V represent the real coordinates of the origin in the pixel coordinate system.
The coordinate transformation of the origin of the pixel coordinate system is carried out,
and the projection coordinates of the origin of the pixel coordinate are obtained.

Through the Formula (7), the coordinates of the detection box in the projection coordi-
nate system can be obtained in Figure 9c.{

x = U + u

y = V − v
(7)

where x and y represent the projection coordinates, u and v represent the coordinates of the
detection box in the pixel coordinate system.

4. Results and Analysis
4.1. Experiment Environment

This experiment is carried out under the 64-bit Windows 10 operating system. The
CPU is Intel(R) Xeon(R) W-2245, and the operating frequency is 3.90 GHz. The GPU is
NVIDIA Quadro P2200, the host memory is 128 GB, and the programming language is
Python 3.9. We train the model based on the deep learning framework Pytorch 1.13.

The pre-training weight of the model is YOLOv8n.pt. In the training stage, the SGD
function is used to optimize the parameters, the learning rate (lr0) is set to 0.01, and the
batch size is set to 8. The training of the model consists of 200 epochs.

4.2. Model Accuracy Assessment

In order to evaluate the performance of the improved model, the P (precision), R
(recall), mean average precision (mAP) and F1 score are considered as evaluation indicators.
In this study, the precision refers to the proportion of the number of samples that the
model correctly predicts as a landslide to the number of samples that are predicted as
a landslide. That is, in all the samples predicted as positive samples, the proportion of
correctly predicted samples.
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The recall rate refers to the proportion of samples that are correctly predicted as
landslides in all samples that are actually landslide areas. The F1 score is a metric that
takes into account both precision and recall, which can be calculated as the harmonic mean
of precision and recall. This score provides a comprehensive evaluation of the model’s
performance. The high F1 score indicates that the model achieves a good balance when
considering both precision and recall.

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 =
2PR

P + R
(10)

where TP is the correct number of predicted landslides, FP is the non-landslide area judged
as landslide, and FN is the landslide area predicted as non-landslide.

In the mAP (mean average precision), m represents the average. AP@0.5 refers to the
average accuracy of this type of sample when the threshold of the IoU of the confusion
matrix is 0.5, and mAP@0.5 is the average of the Precision values of all categories of samples.
It reflects the trend of the P of the model with the recall R. The higher the value of mAP@0.5,
the easier it is for the model to maintain high precision at high recall rates. The calculation
formula is as follows:

AP =
∫ 1

0
P(R)dR (11)

mAP =
1
n

n

∑
i=1

(AP)i (12)

where AP represents the average precision, and (AP)i represents the AP value of class i.
To assess the effectiveness of the improved method described in the paper, experiments

were conducted on a dataset using the same training parameters. The performance of the
improved method was then compared with that of YOLOv8 and YOLOv5.

The detection precision and recall of the improved YOLOv8 model are significantly
improved. The specific numerical results are shown in Table 3. The addition of CBAM
effectively enhances the performance of the model. In comparison to the original model,
the enhanced YOLOv8 model demonstrated an increase in F1 score by 8.2 and mAP@0.5 by
4.2%. The results show that the improved YOLOv8 model can better meet the detection
requirements of landslide in mining area.

Table 3. Comparison of model accuracy evaluation indexes.

Model P/% R/% F1/% mAP@0.5/%

YOLOv5 89.3 87.3 88.3 92.5
YOLOv8 90.4 87.5 88.9 93.4

improved model 98.3 96.0 97.1 97.6

4.3. Landslide Detection Results

The model is used to identify landslides in the study area with an area of 13.88 square
kilometers, and a total of 246 landslides are identified. However, some of the recognition
results overlap, that is, multiple recognition frames are selected at different positions of the
same landslide, as shown in Figure 10a,d. After considering the above situation, a total of
208 landslides were detected through the model in this paper. Through field investigation
and visual interpretation of images, there are 203 landslides in the study area, of which 189
were correctly detected and 14 were not detected. The recognition accuracy rate reached
93.10% and the missed detection rate was 6.89%.
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Some of the identification results shown in Figure 10 show that this study has success-
fully detected the surface landslides in the mining area, which can provide corresponding
data support for the subsequent ecological restoration of the mining area.

4.4. The Influence of Underground Mining on Landslide in Mining Area

In the study area, which is a mining area, the occurrence of landslides is significantly
influenced by mining activities. In order to study the influence of underground mining on
the distribution of landslide in mining area, we obtained the relevant data of the mining area,
including working face data, mining area boundary and so on. The formation of landslide
is often the result of the interaction of internal and external factors. The internal factors
mainly include the factors of the slope itself, and the geometric shape of the slope and the
structural conditions. The landslide in the mining area is affected by many factors, mainly
underground mining, and its deformation and instability mechanism is very different from
that of general landslides. The effect of underground mining on the slope is manifested in
many aspects. The correlation between the effects leads to the reduction of slope stability
and ultimately leads to the formation of landslides in mining areas, which is shown in
Figure 11.

