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Abstract: This paper investigates the influence of time synchronization on sensor fusion and target
tracking. As a benchmark, we design a target tracking system based on track-to-track fusion architec-
ture. Heterogeneous sensors detect targets and transmit measurements through a communication
network, while local tracking and track fusion are performed in the fusion center to integrate mea-
surements from these sensors into a fused track. The time synchronization error is mathematically
modeled, and local time is biased from the reference clock during the holdover phase. The influence
of the time synchronization error on target tracking system components such as local association,
filtering, and track fusion is discussed. The results demonstrate that an increase in the time synchro-
nization error leads to deteriorating association and filtering performance. In addition, the results of
the simulation study validate the impact of the time synchronization error on the sensor network.

Keywords: time synchronization; sensor fusion; track-to-track fusion; target tracking; counter-UAS (CUAS)

1. Introduction

The use of unmanned aerial vehicles (UAVs) has attracted much attention in a broad
range of applications. However, the ubiquitousness of UAVs in the airspace has introduced
new risks arising from their potential misuse. For example, a drone intrusion disrupted
Gatwick airport in December 2018, leading to a 33-hour closure which resulted in an esti-
mated loss of GBP 50 million [1]. These increased risks have necessitated the development
of counter-unmanned aerial systems (CUAS) to identify UAVs, monitor their behaviors,
and implement appropriate countermeasures. A CUAS typically deploys multiple hetero-
geneous sensors to accurately and promptly detect, identify, and collect target information
for surveillance [2–4]. The distributed target data are then aggregated at the fusion center.
In the sensor fusion process, a common notion of time across the sensors is essential, as cor-
relations between the collected data are evaluated based on time information [5]. Therefore,
tight synchronization across the heterogeneous sensor network is necessary to improve
target tracking and sensor fusion.

Time synchronization aims to provide a common time shared between local sensors
with unsynchronized clocks, thereby ensuring that all nodes in the sensor network are in
alignment with a timing reference. Synchronization based on the global navigation satellite
system (GNSS) is a typical solution, in which accurate time sources from satellites are used
as the reference timing. In the context of time distribution, one-pulse-per-second (1-PPS)
synchronizing signals from global positioning system (GPS) or GNSS receivers or syn-
chronization protocols [6–18] allow local sensors to be aligned across the network through
communication [17]. Although synchronization directly through GNSS clocks facilitates
the realization of precise time accuracy, it requires additional equipment with access to
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the satellite signal from all local sensors. Time synchronization protocols are developed
in order to distribute time over packet-switched networks and to synchronize distributed
devices such as the network time protocol (NTP) [12] and precision time protocol (PTP) [13]
for time-sensitive networking (TSN). Wireless TSN frameworks, such as reference broadcast
synchronization (RBS) and time synchronization protocol for sensor networks (TPSN), have
been developed as well [9,11,18]. However, GNSS-based synchronization relies on the
GNSS system, and may be vulnerable to system failure, environmental interference such
as urban canyons, and intentional disruptions such as jamming or spoofing with time
error injection [7]. For example, in January 2021 GPS was noted to be unreliable within
a 50-nautical-mile radius of the Denver International Airport, which caused disruptions
to infrastructure and air traffic management applications. The incident lasted for 33 h,
which led to drifting of the clocks for each subsystem during the disruption and caused
the ground control station to become isolated [19]. To address concerns regarding GNSS
reliability, it is necessary to use timing systems that do not directly rely on local GNSS
receivers. An alternative is to use fault-tolerant clock synchronization based on redundant
clock sources [8–10] or receiver-independent time synchronization [20].

Considering the importance of time synchronization in target tracking, it is essential
to understand the potential correlation between time synchronization and target tracking
performance. However, the existing studies have not extensively explored the effects
of time synchronization. Typically, time synchronization and target tracking systems in
sensor networks are designed independently. Previous studies have demonstrated that
synchronization accuracy is influenced by several factors, including the quality of the clock
source, the timestamp resolution, and the network topology. Additionally, characteristics
of sensors such as radar, acoustic sensors, and cameras as well as their deployment in
diverse environmental conditions, e.g., operations with various temperatures, and density
or tracking systems applied to different domain such as underwater or aerial vehicles,
can contribute to time synchronization errors [21]. A time synchronization protocol is
typically established to meet a specified precision level, while target tracking systems are
developed assuming that the time information is sufficiently accurate. Various filtering
schemes aimed at improving state estimation in the presence of delayed measurements have
been proposed [22–24], primarily focusing on state estimation within the target tracking
system. In a target tracking system employing multiple sensors, data association and state
estimation within the sensor fusion rely on temporal information from local sensors. In
this regard, any imprecision in the time alignment among sensors can adversely affect
these processes, leading to inconsistencies and compromised reliability in data fusion.
Nevertheless, the influence of time synchronization errors on the target tracking system
remains to be clarified. In light of the heightened demand for advanced tracking precision,
particularly in the context of proximity operations for UAVs navigating dense urban
environments, it is necessary to examine correlations between errors resulting from loose
time synchronization and the overall performance of the target tracking system.

