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Abstract: In the evolving landscape of autonomous systems, the integration of unmanned aerial
vehicles (UAVs) and unmanned ground vehicles (UGVs) has emerged as a promising solution
for improving the localization accuracy and operational efficiency for diverse applications. This
study introduces an Information Consensus Filter (ICF)-based decentralized control system for
UAVs, incorporating the Control Barrier Function–Control Lyapunov Function (CBF–CLF) strategy
aimed at enhancing operational safety and efficiency. At the core of our approach lies an ICF-based
decentralized control algorithm that allows UAVs to autonomously adjust their flight controls in real
time based on inter-UAV communication. This facilitates cohesive movement operation, significantly
improving the system resilience and adaptability. Meanwhile, the UAV is equipped with a visual
recognition system designed for tracking and locating the UGV. According to the experiments
proposed in the paper, the precision of this visual recognition system correlates significantly with
the operational distance. The proposed CBF–CLF strategy dynamically adjusts the control inputs
to maintain safe distances between the UAV and UGV, thereby enhancing the accuracy of the
visual system. The effectiveness and robustness of the proposed system are demonstrated through
extensive simulations and experiments, highlighting its potential for widespread application in UAV
operational domains.

Keywords: unmanned aerial vehicles; unmanned ground vehicles; Control Lyapunov Function;
control barrier function

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehi-
cles (UGVs) have captured increasing attention and interest. These vehicles have shown
significant potential in various domains, such as search and rescue, surveillance, and en-
vironmental monitoring [1]. UAVs and UGVs are typically equipped with a variety of
sensors, cameras, and other devices, enabling them to perform tasks including conducting
search and rescue operations at disaster sites, monitoring potential danger zones, and
environmental surveillance [2]. Their unmanned nature allows them to execute hazardous
tasks, thus avoiding risks to human lives [3].

When these UAVs and UGVs form a cooperative system, they complement each
other’s capabilities, leveraging their respective strengths to accomplish more complex
missions [4]. For instance, UAVs can provide high-altitude perspectives and rapid response
capabilities [5], while UGVs can offer a stable platform and longer duration of sustained
operations [6]. Their collaboration enhances the efficiency of the entire system, improving
the effectiveness and accuracy of the work [7].

However, operating these vehicles in a coordinated manner proves to be a challenging
task, especially in dynamic and uncertain environments [8]. Localizing UAVs becomes a
specific challenge when they operate in tandem with other UAVs or UGVs, particularly
in situations where Global Positioning System (GPS) signals are unavailable [9]. This
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urgent need for localization has led to the emergence of pioneering studies aimed at
addressing this challenge [10]. Moreover, an algorithm is proposed to localize the UAVs
using satellite images in [11]. The objective of these studies is to devise inventive solutions
that empower UAVs to ascertain their position with precision, even in environments devoid
of GPS signals.

Accurate localization information is essential for collaborative operations involving
multiple unmanned vehicles. Hence, advancements in sensor technology have played
an important role in enhancing the localization capabilities of UAVs and UGVs [12]. For
instance, the integration of visual odometry, which relies on the analysis of camera images
to estimate the motion of a vehicle, has emerged as a promising approach in environments
where traditional GPS-based navigation is ineffective. Additionally, the use of Light
Detection and Ranging (LiDAR) and radar technologies for mapping and navigation in
complex terrains has gained traction [13]. These technologies enable UAVs and UGVs to
create high-resolution maps of their surroundings, facilitating more precise positioning and
maneuvering. Nevertheless, sensor technology may face limitations in precision, leading
to less accurate data acquisition and consequently impacting the precision of localization
information. Moreover, some sensors may exhibit sensitivity to environmental conditions
such as changes in weather and variations in lighting, potentially compromising the sensor
performance and, in turn, affecting the localization accuracy [14].

Simultaneously, machine learning algorithms, specifically within deep learning, have
significantly advanced the localization capabilities of UAVs and UGVs. In [15], a vision-
based algorithm is introduced to localize the targets using the UAV–UGV cooperative
systems. Through the utilization of neural networks, these vehicles are now capable of
processing extensive sensor data in real time, enabling them to make more precise and
adaptable decisions [16]. Such capability proves critical in scenarios characterized by
rapidly changing environmental conditions [17]. Conversely, deep learning algorithms
often necessitate extensive datasets for training to achieve precise models [18]. Acquiring
substantial training data in UAVs and UGVs might be constrained, particularly in intricate
or perilous environments. Deep learning models might exhibit sensitivity to alterations
in the environment, necessitating retraining or recalibration when the environmental
conditions fluctuate, potentially impacting the accuracy of the localization information.

Furthermore, the integration of UAVs and UGVs into cooperative systems also offers
prospects for leveraging swarm intelligence [19]. Through coordinated operations, these
vehicles can exchange localization data and insights, enhancing the accuracy and efficiency
of their endeavors. This swarm-based approach not only bolsters the capabilities of in-
dividual vehicles but also extends their operational scope and resilience in demanding
environments [20]. In [21], a coalition formation game approach is proposed to localize the
UAV swarm in a GNSS-denied environment.

Moreover, the establishment of standardized communication protocols and interoper-
able software frameworks is imperative for the smooth integration of UAVs and UGVs into
a collaborative system [22]. These frameworks guarantee dependable and efficient data
exchange and coordination among diverse vehicle types, thereby contributing their overall
performance as a collective entity.