The boundary of the mining area and the data of the working face are corresponding
to the study area, in Figure 12. It can be found that the landslides in the mining area are
mostly distributed near the working face within the mining boundary. Many working faces
in the mine area have been mined, resulting in a large area of goaf in the underground, and
the stability of the overlying strata on the surface is affected, which induces the formation
of landslides. There are also some landslides outside the mine boundary. These landslides
are mostly affected by the mining of adjacent mining areas. The stability of the overlying
strata is destroyed, and the mechanical properties are changed, resulting in the formation
of surface landslides.
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4.5. Landslide Changes

In this research, the orthophoto images of the study area were obtained in July 2022
and April 2023 respectively, and the landslide in the mining area was identified by the
model in this paper. We use ArcGIS to mark the recognition results on the image based on
the first phase of orthophoto. The yellow area is the landslide area marked on the first phase
of the image, and the red area is the landslide area newly discovered on the last phase
of the image, as shown in Figure 13. Due to the short interval between the first and
last images, there is no significant difference in the range and number of landslides, but
10 new landslides are still formed, and the range of many landslides has changed. The
newly developed landslide is marked as L1-L10 in order. In Figure 14, the changes of them
in the two images are shown respectively. The model employed in this study exhibits
the capability to facilitate the monitoring of landslide variations and timely detection of
emerging landslides.
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5. Discussion

In this study, the landslide data set of UAV remote sensing image in mining area was
established, and the improved YOLO algorithm was used to realize the identification and
location of mining landslide in mining area. The study evaluated the applicability of the
landslide data set, the recognition accuracy of the improved algorithm, and the feasibility
of monitoring landslide changes. These contents are discussed below:

1. In this study, a landslide data set of UAV remote sensing image in mining area was
constructed. However, due to the insufficient amount of data, we enhanced the
image to achieve the purpose of expanding the dataset. The expanded landslide
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dataset can complete the training of the model, which is suitable for the training of the
mining landslide recognition model in the mining area. However, there are also some
shortcomings: image enhancement methods may cause image distortion or unreality,
affecting the generalization performance of the model.

2. This study innovatively uses the improved model to monitor the landslide in the
mining area, which can accurately identify the location of the landslide area. The
precision of landslide identification in [8] is 83.9%, and the precision of landslide
identification using the model in this paper reaches 93.1%. Compared with the method
in [8], the landslide recognition method proposed in this study has significantly
improved the recognition accuracy. However, the model in the paper cannot calculate
the specific parameters such as the area and slope of the landslide, and the relevant
parameters can be obtained by means of image segmentation.

3. Cheng et al. [23] used the improved YOLOv4 model to complete the identification
of landslides, and the precision was 94.08%, which was equivalent to the precision
of the model in this paper. However, due to the limitations of its algorithm, it is
impossible to obtain the location information of the recognition results. The landslide
recognition result positioning algorithm proposed in this paper can accurately obtain
the location information of the landslide, effectively make up for the shortcomings
of reference [23], and provide the necessary positioning for the accurate treatment
of landslides.

4. We use the model in this paper to detect landslides in multi-period UAV images of
mining areas, and successfully realize the monitoring of landslide changes in mining
areas. Figure 13 shows the change of landslide during July 2022–April 2023, but the
time span of the two images is short and has certain limitations. In the follow-up
study, the interval time of the image can be appropriately increased to obtain a clearer
change of the landslide in the mining area.

6. Conclusions

In this study, the landslide dataset of UAV remote sensing image in mining area was
established. The recognition and location of landslide in mining area were realized by
reconstructing YOLO algorithm, and the monitoring of landslide change in mining area
was realized by using multi-period image. The research results are summarized as follows:

1. We use the UAV images of mining area to construct a landslide data set in the mining
area and use LabelImg to label the corresponding landslide area on the data set.
By reconstructing the structure of YOLOv8, CBAM is embedded into the YOLOv8
model, which effectively improves the landslide detection performance of the model
in UAV images.

2. The feasibility of this model for landslide detection on UAV large-scale images in
mining areas is verified. The area of the study area is 13.88 square kilometers. A
total of 208 landslides were detected through the model in this paper. Through field
investigation and visual interpretation of images, there are 203 landslides in the study
area, of which 189 were correctly detected and 14 were not detected. The model F1
score was 97.10%, the missed detection rate was 6.89%, and the recognition accuracy
was 93.10%.

3. This study solves the problem of landslide location in images and proposes an algo-
rithm to realize landslide location. The algorithm solves the problem of coordinate
information loss in the conventional model and realizes the accurate positioning of
the detected landslide area under the geographic coordinate system.

4. The feasibility of using the model to monitor the change of landslide in mining area is
confirmed, multi-stage UAV images are obtained, and the improved model is used
to identify. By comparing the identification results, the landslide changes in the
mining area can be obtained in time. This capability offers valuable data support for
subsequent ecological restoration efforts in the mining area.
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