Therefore, the objective of this work is to investigate the impact of time synchroniza-
tion errors on the performance of sensor fusion and target tracking. The target tracking
system considered in this study consists of two system layers: a sensing layer using hetero-
geneous local sensors and a data processing and tracking layer located at the fusion center
(FC). Similar to networked components, clocks are mathematically modeled in a linear
form. The reference clock is accurate in the FC, while a time offset is assumed for each local
clock to introduce errors to the timing in the network. Clock synchronization is assumed
to occur when the time error between the local clock and the reference is within a prede-
fined accuracy threshold, while time synchronization fails when the time error exceeds the
threshold. Additionally, the influence of the time synchronization error on target tracking
system components, such as local association, filtering, and track fusion, is discussed in
order to clarify the correlation between the time error and the tracking performance. A sim-
ulation study is performed to validate the analytical results. Our findings indicate that the
target tracking system performance can deteriorate due to increasing time synchronization
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errors. Notably, the system performance is evaluated against a number of target tracking
performance metrics, including the root mean square error (RMSE), generalized optimal
sub-pattern assignment (GOSPA) [25], and single integrated air picture (SIAP) [26].

The main contribution of this study lies in a systematic assessment of the influence of
time synchronization errors on sensor fusion in target tracking systems. We design a sensor
fusion system model that reflects time synchronization errors across sensor networks.
Track-to-track fusion (T2TF) with time alignment in the local tracker is introduced to
handle heterogeneous sensor characteristics. Moreover, we investigate the influence of time
synchronization on individual components of the sensor fusion system, including filtering,
association, and track fusion processes. Our analysis reveals observable performance
degradation in terms of bias and error covariance. These findings suggest that the sensor
fusion system experiences significant impairment when synchronization errors become
non-negligible. Our simulation study provides empirical results illustrating the impact
of synchronization errors on tracking performance. These insights can help to mitigate
potential issues in target tracking systems that rely on sensor networks as well as in other
network systems that require time synchronization [27,28].

The remainder of this paper is organized as follows: Section 2 details the time synchro-
nization process and synchronization error considered in this study; Section 3 explains the
target tracking system and sensor fusion technique; Section 4 discusses the influence of the
time synchronization error on the target tracking system components; Section 5 presents
the results of our numerical simulation; and Section 6 presents concluding remarks and
recommendations for further work.

2. Preliminaries

This section introduces the time synchronization method using two-way communi-
cation and the time error model considered in this study. Figure 1 illustrates the network
topology considered in this study, in which all sensor nodes are fully connected to a central
node. The command and control (C2) serves as the central node; the server clock in C2
has access to a precision reference clock from a terrestrial source, serving as an alternate
position, navigation, and timing (PNT) reference [10,17].

Figure 1. Sensor network topology [11].

We assume that the server clock is accurate and serves as the reference clock cr(t) = t.
The local clock time can be expressed in the following first-order affine form [11]:

ci(t) = t + ∆i(t), i = a, p (1)
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where the subscripts a and p represent active and passive sensor nodes, respectively, and
∆i is the time error, which can be time-varying as follows:

∆i(t) = αi(t− t0) + θ0,i + ϵi (2)

where αi refers to the clock drift due to frequency mismatch, t0 refers to the previous
synchronization time instance, θ0,i is the initial offset calculated at t0, and ϵi contributes
to stochastic uncertainties, including unmodeled errors. The drift coefficient indicates the
increasing time error over time. Considering a worst-case scenario, we assume that the drift
for active sensor αa is negative while that for passive sensor αp is positive. To synchronize
slave clocks to the server, the server clock time cr(t) is distributed to the slave clocks over a
communication network and the local clock adjusts its offset as follows:

ci(t)← ci(t)− ∆̂i (3)

where ∆̂i is the approximate offset to be determined. The synchronization accuracy deter-
mines the error magnitude. Several synchronization protocols standardize the accuracy
requirement [12,13], and synchronization procedures have been developed to achieve the
synchronization requirements over the networks [14–16]. However, the time synchroniza-
tion performance in practical applications may be impaired by various factors, such as
GNSS receiving failures or variable and asymmetric latencies [29]. To address this issue,
viable failover solutions are required in order to ensure resilient reference timing distribu-
tions. In these instances, an accurate time source is distributed to the network server to
ensure that time error is maintained within the required offset bound δ. Similarly to the
approach presented in [30–32], we conducted hardware experiments to obtain statistical
results of time errors, for which the distribution is modeled as a normal distribution:

∆i ∼ N(mθ , σ2
θ ) (4)

where mθ and σθ are the mean and standard deviation, respectively, and are set to 422 µs and
62.293 µs following experimental results. The required offset bound is set to
max (∆i(t)) ≤ δ = 1 ms for the worst-case analysis. In the worst-case scenario involv-
ing the largest time variation between local clocks, two synchronized clocks can drift from
each other at a rate of at most 2αmax, where α ∈ [−αmax, αmax]. The time difference between
node clocks is expressed as

|ci(t)− cj(t)| ≤ 2mθ + 2αmax(t− t0). (5)

To limit the relative offset to δ, the maximal holdover interval τsync = t− t0 should be
bounded as

τsync ≤
δ− 2mθ

2α
. (6)

If the local clocks are not synchronized, clock skew increases the time difference from
the reference value during holdover. If the holdover period is longer than (6), then the time
synchronization error exceeds the requirement. The synchronization error due to longer
holdover periods is discussed in Section 4.