To cope with the aforementioned challenges, the expanding potential applications
of UAVs and UGVs within cooperative systems signify a significant advancement in
autonomous technology. Their versatility across various sectors, from agricultural monitor-
ing [23] to urban planning [24], demonstrates their adaptability to diverse environments
and tasks. Particularly notable is their ability to operate effectively in GPS-denied envi-
ronments, overcoming the existing limitations and unlocking new opportunities for these
technologies. This adaptability is crucial in addressing the challenges posed by inaccessible
or compromised GPS signals, ensuring uninterrupted operations and broadening the appli-
cation scope for UAVs and UGVs. Consequently, their capability to autonomously navigate
and perform tasks in such conditions represents an essential step forward in the evolution
of autonomous vehicle technology.
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Recently, numerous solutions for UAV–UGV collaboration have emerged. UAVs and
UGVs have garnered attention for their potential in high-risk missions, necessitating an
effective cooperative control framework to optimize mission completion and resource uti-
lization, particularly in applications like wildfire fighting [25]. However, their adaptability
to dynamic environments may pose constraints, and relying on a central mobile mission
controller for decisionmaking and planning could elevate the risk of system failure due to
a single point of failure. In hazardous industrial settings, a decentralized scheme employs
a drone to lead ground mobile robots transporting objects, with one robot navigating ob-
stacles using drone-provided waypoints and a human operator while the others maintain
distance and bearing through predictive vision-based tracking [26]. However, this scheme
places high demands on the reliability and precision of both the drone and human operator,
potentially leading to a lack of robustness. Failures or errors regarding either the drone or
the operator could adversely affect the overall performance of the system. Reference [27]
presents a cooperative UAV–UGV team for aerial tasks, proposing a control framework
validated experimentally for efficient operation and reduced energy use. While UAVs and
UGVs can assist each other, ensuring they do not cause damage or pose danger during task
execution remains a challenge in real-world environments.

Distributed algorithms are computational procedures designed for systems consisting
of multiple computing nodes [28]. These algorithms distribute tasks among the nodes,
enabling them to collaborate and communicate in achieving a common objective. Each
node in a distributed system possesses its own computational resources and local state [29].
Distributed algorithms play a critical role in the coordination and operation of UAVs and
UGVs. In [30], a distributed solution mechanism is employed to determine the information-
maximizing trajectories subject to the constraints of individual vehicle and sensor sub-systems.
Additionally, ref. [31] demonstrates a considerable advantage of distributed UGVs over the
static placement of control stations. These distributed algorithms facilitate communication
and collaboration among the UAVs and UGV, allowing them to work together effectively to
accomplish tasks.

The Information Consensus Filter (ICF) is a distributed algorithm used in multi-agent
systems for estimating a common state [32]. It iteratively updates each agent’s estimate
based on the local observations and received information from neighboring agents, using
a consensus matrix to determine the weights of these updates. Through iterative con-
sensus iterations, the ICF enables the agents to converge towards a consistent estimate
of the common state, making it valuable for distributed estimation and control in dy-
namic environments. The ICF in UAV and UGV systems promotes information exchange
and maintains state coherence across various Unmanned Aerial Vehicles and Unmanned
Ground Vehicles. By fostering communication and collaboration among individual UAVs
and UGVs, the ICF ensures a unified estimation of the shared states, thereby optimizing the
task performance and resource utilization. Its implementation bolsters the system coordina-
tion and resilience, allowing for adept navigation in intricate environments and expanded
utility across diverse applications. In [33], a distributed information filter algorithm is
developed for each UGV to locally estimate the position and velocity of the quadrotor
using its information and information from neighboring UGVs. Despite the pioneering
advantages, the aforementioned research overlooks the integration of localization and
control in unmanned vehicles.

1.1. Motivations

Improving the robustness and reliability of cooperative UAV–UGV systems is driven
by the need to overcome challenges. This involves lessening the burdens on individual
drones and human operators, ensuring adaptability to changing environments, and de-
creasing dependence on centralized control. The goal is to enhance the overall performance
and safety of these systems in real-world scenarios. In response to the complexities of
coordinating vehicle operations and guaranteeing precise localization data, we devised and
executed a cost-effective vision-centered collaborative framework. While fully considering
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the superiority of distributed algorithms such as the ICF, our framework draws inspiration
from the integration of UAVs and UGVs into cooperative systems and also incorporates
the establishment of standardized communication protocols. It is engineered to dynami-
cally adapt to changing environmental conditions, prioritize vehicle safety, and establish
a reliable and efficient communication infrastructure. Additionally, it is engineered to
accommodate multiple vehicles and facilitate seamless collaboration among them.

1.2. Contributions

We have developed and implemented a system that incorporates an advanced de-
centralized control algorithm and employs a Control Barrier Function–Control Lyapunov
Function (CBF–CLF) strategy for UAVs, aimed at enhancing safety and efficiency. The
efficacy of our system is validated through simulations of real-world scenarios.

In summary, the contributions are elaborated as follows:

• Distributed Algorithm Design: Our system integrates an advanced decentralized
control algorithm, allowing UAVs to autonomously adapt control inputs in real time
by leveraging data from the Information Consensus Filter (ICF). This decentralized
strategy enables each UAV to function independently yet maintain cohesion within a
larger fleet, bolstering system resilience and adaptability.

• Control Algorithm Design: At the core of our system is the Control Barrier Function–
Control Lyapunov Function (CBF–CLF) strategy. This innovative control scheme em-
phasizes the safety of UAVs, which is essential for ensuring operational integrity. By
enforcing safe separation distances between UAVs and obstacles, the CBF–CLF strategy
minimizes collision risks. The continuous adjustment of control inputs, informed by
real-time assessments of the vehicle’s state and surroundings, ensures effective imple-
mentation.

• Real-World Implementation: We evaluated the effectiveness and robustness of our
system through extensive simulations in various real-world scenarios. This practical
testing confirms the readiness of our system for real-world applications and sets the
stage for its deployment in diverse UAV operational domains.