3. Target Tracking System

Figure 2 illustrates the target tracking system structure explored in this study. The
sensing layer exchanges data with the tracking and data fusion layer through network
communication. The sensing layer consists of active and passive sensors. Sensors are
distributed on the surveillance site to detect target signals. The target measurements are
timestamped by the local clock and sent to the tracking and fusion layer through the
communication network. The tracking and fusion layer possesses a main sensor fusion
architecture based on T2TF, wherein a local tracker processes target measurements into local
tracks which are then integrated into fused tracks via track fusion. Notably, T2TF enables
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more effective data transmission through network communication than the measurement-
to-track structure, and as such has found wide application [33–36]. Local measurements
are first processed at local trackers to estimate and predict tracks. The FC placed at the
end of the data process aggregates the local tracks and fuses them into central tracks. The
heterogeneous T2TF algorithm based on practical decomposition [37] helps to associate
local tracks with different dimensions and synthesize them into a global track. The update
rates in the tracking and data fusion layer and active sensor are synchronous, while the
update rates in the passive sensor are two times smaller than those in other modules. The
clock in the tracking and fusion layer is assumed to be synchronized to GNSS and can serve
as a reference clock or server clock.

Figure 2. Illustration of target tracking system.

3.1. Sensor Model

In the sensing layer, two heterogeneous sensors are used, i.e., active radar and passive
radio frequency (RF) sensors, in light of their widespread adoption in CUAS surveillance
systems [4,38–40]. The radar sensor provides target position measurements, whereas the
RF sensor passively detects target position only in two-dimensional space. The two sensors
are asynchronous, with the passive sensors having a smaller update rate than the active
sensor. The radar periodically scans a search space with sampling time Ta = tk − tk−1. In
the k-th scan period, the radar may detect a target at tm ∈ [tk−1, tk] and record the detected
measurement timestamped using the current local time ca(tm). The measurement in vector
form can be expressed as follows:

za(tm) = [r(ca(tm)), φ(ca(tm)), ϑ(ca(tm))] ∈ R3 (7)

where (r, φ, ϑ) represents the target range, azimuth, and elevation angles expressed in the
spherical coordinate system. Suppose that a target and the radar are located at (x, y, z) and
(xa, ya, za), respectively; then, the measurement variables exhibit the following relationships:

r =
√
(x− xa)2 + (y− ya)2 + (z− za)2,

φ = tan−1
(

y− ya

x− xa

)
,

ϑ = sin−1

(
z− za√

(x− xa)2 + (y− ya)2 + (z− za)2

)
.

(8)

The measurement is performed until the scanning is complete and then transmitted to
the local tracker through the network at t = tk, which inevitably introduces a time delay
∆t = tk − tm.
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In contrast, the RF sensor takes only the target measurement expressed in two-
dimensional space. Let Tp be the sampling time for the RF sensor, which is larger than that
of the radar, i.e., Tp > Ta. The RF measurement can be expressed in vector form as follows:

zp(t) = [r(cp(t)), φ(cp(t))]. (9)

If the RF sensor is located at (xp, yp, zp), then the measurements can be rewritten in
terms of the relative positions with the target:

r =
√
(x− xp)2 + (y− yp)2 + (z− zp)2

φ = tan−1
(

y− yp

x− xp

)
.

(10)

The detected target measurements are sent to each local tracker in the tracking and
fusion layer through the network. Table 1 summarizes the sensor specifications considered
in this study.

Table 1. Sensor specifications.

Sensors Radar RF

Detection update rate 1 Hz 0.5 Hz

Azimuth resolution (Deg) 3 5

Range resolution (m) 5 5

Elevation resolution (Deg) 3 -

Location (m) (0,0,0) (0,500,0)

Detection range (m) 1000 1000

3.2. Local Tracker

In the local tracker, sensor measurements received from local sensors are processed as
local tracks. The state-space model is defined as

xi(tk) = fi(xi(tk−1)) + wi,

zi(tk) = hi(xi(tk−1)) + vi.
(11)

Depending on the sensor measurement, the local tracker exhibits different state and
measurement variables, i.e., xa = [x, ẋ, y, ẏ, z, ż] ∈ R6 and xp = [x, ẋ, y, ẏ] ∈ R4, respectively.
To simplify the notation, the current time step of the tracker is denoted by k and variables
evaluated at tk are expressed with the subscript k. Each local tracker uses the association
function to perform measurement-to-track association and performs filtering to estimate
target states with time alignments of the measurement timestamp to the evaluation period.
Association requires the discrimination of target measurements from clutter; the aim of
the filtering process is to appropriately estimate the target states. At time step k, measure-
ments taken at tm are timestamped as ci(tm), which may lie in the track interval [k− 1, k].
Therefore, it is necessary to perform time alignment in order to address the time mismatch
between measurements and the track time calculated according to the reference clock.