In comparison to the existing research methods, our system addresses several key limi-
tations. Despite the high demands placed on the reliability and precision of both the drone
and human operator, which could potentially lead to a lack of robustness, our system mit-
igates this risk through the incorporation of an advanced decentralized control algorithm.
This algorithm enables UAVs to independently adjust the control inputs in real time via the
Information Consensus Filter (ICF), reducing the dependency on precise human intervention
and enhancing the overall system resilience. Additionally, while their adaptability to dynamic
environments may pose constraints, our system’s decentralized approach allows for greater
flexibility in responding to changing conditions. Furthermore, the reliance on a central mobile
mission controller for decisionmaking and planning, which could elevate the risk of system
failure due to a single point of failure, is minimized in our system by distributing the deci-
sionmaking processes across the UAV fleet. Finally, while UAVs and UGVs can assist each
other, ensuring that they do not cause damage or pose danger during task execution remains a
challenge in real-world environments. However, our system addresses this challenge through
the implementation of the Control Barrier Function–Control Lyapunov Function (CBF–CLF)
strategy, which prioritizes UAV safety by enforcing safe separation distances from obstacles,
thereby reducing collision risks. Through extensive simulation-based evaluations across vari-
ous real-world scenarios, our system’s effectiveness and robustness were confirmed, affirming
its readiness for diverse UAV operational domains.

The rest of this paper is organized as follows. Section 2.1 describes the preliminary knowl-
edge of the distributed information for the cooperative systems and Control Lyapunov/Barrier
Function. Afterwards, Section 2.2 provides the details regarding the proposed ICF-based Dis-
tributed UAV–UGV Cooperative System, including the system overview, dynamics, ICF for
UAVs, and CBF–CLF for UAV–UGV Coopeative System. After that, extensive experimental
results are presented in Section 3. Finally, the conclusion is provided in Section 4.
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2. Materials and Methods
2.1. Preliminary Knowledge
2.1.1. Information-Weighted Consensus Filter

In the field of distributed systems, the ICF algorithm has emerged as a powerful algo-
rithm for achieving consensus among multiple agents, even with limited communication
and information exchange. It enables distributed entities to collaboratively estimate a
common state or variable, utilizing local measurements and restricted information sharing.

Envision a distributed system consisting of N agents, indicated as A1, A2, . . . , AN .
Every agent Ai conducts its own local measurement and assesses the overarching state or
variable. The ICF’s objective is to foster a consensus on this global state estimation through
a process of iterative updates and reciprocal information sharing among the agents. The
system’s linear dynamic system is characterized as follows:

x(t + 1) = ϕx(t) + γ(t), (1)

where x is the state vector, ϕ is the state transfer matrix, γ ∈ (0, Q) is the process noise, and
Q is the process covariance.

At time t, node Ai possesses the following inputs: prior state estimation x̂i−(t), prior
information matrix Ji−(t), observation matrix Hi, consensus rate parameter ϵ, and total
consensus iterations K. Upon acquiring the measurement value zi and the measurement
covariance matrix R−1

i , the initialization of the consistency information parameters will be
conducted using the following equation:

V0
i ←

1
N

J−i (t) + HT
i R−1

i Hi, (2)

v0
i ←

1
N

J−i (t)x̂−i (t) + HT
i R−1

i zi. (3)

Here, V0
i and v0

i represent the initial information matrix and vector, respectively.
Subsequently, V k−1

i and vk−1
i are updated using the average consistency algorithm over

K iterations. During each iteration, node Ai′ transmits V k−1
i and vk−1

i to all neighboring
nodes Ai′ , while simultaneously receives V k−1

i′
and vk−1

i′
sent from all neighboring nodes.

The information is updated according to the following equation:

Vκ
i ← Vκ−1

i + ϵ ∑
i′∈Ni

(Vκ−1
i′
− Vκ−1

i ), (4)

vκ
i ← vκ−1

i + ϵ ∑
i′∈Ni

(vκ−1
i′
− vκ−1

i ). (5)

Next, the posterior state estimate and information matrix for time t can be computed
using the information vector and information matrix after iterative updating. The equations
are as follows:

x̂+i (t)← (V K
i )−1vK

i , (6)

J+i (t)← NV K
i . (7)

Finally, state information for time t + 1 can be predicted using following equation:

x̂−i (t + 1)← ϕx̂+i (t), (8)

J−i (t + 1)← (ϕ(J+i (t))−1ϕT + Q)−1. (9)
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The ICF refines each agent’s estimates by incorporating the weighted average of
estimates from neighboring agents. Through continuous information exchange and iterative
updates, the agents progressively converge to reach a consensus on the estimated global
state or variable.

In the subsequent sections, we will delve into the practical applications of the ICF in
distributed systems.

2.1.2. Control Lyapunov/Barrier Function

For a continuous-time affine control system ẋ = F(t, x, u), where x ∈ Rn represents
the state vector and u ∈ Rm denotes the control input, if F is Lipschitz continuous with
respect to x and u, and time t is piecewise continuous while u is also piecewise continuous
at time t, then, given the initial conditions, the trajectory exists and remains unique. Given
a dynamical system where f : Rn −→ Rn, g : Rn −→ Rn×m and x is Lipschitz continuous

ẋ = f (x) + g(x)u. (10)

If there exists a constant C such that the continuous differential function V(x) satisfies the
following conditions, then V(x) is considered a Control Lyapunov Function with respect to x:

1. Ωc := { x ∈ RnV(x) :≤ C }
2. V(x) > 0, ∀s ∈ Rn\{ xe }, V(xe) = 0
3. infu∈U V̇(x, u) < 0, ∀x ∈ Ωc, \{ xe} .

If V(x) : Rn −→ R is continuously differentiable, positive definite, and radially
unbounded, then V(x) can be proven to be an Exponentially Stabilizing Control Lyapunov
Function (ESCLF) using the equation, where λ represents the upper bound on the decay
rate of the Lyapunov function:

∃u ∈ U, λ > 0, V̇(x, u) + λV(x) ≤ 0. (11)

When x belongs to the following set and ˙h(x) ≥ 0, then h(x) is considered to satisfy
the conditions of Control Barrier Function:

1. C = x ∈ D ⊂ Rn : h(x) ≥ 0
2. ∂C = x ∈ D ⊂ Rn : h(x) = 0
3. Int(C) = x ∈ D ⊂ Rn : h(x) > 0

In practical systems, a lower bound on the attenuation rate γ is usually specified for
the system if B(x) : Rn −→ R is continuously differentiable, and u making B(x) satisfy
Equation (12) will keep the system safe at all times.

∃u ∈ U, γ > 0, Ḃ(x, u) + γB(x) ≥ 0. (12)

CLF ensures stability of the controller, whereas CBF guarantees that the system
meets safety constraints. Integrating these two approaches allows for the formulation
of a quadratic programming problem.

The CBF–CLF QP function is defined as

u∗ = arg min
u=[u,δ]T

1
2

uT Hu + FTu

s.t.

{
L f V(x) + LgV(x)u + λV(x) ≤ δ,
L f B(x) + LgB(x)u + γB(x) ≥ 0,

(13)

where V(x) is the CLF function, B(x) is the CBF function, H is a positive definite matrix,
while F ∈ Rn×m, δ serves as a relaxation factor.

The CBF–CLF QP function offers a computationally efficient method to ensure both
safety and stability of the controlled system. By resolving the quadratic program, an
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optimal control input can be derived to minimize the cost function while satisfying the
safety and input constraints.

In the subsequent sections, we will delve into the theoretical foundations and practical
applications of the CBF–CLF QP function in control systems.

As shown in Figure 1, the system configuration comprises two UAVs assigned to track
a UGV, with an “Armor” object mounted on the UGV for positioning purposes. This setup
allows the UAV’s camera to utilize visual algorithms to calculate the UGV’s pose. Initial
visual experiments indicate that maintaining a specific range between the UAVs and the
UGV yields optimal performance. Leveraging this observation, the CBF–CLF equation
is developed. Moreover, to improve the precision of the gathered data, the two UAVs
exchange information and refine the collected data using the ICF algorithm.

Armor

Figure 1. The schematic diagram of UAV–UGV cooperative system.

2.1.3. Vision-Based Localization for UAVs

Image processing is carried out using OpenCV—4.8.1 https://opencv.org/ (accessed
on 27 September 2023, developed by Intel, Santa Clara, CA, USA). The camera captures an
image, which is then converted to grayscale. The contours of the light bars are detected,
and an algorithm is utilized to precisely identify the four vertices of the light bars for
localization purposes, along with extracting other pertinent information.

The visual feature, denoted as “Armor” and employed for identification in this ex-
periment, is illustrated in Figure 2. It consists of two light bars mounted parallel on a
rectangular plate, both of equal length and width. Upon capturing the contours, the
OpenCV boundingRect function is utilized to determine the minimum bounding rectangle
encompassing the light bars. In an image, aside from the target identification object, various
noise may be present, which can be eliminated by applying filters based on the geometric
characteristics of the contours.

Considering variations in the distance and angles between the UAVs and UGV during
movement, the mentioned constraints can be suitably relaxed within a specific range.
The contours acquired after filtering should precisely depict the target light bars. By
mathematical sorting, the highest and lowest points on the contours of the two light bars
are discerned, determining the four boundary points of the rectangle. These points are
subsequently employed for pose calculation.

https://opencv.org/
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A D

B C

Figure 2. Armor (light bars are the main visual features; A, B, C, and D are four points used for
solving pose).

In this paper, the PNP algorithm is used to calculate the camera’s pose. To enhance
the accuracy and stability of the PNP solution, we base our calculations on the following
assumption, where l1 is the Armor plane, l2 is the groud, l3 is the camera plane.

Assumption 1. |−→AB| is known and l1 ∥ l2 ∥ l3, while
−→
AB

||
=
−→
DC.

Assumption 2. Each UAV can communicate with its neighbors, transferring the relative position
of moving target.

PNP, commonly used in 3D reconstruction and camera pose estimation, follows a
typical 3D–2D pose estimation process. It requires real coordinates of N spatial points in a
known world coordinate system and their projections onto the image plane. At least three
pairs of points are necessary for this process. In this scenario, the 3D points in the world
coordinate system and the 2D points in the image coordinate system are known, while the
camera pose remains unknown.

In this paper, we employ the Direct Linear Transform (DLT) method for pose calcula-
tion, specifically using the solvePNP function in OpenCV. Geometric structure of PNP is
shown in Figure 3.

𝒁𝒁𝒄𝒄

𝑿𝑿𝒄𝒄

𝒀𝒀𝒄𝒄

𝑶𝑶𝒄𝒄
𝑿𝑿𝒘𝒘

𝒁𝒁𝒘𝒘

𝒀𝒀𝒘𝒘𝑶𝑶𝒘𝒘

Figure 3. Geometric structure of PNP.

The 3D coordinates of the Armor on the UGV in the world coordinate system can be
expressed as

c =
[
xw, yw, zw, 1

]T . (14)

The 2D projected point of Armor in the image coordinate system can be expressed as

h =
[
u, v, 1

]T . (15)
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The intrinsic matrix of the camera can be expressed as

w =

 fx 0 cx
0 fy cy
0 0 1

. (16)

Therefore, the relationship between 2D points in camera image and 3D points in real
world can be expressed as

λ

u
v
1

 =

 fx 0 cx
0 fy cy
0 0 1

[ R t
]

xw
yw
zw
1

, (17)

where R and t represent the rotation matrix and translation vector, respectively, describing
the Armor pose to be determined. Substituting the four sets of solutions will yield the final
pose solution.