This study adopts the standard extended Kalman filter (EKF) technique [41] to estimate
local track states in the presence of asynchronous timing between the measurement and
track. Specifically, we include an intermediate time index k0 in the track interval [k− 1, k]
to define two sub-intervals [k− 1, k0] and [k0, k]. Here, k0 corresponds to the time instant at
which the target measurement is obtained, i.e., tk0 = ci(tm).

3.2.1. Measurement-to-Track Association and Filtering

In the first period [k − 1, k0], a posteriori state estimates and covariance matrix,
i.e., x̂k0|k0

and Pk0|k0
at k0, respectively, are obtained using the standard EKF procedure.



Drones 2024, 8, 167 7 of 19

The target tracking algorithm in this period consists of a priori and measurement updates
with measurement-to-track association. In the state prediction step, the track states in
the previous step k− 1 are predicted up to measurement update step k0 to obtain a priori
estimates. Let x̂k−1 be the track estimates in the previous step. Using Equation (11), the a
priori estimates and covariance matrix approximation using a linear model can be obtained
as follows:

x̂k0|k−1 = f(x̂k0|k−1)

Pk0|k−1 = Fk0,k−1Pk−1FT
k0,k−1 + Qk0,k−1

(12)

where Fk0,k−1 = ∂f
∂x |xk−1 represents the Jacobian matrix of the state transition function and

Qk0,k−1 is the process noise covariance matrix propagated from k− 1 to k0.
At measurement update step k0, the standard EKF updates states and covariance

matrix approximation are
x̂k0|k0

= x̂k0|k−1 + Kk z̃

Pk0|k0
= Pk0|k−1 − KkSkKT

k
(13)

where z̃ denotes the innovation term for measurement updates, Kk is the Kalman gain,
and Sk is the innovation matrix. In a cluttered environment, multiple measurements may
be mixed with actual data from the target and incorrect data resulting from noise or false
alarms; therefore, it is necessary to distinguish correct target measurements from spurious
data. In this study, a probabilistic approach using a joint probability data association (JPDA)
algorithm is used [42–44]. The predicted measurement and covariance of innovation are
obtained as follows:

ẑk0|k−1 = Hk x̂k|k−1

Sk0 = HkPk0|k−1HT
k + R

(14)

where Hk = ∂h
∂x denotes the Jacobian matrix of the observation function. The association

test between the predicted measurement and observations is performed by measuring the
statistical distance

D1 =
(

ẑk0|k−1 − zi

)T
S−1

k0

(
ẑk0|k−1 − zi

)
< b, ∀i = 1, · · · , mk, (15)

where mk is the total number of measurements. The set of validated measurements is
defined as

Zj =
{

z1, z2, · · · , zMk

}
,

where Mk is the number of validated measurements in step k. The posterior probability
distribution of each target obtained from the JPDA filter is a Gaussian mixture distribution.
The state estimation is updated using a pseudo-innovation term

z̃ =
Mk

∑
j=1

β j(zj − ẑk0|k−1), (16)

e.g., a weighted sum of the original innovation terms, where β represents the marginal
association probability from measurement j and ẑk,j is the predicted measurement track.
Next, the pseudo-innovation term is applied to the standard EKF in the measurement
update stage as follows:

x̂k0|k0
= x̂k0|k−1 + Kk

Mk

∑
j=1

β j(zj − ẑk0|k−1)

Pk0|k0
= Pk0|k−1 − Kk(1− β0)Sk0 KT

k + Kk P̄kKT
k

(17)
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where Kk = Pk0|k−1HTS−1
k0

and

P̄k =
Mk

∑
j=1

[
β j(zj − ẑk0|k−1)(zj − ẑk0|k−1)

T − z̄z̄T
]
. (18)

For track maintenance, history-based logic is used; in other words, a tentative track is
confirmed to be a track if it is associated with at least one measurement N times out of M
consecutive steps, while a confirmed track is eliminated if association fails n times out of
m steps.

3.2.2. Track Update with Time Alignment

Considering the time discrepancy between the evaluation for estimation tk and the
measurement timestamped ci(tm), the measurement can be regarded as a delayed detection.
In the second period [k0, k], a track update is performed using state prediction to time step
k. For track fusion, all tracks must be evaluated at the same time in order to perform T2TF.
Because each local tracker updates its measurement at ki,0, the posteriori should be further
propagated such that all local tracks have the same time alignment. The main objective
of the track update is to obtain the state prediction and covariance values, respectively x̂k
and Pk:

x̂k := x̂k|k0
= f(x̂k0|k0

),

Pk := Pk|k0
= Fk,k0 Pk0|k0

FT
k,k0

+ Qk,k0 .
(19)

Notably, the large amount of clock offset due to synchronization failure may involve a
measurement time step that is far from the current track interval. If the negative time offset
involves k0 < k− l for l ≥ 1, then the measurements can be regarded as out-of-sequence
measurements (OOSMs) such that the measurements obtained in the previous interval
k − 1 < k0 < k − l + 1 correspond to the current time step k. In this case, the OOSMs
can be handled based on the approach presented in [45,46]. First, we consider the state
estimates at k. The track automatically traverses the states and covariance from k− 1 to k
xk|k = xk|k−1 = f(xk−1) and Pk|k = Pk|k−1 = Fk,k−1Pk−1FT

k,k−1 + Qk,k−1, as no measurement
exists in the current update interval [k− 1, k]. In the retrodiction step, the current state and
covariance are propagated back from k to k0:

x̂k0|k = Fk0,k x̂k|k (20)