2.2. Methodology
2.2.1. Icf-Based Distributed UAV–UGV Cooperative System

UAV–UGV cooperative systems often operate in dynamic and unpredictable envi-
ronments. Adapting localization algorithms to maintain accuracy in real time poses a
considerable challenge. Techniques for restricting UAV within the working range for opti-
mal camera performance while ensuring computational efficiency are needed. Additionally,
as the number of UAVs and UGVs in the cooperative system increases, the complexity of
distributed localization grows exponentially. Algorithms capable of handling large-scale de-
ployments while maintaining accuracy and robustness are essential. Meanwhile, ensuring
the resilience of the localization system to sensor failures and communication disruptions
is critical to information processing.

Based on the previous discussion, we have innovatively proposed the ICF-based
Distributed UAV–UGV Cooperative System, providing a solution to the above-mentioned
problems. The implementation of CBF–CLF equations serves to regulate the distance
between the UAVs and UGV, ensuring data accuracy and integrity. By limiting the distance,
each sensor operates within its optimal performance range. Moreover, to achieve complete
coverage within the UAV’s FOV, we increase the number of UAVs and strategically position
them. Additionally, we employ the ICF algorithm to facilitate data exchange among UAVs,
enabling data fusion to address the issue of naive nodes and enhance state estimation.
In essence, the two algorithms in the proposed system run independently, providing a
practical dual guarantee of data accuracy from different aspects, optimizing individual
camera data computations while ensuring data integrity and robust state estimation. The
schematic diagram of ICF-based Distributed UAV–UGV Cooperative System is shown in
Figure 4.

𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

𝑫𝑫𝒎𝒎𝒎𝒎𝒎𝒎

Information
Exchange

𝝋𝝋𝟏𝟏 𝝋𝝋𝟐𝟐

Figure 4. ICF-based Distributed UAV–UGV Cooperative System.
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2.2.2. Dynamics

We commence by formulating the system dynamics. Our model assumes linear
trajectories for both the UAV and the UGV, with both vehicles consistently maintaining
aligned directions.

The velocity of UGV vl(t) can be calculated using Equation (18), where D(t) is the
relative displacement of the UGV, v f is the velocity of UAV, and ∆T is the time interval
between t and t + 1.

vl(t) = v f (t) +
D(t)− D(t− 1)

△T
. (18)

During the simulation, v f (t) will be updated at each time t using αl(t), the acceleration
of UAV. It can be updated by

v f (t) = v f (t + 1) + α f (t)△ T. (19)

The acceleration of the UAV is represented as

α f (t) =
u(t)− Fr(v f (t))

M
. (20)

The dynamics of the system can be expressed as

ẋ(t) =

−Fr(v f (t))/M
α f (t)

vl(t)− v f (t)


︸ ︷︷ ︸

f (xi)(t)

+

1/M
0
0


︸ ︷︷ ︸

g(xi)(t)

u(t). (21)

Here, x = (x1, x2, x3) = (v f (t), vl(t), D(t)), M is the mass of the UAV, and u(t) is the
control input of UAV. In this equation, v f (t) can be regulated by feedback through u(t). The
aerodynamic drag values with constants f0, f1, and f2 determined empirically are expressed as

Fr(v f (t)) = f0 + f1v f (t) + f2v2
f (t). (22)

2.2.3. ICF for UAVs

The field of view (FOV) of a camera is typically limited. To ensure comprehensive
coverage, it is common practice to deploy two or more UAVs equipped with cameras for
tracking and measurement purposes. This arrangement guarantees that the trajectory of
the UGV can be fully observed, and the fusion of measurement data from multiple UAVs
significantly enhances the accuracy of the measurements.

We consider a continuous linear motion model with constant velocity:

x(t + 1) = Mx(t) + γ(t), (23)

where M is the state transition matrix, while γ(t) ∈ N(0, Q) is Gaussian process noise with
positive definite covariance matrix Q.

During each time step t during the operation of the ICF, it requires K iterations to
achieve consensus with neighboring UAVs regarding the current estimate of the UGV
trajectory and the associated information matrix. This process is designed to maintain
alignment with the neighboring estimates and pertinent information matrices related to the
current UGV trajectory. Through multiple iterations, the ICF endeavors to synchronize and
update information, thereby enhancing the overall consensus.

Simultaneously, it is crucial to ensure that the UGV remains continuously within
the FOV of the UAVs. Importantly, it suffices for the UGV to be within the FOV of any
UAV. Through the exchange of information with neighboring UAVs, the algorithm can par-
tially extend the observation range, thereby maintaining data integrity. This characteristic
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represents a significant advantage of the algorithm. The average consensus algorithm is
articulated as follows:

xκ
i ← xκ−1

i + ϵ ∑
j∈Ni

(xκ−1
j − xκ−1

i ). (24)

Prediction for the next time step t can be expressed as

x̂−i (t + 1)← Mx̂+i (t), (25)

G−i (t + 1)← (M(G+
i (t))−1MT + Q)−1. (26)

Therefore, we obtain the ICF-based UAV–UGV cooperative system in Algorithm 1.

Algorithm 1: ICF at UAV i relative to UGV r at time step k

Input: Prior state estimate x̂−i (t), prior information matrix G−i (t), observation
matrix Hi, consensus rate parameter ϵ, total consensus iterations K, and
process covariance Q.

(1) Obtain measurement vector zi and matrix Bi
(2) Compute initial information matrix V0

i and vector v0
i

V0
i ←

1
N

G−i (t) + HT
i B−1

i Hi

v0
i ←

1
N

G−i (t)x̂−i (t) + HT
i B−1

i zi

(3) Perform average consensus on V0
i and v0

i independently
for κ = 1 to K do

(a) Send Vκ−1
i and vκ−1

i to all neighbors j ∈ Ni

(b) Receive Vκ−1
i and vκ−1

i from all neighbors j ∈ Ni
(c) Update

Vκ
i ← Vκ−1

i + ϵ ∑
j∈Ni

(Vκ−1
j − Vκ−1

i )

vκ
i ← vκ−1

i + ϵ ∑
j∈Ni

(vκ−1
j − vκ−1

i )

end
(4) Compute posteriori state estimate x̂+i (t) and information matrix G+

i (t) for time
t

x̂+i (t)← (V K
i )−1vK

i

G+
i (t)← NV K

i

(5) Predict for next time step (t + 1)

x̂−i (t + 1)← Mx̂+i (t)

J−i (t + 1)← (M(G+
i (t))−1MT + Q)−1

Output: State estimate x̂+i (t) information matrix G+
i (t).

2.2.4. CBF–CLF for UAV–UGV Coopeative System

Based on the system’s dynamics model, we propose a soft constraint for the system,
aiming to enable the UAV to achieve a desired speed.

V(x) = (v f − vd)
2. (27)
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Here, V(x) is a continuously differentiable function, and, for any c > 0, if the following
inequality (28) holds, then V(x) is a qualified CLF.

inf
u∈R

[
L f V(x) + LgV(x)u + cV(x)

]
≤ 0. (28)

Next, we detail the hard constraints of this system. As previously mentioned, we
aim for the distance between the UAVs and the UGV to remain within a specified range
to ensure the high accuracy of data measured by the vision algorithm. We define these
constraints as follows:

D ≥ τ1v f ,

D ≤ τ2v f .
(29)

Here, we propose two hard constraints: τ1 is the time when the UAV catches up with
the UGV and the the distance exceeds Dmax, and τ2 is the time when the UAV moves
away from the UGV and distance narrows to within Dmin. We consider the function
h1(x) = D− v f τ1 and h2(x) = v f τ2 − D. Therefore, a candidate CBF can be expressed as

B(x) = − log
(

h1(x)
1 + h1(x)

)
,

C(x) = − log
(

h2(x)
1 + h2(x)

)
.

(30)

We set γ = 1 in the following equation, thus verifying that B(x) and C(x) are quali-
fied CBFs.

inf
u∈R

[
L f B(x) + LgB(x)u− γ

B(x)

]
≤ 0,

inf
u∈R

[
L f C(x) + LgC(x)u− γ

C(x)

]
≤ 0.

(31)

From this, we build the CLF–CBF QP problem based on the constraints established
above.

u∗ = arg min
u=[u,δ]T

1
2

uT Hagu + FT
agu

s.t.

{
Acl f u ≤ bcl f ,
Acb f u ≤ bcb f ,

(32)

where
Acl f =

[
LgV(x) −1

]
,

Acb f =

[
LgB(x) 0
LgC(x) 0

]
,

(33)

bclf =
[
−L f V(x)− cV(x)

]
,

bcbf =

[
−L f B(x) + γ 1

B(x)
−L f C(x) + γ 1

C(x)

]
,

(34)

 LgV(x) =
2(v f−vd)

M ,

L f V(x) =
2Fr(v f−vd)

M ,
(35)

 LgB(x) = τ1
M(1+h1(x))h1(x) ,

L f B(x) =
−τ1Fr/M+vl−v f
(1+h1(x))h1(x) ,

(36)

 LgC(x) = −τ2
M(1+h2(x))h2(x) ,

L f C(x) =
τ2Fr/M+v f−vl
(1+h2(x))h2(x) .

(37)
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In Equation (32), δ represents the relaxation factor. Setting δ to zero enforces precise
exponential convergence at the rate c. Under these conditions, the constraints imposed
by the CLF become more stringent, complicating the acquisition of suitable solutions
for the QP equation. Meanwhile, the CLF converts the stability issue of the system into
an optimization problem, aiming to minimize or satisfy specific performance metrics,
articulated through a cost function. The construction of the CLF begins with partially
linearizing the system using the feedback u = Fr + Mµ. Consequently , the cost function
for this control mechanism is expressed as follows:

µµT = |(Fr − u)/M|2 =
1

M2

(
F2

r + u2 − 2uFr

)
. (38)

This can then be converted into Equation (39), where psc is the weight for the relaxation
δ.

Hag = 2
[ 1

M2 0
0 psc

]
, Fag = −2

[
Fr/M2

0

]
. (39)

Therefore, we obtain the CBF–CLF Tracking system in Algoritm 2.

Algorithm 2: CBF–CLF Tracking Algorithm.
Input:
Initial state x(0);
Stop condition θm;
while θ < θm do

(a) UAV calculate relevant information (distance between UAV and UGV, poses
of the Armor on UGV) through visual algorithm, and then run ICF algorithm;

(b) Calculate the controller u by solving Equation (32);
(c) Update UAV’s horizontal velocity v f by Equation (19);
(d) Update UGV’s velocity vl using Equation (18);

end

3. Results
3.1. Vision-Based Localization

In the practical scenario where a UAV tracks a UGV, the UAV often needs to acquire
the pose of the UGV for self-adjustment and decisionmaking. Computer vision algorithms
are frequently employed to recognize the object’s pose. However, due to the limitations
in the sensor precision and the inherent design of these algorithms, the computed results
often exhibit errors. This issue becomes particularly pronounced in distance measurements
using the Perspective-n-Point (PnP) algorithm, where increased distance can cause objects
to appear blurry or smaller in the image. Consequently, this leads to the visual features
used for localization becoming less distinct or sparse, challenging the algorithm’s ability to
accurately match these feature points and affecting the precision of the pose estimation.

Given the aforementioned considerations, it is imperative to investigate the impact of
distance variation on visual computation. With the knowledge of the camera’s performance
across different distances, it becomes possible to regulate the accuracy of the data acquisition
by adjusting the observation distance, thus optimizing the system performance. The
parameters used for experiment are shown in Table 1.