Pk0|k = Fk0,k

[
Pk|k + Qk,τ − Pxv

k0|k − (Pxv
k0|k)

T
]

FT
k0,k (21)

where Fk0,k = F(tk0 , tk) represents the backward state transition matrix from k to tk0 , Q(k, k0)
is the covariance matrix for the process noise, and Pxv

k0|k
is defined as

Pxv
k0|k = Qk,k0 − Pk|k−l(S

∗
k )
−1Qk,k0

(S∗k )
−1 = P−1

k|k−l − P−1
k|k−l Pk|kP−1

k|k−l .
(22)

In the second step, retro-correction is performed to correct the current state and state
covariance using the OOSMs with a JPDA algorithm. The Kalman gain and innovation
matrix at time step k0 can be rewritten as

K(k, k0) = Pxz
k0|kS−1

k0

Sk0 = HPk0|k HT + R, Pxz = [Pk|k − Pxv
k0|k]F

T
k0,k HT ,

(23)
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where H(τ) = ∂h
∂x is the observation Jacobian matrix and R(τ) is the covariance matrix for

the OOSMs. Now, the corrected state can be derived as follows:

x̂k|k0
= x̂k|k + K(k, k0)z̄ (24)

where z̄ = ∑Mk
j=1 β j(zj − h(xk0|k)) and

Pk|k0
=Pk0|k − (1− β0)K(k, k0)SK(k, k0)

T

+ K(k, k0)

[
Mk

∑
j=1

β j(zj − h(x̂k0|k))(zj − h(x̂k0|k))
T − z̄z̄T

]
K(k, k0)

T .
(25)

In contrast, a large positive time offset may involve k0 > k + l − 1. Because the tracker
can only process measurement times smaller than the current time, the invalid measurement
is intentionally delayed up to one step to ensure that it can be suitably processed.

3.3. Track Fusion

When the FC receives local tracks, the tracks are fused through track fusion to pro-
duce global tracks. Because local tracks have different state-space models with different
dimensions, i.e., xa = [x, ẋ, y, ẏ, z, ż] and xp = [x, ẋ, y, ẏ], the association must be performed
only on their shared state space. This study adopts a practical T2TF technique [37]. Track
association first compares local tracks through the statistical association test. Consider-
ing the mapping xp = Gxa, the state vector of the active sensor track can be partitioned
as xa = xa,1 ⊕ xa,2, where xa,1 = [x, ẋ, y, ẏ] ∈ R4 and xa,2 = [z, ż] ∈ R2 are partitioned
state vectors. The corresponding covariance matrix Pa,1 ∈ R4×4 and Pa,2 ∈ R2×2 can be
expressed as

Pa =

[
Pa,1 Pa,12

Pa,21 Pa,2
.

]
(26)

Based on the partition, the association test validates the statistical closeness between
two tracks through comparison with the gating threshold:

D = (x̂a,1 − x̂b)
T P−1

a,1 (x̂a,1 − x̂b) < b, (27)

where b is the gating threshold. If the hypothesis is validated, the two tracks can be fused
using the intersection method [47]:

x̂F,s = PF(ω(Pa,1)
−1x̂a,1 + (1−ω)P−1

b x̂b), (28)

P−1
F,1 = ω(Pa,1)

−1 + (1−ω)P−1
b , (29)

where ω represents a weight parameter chosen from within (0, 1). After fusion in the shared
state space, the complement state is added from the active sensor track x̂F,disjoint = x̂a,2 as

x̂F = x̂F,s ⊕ x̂F,disjoint, PF = diag{PF,1, Pa,2}. (30)

4. Impact Analysis
4.1. Influence on Local Tracking and Association

The local tracker accommodates inaccurate measurement time information and may
corrupt estimated tracks, thereby adversely influencing the estimation accuracy and as-
sociation consistency. This section discusses the influence of the time error on the local
tracking process. Here, k∗0 is the ideal time index at which the measurement is taken, while
(·)∗ represents the variables for the ideal case with ∆ = 0.
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4.1.1. Influence on Measurement-to-Track Association and Filtering

In phase [k− 1, k0], the time error may influence the association and filtering processes.
For association, the predicted measurement track ẑk0|k−1 and covariance matrix should be
propagated from the previous time step k− 1 to k0. Supposing that the local track in the
previous step is accurate and that the relation

x̂∗k−1 ≈ x̂k−1, P∗k−1 ≈ Pk−1 (31)

is satisfied, then, considering the time error ∆ < 0, the update interval for measurement pre-
diction satisfies tk∗0

− tk−1 > tk0 − tk−1. The deviation between the predicted measurements
and covariance for ideal and corrupted tracks are

||ẑk∗0 |k−1 − ẑk0|k−1|| = ||H(x̂k∗0 |k−1 − x̂k0|k−1)|| = ||H(fk∗0 |k−1(x̂k−1)− fk0|k−1(x̂k−1))||

≈ ||H(Fk∗0 |k−1 − Fk0|k−1)x̂k−1|| = ||H∆Fk∗0 |k0
x̂k−1||,

(32)

where || · || denotes the 2-norm and ∆Fk∗0 |k0
is the state transition error matrix. Equation (32)

indicates that the predicted measurement error from the ideal case increases with respect
to ∆ as it is amplified by ∆Fk∗0 |k0

. In turn, the incorrect measurement prediction affects the
estimation accuracy. Furthermore, the covariance of innovation matrix can be defined as

|Sk∗0
| = |HkPk∗0 |k−1HT + R = HkPk∗0 |k0

Pk0|k−1HT + R| > |Sk0 |. (33)

Equation (33) reflects that the update to the innovation is minor in the corrupted track
case. The small innovation update affects the association test, i.e.,

|Sk∗0
| > |Sk0 | ⇒ |S

−1
k∗0
| < |S−1

k0
|, (34)

which may imply that the statistical distance with the same deviation between the actual
measurement and prediction becomes significant with |S−1

k0
|. This may lead to unsuccessful

validation of the target measurement and deteriorate the consistency of the track association.
In addition to the propagation error associated with kinematic mismatch and process error,
the prediction error worsens as well.

4.1.2. Influence on Track Update with Time Alignment

In the track update phase, the updated track may be corrupted by the inaccurate
update interval between k0 and k. For simplicity, suppose that the synchronization error
∆ = ci(tm)− tm = tk0 − tk∗0

< 0 is negative and that the target measurement is validated as
β0 = 0. The measurement update step corrects the state estimates and covariance matrix
using latest measurement at k0. Given this information, we assume that the a posteriori
estimates and covariance matrix are similar to those of the ideal case, as

x̂∗k∗0 |k∗0 ≈ x̂k0|k0
, Pk∗0 |k∗0 ≈ Pk0|k0

. (35)

Now, the track update propagates the posteriori x̂(k0|k − 1) to the current time k.
According to Equation (19), the estimation error from ideal estimates satisfies

||x̂∗k|k∗0 − x̂k|k0
|| = || f (x̂∗k∗0 |k∗0 )− f (x̂k0|k0

)|| ≈ ||Fk,k∗0
x̂∗k∗0 |k∗0 − Fk,k0 x̂∗k0|k0

|| = ||∆Fk∗0 ,k0 x̂k0,k0 ||. (36)

Equation (36) indicates that the deviation from the ideal track increases by ∆Fk∗0 ,k0 . In
particular, ∆Fk∗0 ,k0 = F−∆ propagates the track further along the target velocity direction
when ∆ < 0. Furthermore, the covariance matrix can be written as

|Pk|k0
| = |Fk,k0 Pk0|k0

FT
k,k0

+ Qk,k0 | = |(Fk,k∗0
Fk∗0 ,k0)Pk∗0 |k∗0 (Fk,k∗0

Fk∗0 ,k0)
T + Qk,k∗0

Qk∗0 ,k0 |

= |Fk∗0 ,k0(Fk,k∗0
Pk∗0 |k∗0 FT

k,k∗0
)(Fk∗0 ,k0)

T + Qk,k∗0
Qk∗0 ,k0 | ≥ |Pk|k∗0 |,

(37)
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which means that the covariance grows as the time error ∆ acts on the local measurement.
In turn, the prediction step for time alignment leads to deviation of the state estimates from
the actual target, and this trend becomes more pronounced as the time offset increases.

4.2. Impact on Track-to-Track Association

As described in Section 4.1, the time synchronization error increases the tracking error
and error covariance in local tracks. A larger time error leads to increased error covariance
from the local filter, and the fused covariance is affected as well; therefore, the time error
results in tracking degradation. In addition, the degraded quality of local tracks can affect
the track-to-track association. The increase in time error reflects the deviation between
the local track estimates and the reduced association between local tracks. Suppose that
two local sensors detect the target at tk∗0

with different timestampings by local clocks; let
k0 and k1 denote the measurement time steps corrupted by inaccurate local clocks. Then,
Equation (36) yields

x̂k|k0
= Fk,k0 x̂k∗0 |k∗0 ,

x̂k|k1
= Fk,k1 x̂k∗0 |k∗0 .

(38)

Considering the maximum time deviation between local clocks (9), the deviation
between local tracks can be expressed as

|x̂k|k0
− x̂k|k1

| = |Fk1,k0 x̂k∗0 |k∗0 | ≤ |F−2∆x̂k∗0 |k∗0 |. (39)

Equation (39) implies that the deviation increases as F−2∆ amplifies the upper bounds
between local tracks.

5. Simulation Study

Numerical simulations were performed to validate the impact analysis. We considered
the scenario of an intruder drone being detected near an airport, as shown in Figure 3. The
target is moving from p0 = [600, 600, 10] with constant velocity vt = [10

√
3, 10, 0.2]. The

radar is located at the center of the surveillance space, and is capable of 360-degree field of
view functionality through the use of a rotating receiver antenna, while the RF sensors are
distributed to continuously search the space. The sensor detects the target in the cluttered
environment, and local trackers process the cluttered measurements and generate local
tracks. The RF tracker receives measurements from the RF sensor once in two cycles. The
tracker coasts the track alternately when the measurement is not transmitted. MATLAB
Sensor Fusion Toolbox was used to model the sensors [48], and the sensor specifications
and system parameters are summarized in Table 2.