The camera was positioned at various distances and angles relative to the Armor, and
the previously mentioned visual algorithm was employed to identify the light bars on the
Armor and calculate their poses and angles. The distance between the camera and the
Armor was computed, and the measurement error was then compared with the actual
distance. The positions of the UAVs in the experiment are predetermined based on the
distribution of the experimental variables, and each position is carefully measured and set.
In this way, the error of the algorithm can be accurately calculated. The experimental setup
is shown in Figure 5.
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Table 1. Parameters for experiment.

Parameters Description Value

Camera Model MV-SUA133GC-T 1

Calibration error 0.24 pixel

The height of Armor 125 mm

The width of Armor 150 mm
1 MindVision USB 3.0 Industrial Camera, Shenzhen, China.

Figure 5. Experimental setup.

The experiment involved two variables: distance and angle. The distance varied from
3 m to 5 m, in increments of ten centimeters, resulting in 11 groups. The angle started with the
camera facing the Armor at 0 degrees and ranged up to 40 degrees to the left, in increments of
ten degrees, creating five groups. Considering the symmetry in the recognition of the left and
right deviations, focusing solely on the left deviations was deemed sufficient for meeting the
research objective. Consequently, this experiment comprised a total of 110 datasets.

Considering that an excessively large yaw angle could result in the loss of one side of
the light bars, thereby making it impossible to form the visual features necessary for the
Armor recognition, the experiment avoided overly large angles. Consequently, 40 degrees
was selected as the maximum angle for this experiment.

As depicted in Figure 6, the error margin of the measurement data tends to widen as
the distance increases. Within the range of 300 to 410 cm, the measurement error mostly
fluctuates within 5 cm. Beginning at 420 cm, the measurement error starts to escalate,
exhibiting significant deviations from previous values, with fluctuations between 10 and
15 cm. Consequently, we identify 410 cm as the threshold for accurate measurement.
Beyond this distance, the camera pose estimation regarding the UAVs is deemed inaccurate,
whereas, within this range, the estimation is considered to be reasonably accurate.

Meanwhile, the results in Figure 6 indicate that the deviations in angles have a rel-
atively minor impact on the accuracy. The change in the yaw angle of the UAV relative
to the UGV from 0 to 40 degrees has a negligible effect on the measurement data, which
is theoretically justifiable. The algorithm functions by extracting the features from the
upper and lower vertices of two light bars and then obtaining the rectangle corners through
sorting. Consequently, the accuracy of the calculation is not dependent on the thickness of
the light bars. Although an increase in the yaw angle may cause the captured light bars
to appear thinner, it does not hinder the calculation process. However, excessively large
yaw angles may lead to one side of the light bar becoming invisible, thereby creating an
unsolvable scenario. Consequently, it is imperative to maintain the yaw angle below a
critical threshold to ensure continuous observation and data integrity.
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Figure 6. Distribution of measurement errors ranging at different distances and angles.

3.2. ICF

The tracking system described in this paper closely resembles a linear system. Regarding
the algorithm performance, we posit that the ICF is somewhat less effective than the Central-
ized Kalman Filter (CKF). In the CKF, the sensor nodes collect a substantial amount of target
information, facilitating the high-precision data processing of the accumulated information.

However, a significant characteristic of the CKF is its high-dimensional state space,
which leads to a marked increase in computational complexity. This makes it challenging
to fulfill the real-time requirements of navigation systems. Moreover, the fault tolerance
of the CKF is relatively low. Should any node within the system fail, its impact spreads
through the filter, affecting the other states and making the navigation information output
of the combined system unreliable. Therefore, in practical applications, the ICF is preferred
for mobile systems due to these considerations.

Based on the analysis above, if the average error curve of the ICF closely approximates
that of the CKF, it is considered that the ICF has achieved a satisfactory performance. In this
section, we evaluate the performance of the proposed ICF simulation in MATLAB 2023a
and compare it with that of the CKF. The simulation of the tracking trajectory computed by
the ICF algorithm is shown in Figure 7.

Initially, we investigate the influence of the number of cameras on the experimental
results. Given the hardware limitations, the FOV of the cameras remains constant. To
ensure comprehensive UGV observations, increasing the number of cameras and strate-
gically placing them becomes imperative for accurate UGV tracking. It is essential that
the UAV trajectory falls within the FOV of at least one camera; otherwise, it is considered
unobservable and disregarded.

In this paper, we introduce two experimental variables: Process Covariance Q and
Number of Consensus Iterations K. The UAVs are symmetrically distributed on both sides of
the UGV. The input variables encompass the random refreshing of the UGV’s position and an
initial distance of 2 m between each UAV and the UGV. The velocity of the UGV is set to 1.5 m/s,
with both the UAV’s tracking speed and the UGV’s leading speed undergoing slight random
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variations. Consequently, the inputs for the simulation can be denoted as x = (xi, yi, vx, vy).
The observation matrix Hi and state transition matrix M are defined as follows:

Hi =

[
1 0 0 0
0 1 0 0

]
, M =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

. (40)

Figure 7. Simulation of the tracking trajectory computed by the ICF algorithm.

3.2.1. Process Covariance Q

The elements on the diagonal of the noise matrix represent the variance of measure-
ment errors in the system’s corresponding state variables. The magnitude of these diagonal
elements significantly influences the filter’s estimation accuracy of the system state. Larger
diagonal elements usually indicate higher measurement noise in the corresponding state
variables, rendering the system more sensitive to the impact of measurement noise. In this
experiment, we have configured four sets of variables:

Q1 = Diag(0.01, 0.01, 1, 1),

Q2 = Diag(0.1, 0.1, 1, 1),

Q3 = Diag(1, 1, 1, 1),

Q4 = Diag(10, 10, 1, 1).

(41)

In Figure 8, the CKF error curve shows that the error values across all the datasets
are predominantly within ten, maintaining a consistently low level. For the ICF error
curve, the first dataset displays the lowest error values, with the errors generally staying
within 10 and peaking at 12 at most. Initially, the ICF error curve closely mirrors the CKF
curve, indicating the efficient performance of the ICF. However, as the noise values on
the diagonal escalate, there is a corresponding increase in the error values, leading to a
divergence between the ICF and CKF curves. In the fourth dataset, the ICF’s error values
notably exceed 20, occasionally nearing 30, and the curve predominantly deviates from the
CKF curve.
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Figure 8. The mean error of independent simulation runs at different process covariance.