Figure 3. Use-case scenario for airspace surveillance.
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Table 2. Tracking algorithm parameters.

Radar Tracker RF Tracker

Update rate 1 Hz 1 Hz

Filter 3D-CV-EKF [41] 2D-CV-EKF [41]

Association threshold, b 30 30

M/N logic parameters for track maintenance M = 3, N = 5 M = 3, N = 5

M/N logic parameters for track deletion M = 3, N = 3 M = 3, N = 3

For clock offsets, we consider the worst-case scenario, where the radar clock has
negative time offset and the RF sensor has positive time offset. The local clocks are
considered to be synchronized when the clock offsets are bounded below the criterion
under the required accuracy |∆t| = |ci(t)− t| < 1 ms, which is obtained from the statistical
model (Equation (4)). Otherwise, the networks are unsynchronized. The time offsets are
increased to monitor the qualitative trends of the performance with respect to the time error.

The performance is evaluated using three metrics. The average RMSE refers to the
localization error of the track result compared with the ground truth. Lower RMSE scores
correspond to higher tracking precision. In this study, the RMSE criterion is set as 2 m.

AvgRMSE =
1
T

Tf

∑
t

√
(x(t)− x̂track(t))2 + (y(t)− ŷtrack(t))2 + (z(t)− ẑtrack(t))2 (40)

The GOSPA [25] is used to assess the tracking performance by simultaneously consid-
ering track completeness in terms of the localization error, miss target, and false tracks.

GOSPA = (locp + missp + f lasep)1/p (41)

Lastly, we consider the single integrated air picture (SIAP) [26], which helps to sepa-
rately examine the tracking quality in terms of consistency and correctness. This metric
includes two metrics; the Completeness indicates the percentage of number of tracked
targets to the number of actual targets related to missed targets, while the Spuriousness is
the percentage of the number of false tracks out of the number of total tracks.

Ct(t) =
n(truthtracked)

n(trutht)
, St =

n(tracks)− n(assignedtracks)
n(tracks)

(42)

5.1. Comparison between Synchronized and Unsynchronized Sensor Networks

Figure 4 shows the target tracking results when the sensors are time-synchronized
under the required precision |∆| < 1 ms. The track trajectory, presented in an identical
color in Figure 4a, indicates that the fused track is consistently derived during the scenario.
As shown in Figure 4b, the confirmation times in local and fused tracks are different. The
radar track is confirmed at the third time step, while the RF tracker confirms its local track
at the fifth time step when the measurement arrives three times. Finally, the fused track is
derived from the fifth time step when two local tracks are confirmed. Local tracks exhibit
large tracking errors and missed targets in a few initial steps, while the fused track exhibits
improved tracking accuracy. Table 3 summarizes the performance measures. Compared
with the ideal case without any time error, the overall target tracking performance is
maintained within satisfactory limits.
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Table 3. Comparison results in performance metrics.

Ideal, ∆t = 0 Synchronized, |∆t| = 1 ms Unsynchronized (|∆t| = 0.5 s)
Radar RF Fused Radar RF Fused Radar RF Fused

RMSE 1.9819 1.549 0.7815 1.982 1.892 1.186 7.662 7.279 7.0064

GOSPA 10.811 9.276 6.857 11.278 10.468 8.371 29.362 29.195 30.230

Ct (%) 100 100 100 92.86 96.15 100 25.00 30.77 15.38

St (%) 0 0 0 7.14 3.85 0 75.00 69.23 84.62

(a) Target and fused track histories
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Figure 4. Simulation results for synchronized sensor networks in the target tracking system.

In contrast, the target tracking system exhibits reduced performance in the unsyn-
chronized sensor network. Figure 5 shows that each local tracker generates a local track
but displays large tracking errors when a significant time error (|∆| = 0.5 s) is imposed
on the local clocks. Time alignment in track update causes the track to deviate from the
measurements, introducing a large RMSE. Consequently, the completeness metric reflects
that the track is not correctly assigned to the target and labels it as a false track. Furthermore,
the track fusion is significantly impaired. The RMSE significantly increases and exceeds the
tracking requirement. In addition, the consistency of the fused track deteriorates in most of
the time intervals. Figure 5a illustrates that the fused track trajectory is not consistent. From
the fifth to tenth time steps, the fusion center cannot fuse the two local tracks and yields
two separate tracks, potentially because of the enlarged error bound in Equation (39) as
the time error increases. This result indicates that the tracking performance is significantly
affected by the time error when the local clocks are no longer synchronized.
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(a) Target and fused track histories
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Figure 5. Simulation results for unsynchronized sensor networks in the target tracking system.

5.2. Performance under Increasing Synchronization Errors

To examine the influence of the synchronization error on the target tracking system,
we implemented the same tracking scenario with synchronization errors increasing from
the zeroth time step to the first. Figure 6 plots the average values of the performance
measures for each episode. The local and fused tracks exhibit less sensitivity to the syn-
chronization error when the offset is within the allowable offset |∆| < 1 ms. However, the
tracking degradation becomes noticeable when the synchronization error exceeds 100 ms.
Considering the clock drift during the longer holdover interval, the holdover time at which
significant performance degradation is observed can be estimated. For example, local
clocks with an accuracy of 2 ppm (parts per million) take 0.1/(2× 10−6/3600) ≈ 14 h to
reach the time error of 100 ms. This time is reduced for low-cost clocks due to the large
frequency stability in their oscillators.

Furthermore, the fused performance worsens compared with that of local tracks in
the presence of significant time errors, which implies that fusion with tracks corrupted by
synchronized time errors may result in reduced tracking quality. Notably, a correlation
exists between the RMSE/GOSPA and SIAP metrics; RMSE and GOSPA grow significantly
after 100 ms, and Ct and St indicate that the tracking system degrades the track consistency
in this period. GOSPA incorporates the missed (completeness) and false (spuriousness)
components. A large RMSE indicates that the distanced track becomes less coherent
from a kinematic perspective, and the corresponding association with the central track
may fail, as observed in Figure 5. The exponential increase in RMSE with the log-scale
temporal error indicates that the estimation errors in the local and fusion tracks tend to be
linearly proportional to the time error. This result is consistent with the impact analysis.
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Specifically, the approximate tendency derived in Equations (32), (36) and (39) shows the
linear correlation between the performance degradation and time error.
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Figure 6. Simulation results of the tracking performance under incremental synchronization errors.

5.3. Performance When the Target Is Maneuvering

To inspect the system performance when the target is maneuvering in the presence of
synchronization error, a target tracking simulation was performed by varying the target’s
motion. In this scenario, the target is in constant turning motion with identical speed
vt = 10 m/s.

Figure 7 illustrates that the negative effects of time synchronization errors on the
sensor fusion performance are aggravated when model mismatch occurs due to target
maneuvering. In both cases, the tracking performance degrades as the time error increases.
However, the degradation is faster in the maneuvering case, as the maximum synchroniza-
tion error for meeting the performance requirement is reduced. This degradation may be
attributable to a mismatch between the target motion in the tracking algorithm. The local
tracker estimates the target based on the constant-velocity model in the EKF phase. The
model error can be propagated along with the synchronization error in track estimates,
thereby influencing the association and track updates, which may worsen when a large
synchronization error is involved.
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Figure 7. Simulation results of the tracking performance in target maneuvering scenario.

5.4. Performance under Speed Variations

As shown in Figure 8a, RMSE and GOSPA increase rapidly as the target speed increases.
For example, the time to reach the RMSE error of 2 m is 0.24 s when the target speed is
10 m/s, while it is significantly reduced to 0.05 s when the target speed increases to 40 m/s.
This phenomenon likely occurs because the velocity components in the state vector lead to
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sizable spatial transitions over time. The high speed of the target potentially introduces
a significant position error in Equation (36). In addition, the track consistency degrades
faster as the speed increases. Moreover, when the target speed increases, the robustness of
sensor fusion against the time synchronization error is reduced as the completeness metric
decreases. Figure 8c shows the empirical results of the allowable synchronization errors for
track consistency and estimation accuracy. The blue shaded area represents the allowable
time error for guaranteed estimation accuracy, while the grey shaded area denotes the
allowable region of the consistent track. Both regions narrow as the target speed increases.
The estimation accuracy region is smaller than the consistent track region, indicating that
the tracking requirement is considerably tighter in this scenario. The consistency region
can be widened as the association threshold is adaptively set or increased.
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Figure 8. Simulation results showing the performance under speed variations.

6. Conclusions

This study aimed to examine the influence of time synchronization errors on the
performance of a target tracking system. The time synchronization error was mathemati-
cally modeled and imposed on local clocks as the clock offset. The target tracking system
consisted of heterogeneous sensors under a T2TF architecture. The local tracking pro-
cess included a track update step for time alignment to account for the asynchronous
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timing between measurements and tracks and to accommodate synchronization errors
in generating local tracks. The impact of the time synchronization error on association,
filtering, and track fusion was considered, and empirical results were obtained through
simulations. Under linear target dynamics, the synchronization error linearly degraded the
tracking error, resulting in inconsistent association. Variations in other factors, including
target speed and maneuvering, also led to deterioration in tracking performance owing
to time synchronization errors. The simulation results demonstrated that these negative
effects on the target tracking system become pronounced when the error exceeds 100 ms.
These results highlight the need for a resilient synchronization system that can ensure time
synchronization across the network in order to maintain synchronization errors within an
acceptable accuracy level. Joint estimation of time synchronization and target position in
target tracking and sensor fusion processes can be implemented to mitigate the errors when
a synchronization failure occurs. The findings of this work can be extended to other sensor
network systems to clarify the influence of synchronization errors and facilitate system
improvements. Further research could explore the development of state estimation tech-
niques aimed at improving tracking performance in the presence of measurement delays,
with a specific focus on addressing the impact of time synchronization in sensor networks.
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