3.2.2. Consensus Iterations K

The parameter “total number of consensus iterations K” dictates the number of consen-
sus iterations the algorithm undertakes throughout the process, significantly impacting the
convergence and performance of the algorithm. The purpose of these consensus iterations
is to ensure uniformity among the various nodes in a distributed system, allowing them
to collaboratively estimate or deduce the system’s state. As illustrated in Figure 9, the
error curve of the ICF initially shows a significant deviation from the CKF error curve.
However, as the number of iterations increases, specifically after K = 4, the error curve
of the ICF effectively converges and becomes comparable to the CKF curve. Beyond this
point, further increasing the number of iterations does not result in a marked improvement
in the ICF’s performance.
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rr
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Figure 9. Mean error for different consensus iterations K.

A higher value of K denotes more iterations, which aids in bolstering the algorithm’s sta-
bility in achieving consensus, but this can lead to prolonged computation times, consequently
affecting the algorithm’s convergence speed. Augmenting the number of consensus itera-
tions could impose additional computational demands; hence, choosing an optimal K value
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necessitates a balance between algorithm performance and computational efficiency. Given
the dynamic nature of system states, the selection of K should also consider these dynamics.
Larger K values are preferable in scenarios where the system states evolve gradually.

3.3. CBF–CLF

The findings from the preceding visual experiments suggest that maintaining a reason-
able distance between UAVs and UGV is crucial to ensure the integrity and clarity of the
Armor imaging. This experiment was simulated in MATLAB 2023a, and the parameters
in this experiment are shown in Table 2. The initial velocities of the UAV and UGV are
selected under the consideration of platform capabilities, safety, and efficiency.

Table 2. Parameters for experiment.

Parameters
Description Value Parameters

Description Value

M 10 kg v0
f (case 1) 1.0 m/s

f0 0.1 N v0
l (case 1) 1.5 m/s

f1 5 Ns/m v0
f (case 2) 0.9 m/s

f2 0.25 Ns2/m v0
l (case 2) 0.5 m/s

τ1 1 s psc 10

τ2 3 s c 4

∆t 1 s D0 10

vd vl + 0.1 m/s g 9.81 m/s

In this paper, we consider the following two cases:
Case 1: the initial velocity of the UGV is greater than that of the UAV:
As depicted in Figure 10, the UGV tends to move away from the UAV. To close the

distance gap while ensuring that the Armor imaging remains sufficiently large in the frame,
the UAV increases its speed to catch up with the UGV. In the initial 0–10 s, the UAV’s
velocity, denoted as v f , exponentially increases as it swiftly narrows the gap with the
UGV. Between 20 and 60 s, v f gradually aligns with the UGV’s velocity, denoted as vl ,
and achieves stability. After 60 s, v f and vl essentially equalize. Figure 11 (top) illustrates
that the distance between the UAV and UGV stabilizes at a value not exceeding 2.4 m.
Meanwhile, Figure 11 (bottom) presents the cumulative distribution function (CDF) of
D/v f , indicating that the UAV can catch up with the UGV within τ1. This constraint
naturally regulates the UAV’s horizontal speed to ensure the continuous tracking of the
UGV.

Case 2: the initial velocity of the UAV is less than that of the UGV:
As is shown in Figure 10, the UGV tends to move closer to the UAV. To increase

the distance while preserving the integrity of the Armor imaging in the entire image and
avoid scenarios where it becomes unrecognizable, the UAV decreases its velocity. In the
initial 0–10 s, v f exponentially decreases as the UAV slows down to match the UGV’s pace.
Between 20 and 60 s, the UAV’s velocity gradually aligns with the UGV’s velocity and
stabilizes. After 60 s, v f and vl essentially become consistent, achieving the desired speed.
Figure 11 indicates that the distance between the UAV and UGV stabilizes at a value not
less than 1 m, while Figure 11 (bottom) displays the CDF of D/v f , demonstrating that the
UAV can catch up with the UGV within τ2.
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0 20 40 60 80 100
Time(s)

1

1.5

2

D
is

ta
nc

e(
m

)

Case 1
Case 2

0 20 40 60 80 100
Time(s)

0

10

u(
N

)

Case 1
Case 2

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
D / v

f

0

0.5

1

C
D

F

Case 1
Case 2

Figure 11. The distance between the UAV and UGV (top); control input (middle); the CDF of D/v f
for different τ (bottom).

4. Conclusions

This study explores the prospects of a decentralized control system through the
integration of UAVs and UGVs in cooperative unmanned systems. The deployment
of a decentralized control system, featuring the proposed CBF–CLF strategy, not only
presents but also rigorously tests a method that substantially improves the operational
safety and efficiency of the UAV swarm. Through the implementation of the ICF for the
cooperative systems in real-time control adjustments, our proposed algorithm enables
UAVs to operate independently. Additionally, the CBF–CLF strategy plays a crucial role
in ensuring safety by automatically adjusting to keep the UAVs at safe distances from
the UGVs. Extensive simulations across numerous real-world scenarios have proven the
reliability of the proposed system and demonstrated its potential for extensive use in
diverse UAV operational applications.
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In future research, we could explore the application of anti-saturation fixed-time
attitude tracking control in the cooperative systems to address the input saturation issues
and ensure system stability. This approach integrates low-computation learning techniques
to mitigate the impact of saturation and uncertainties. By incorporating anti-saturation
fixed-time attitude tracking control into the cooperative systems, we can investigate its
effectiveness in enhancing the control performance, robustness, and resilience against
external disturbances.
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