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Abstract: Unmanned aerial vehicles (UAVs) are now widely used in many fields. Due to the random-
ness of UAV flight height and shooting angle, UAV images usually have the following characteristics:
many small objects, large changes in object scale, and complex background. Therefore, object de-
tection in UAV aerial images is a very challenging task. To address the challenges posed by these
characteristics, this paper proposes a novel UAV image object detection method based on global fea-
ture aggregation and context feature extraction named the multi-scale feature information extraction
and fusion network (MFEFNet). Specifically, first of all, to extract the feature information of objects
more effectively from complex backgrounds, we propose an efficient spatial information extraction
(SIEM) module, which combines residual connection to build long-distance feature dependencies
and effectively extracts the most useful feature information by building contextual feature relations
around objects. Secondly, to improve the feature fusion efficiency and reduce the burden brought
by redundant feature fusion networks, we propose a global aggregation progressive feature fusion
network (GAFN). This network adopts a three-level adaptive feature fusion method, which can
adaptively fuse multi-scale features according to the importance of different feature layers and reduce
unnecessary intermediate redundant features by utilizing the adaptive feature fusion module (AFFM).
Furthermore, we use the MPDIoU loss function as the bounding-box regression loss function, which
not only enhances model robustness to noise but also simplifies the calculation process and improves
the final detection efficiency. Finally, the proposed MFEFNet was tested on VisDrone and UAVDT
datasets, and the mAP0.5 value increased by 2.7% and 2.2%, respectively.

Keywords: feature extraction; multi-scale fusion; objection detection; UAV aerial images

1. Introduction

Object detection holds significance in the field of computer vision, which aims to
identify objects in images or videos and determine their locations and categories. Given the
swift progress in deep learning neural networks and the large-scale emergence of relevant
datasets [1,2], object detection algorithms have made significant strides, finding successful
applications across diverse domains, such as automatic driving [3], video surveillance [4],
and device detection [5]. Deep learning-based object detection methods have replaced
traditional approaches as the prevailing methods. Currently, deep learning-based object
detection methods can be broadly categorized into two groups, namely two-stage methods
and one-stage methods.

Two-stage object detection methods play a vital role in the domain of object detection,
which usually contains two main stages, namely candidate region generation and object
classification localization. Classical two-stage object detection methods include R-CNN
(regions with CNN features) [6], Fast R-CNN [7], Faster R-CNN [8], Mask R-CNN [9], and
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Cascade R-CNN [10]. The primary benefit of the two-stage object detection methods
lies in their exceptional accuracy. However, due to the two-stage processing, such object
detection methods usually require more computing resources and longer processing time
than one-stage methods. In contrast to two-stage object detection methods, one-stage
object detection methods output the categories and locations of the objects directly from
the original image without the step of the region proposal. Classic one-stage detection
methods include the YOLO series [11–14], single-shot multi-box detector (SSD) [15], and
RetinaNet [16]. Although these excellent detection methods have been derived for object
detection so far, the object detection results of UAV images are still not satisfactory, and the
task of UAV object detection still faces severe challenges.

UAVs, also known as unmanned aerial vehicles, are widely used in remote sensing
mapping [17], maritime emergency rescue [18], urban inspection [19], and other relevant
fields due to their convenience of use and low cost. As shown in Figure 1, UAV images
mainly have the following two features. First, due to the difference in the tilt angle of UAV
shooting, the object size is large in areas near the UAV camera, while the object size is small
in places far away from the UAV camera, resulting in large scale changes in objects within
UAV aerial images. Secondly, due to differences in the positions and heights of UAVs,
drone images often contain numerous small objects that are vulnerable to interference
from complex backgrounds. Therefore, detecting objects in UAV images poses a significant
challenge. Many excellent researchers are working to solve the difficulties of UAV object
detection. Wu et al. [20] proposed a multi-branch parallel network that utilizes multi-branch
up-sampling and down-sampling to reduce information loss when the size of a feature map
changes. Wang et al. [21] added an ultra-lightweight subspace attention module (ULSAM)
to a path aggregation network to highlight object features. Huang et al. [22] proposed a
feature-guided enhancement (FGE) module that designs two nonlinear operators to learn
discriminant information. Although these methods are effective for UAV image object
detection, they ignore the importance of fine-grained information in shallow feature maps.

(a) (b)

Figure 1. Examples in the VisDrone dataset. (a,b) Multi-scale objects in UAV images in differ-
ent scenes.

To make up for the shortcomings of previous studies and overcome the problems
encountered in UAV image detection, this paper proposes a UAV object detection method
named MFEFNet, which includes our proposed a spatial information extraction module
(SIEM) and a global aggregation progressive feature fusion network (GAFN). First, objects
in UAV images are susceptible to complex background interference. Therefore, we designed
a module for extracting the location information and context relationships of objects within
shallow feature maps named SIEM. The module expands the regional receptive field while
maintaining the size of the feature map and weights the perceived global context features
with the initial input features utilizing the residual connection. Therefore, the most useful
location information for small objects is obtained, and the context information relationship
around objects is constructed. Secondly, we design a global aggregation progressive feature
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fusion network (GAFN) based on the adaptive feature fusion module (AFFM). The network
first fuses the feature maps of different scale sizes into two mid-level feature maps. Then, the
two obtained middle-level feature maps, along with the high-level feature maps abundant
in semantic details, are subjected fully adaptive feature fusion. The feature maps of various
scales can preserve the most effective feature information. Finally, the MPDIoU [23] loss
function is used as the bounding-box regression loss function to enhance the model’s
precision in bounding-box localization, which makes the model simplify the calculation
process of the loss function and improves the detection efficiency.

This study’s main contributions are summarized as follows:
(1) We design a novel UAV image object detection method based on global feature

aggregation and context feature extraction named MFEFNet , which enhances the extraction
of representation information from multi-scale objects and improves the fusion efficiency
of multi-scale objects.

(2) We design a spatial information extraction module (SIEM), which is mainly used
for extracting the spatial information of objects and combining the residual connection to
construct the long-distance feature dependency. It effectively avoids the interference of
background information.

(3) To achieve efficient fusion of multi-scale features, we design a feature fusion
network named GAFN, which uses the multi-structure and multi-level adaptive feature
fusion module (AFFM) to adaptively learn the feature map importance of different sizes and
mix features of different scales . The efficiency of multi-scale feature fusion and multi-scale
object detection is considerably improved.

(4) We validate our MFEFNet on two public UAV image datasets and one public remote
sensing dataset. The experimental results show that our method has better detection ability
for multi-scale objects in UAV images compared with other advanced methods.

2. Related Work
2.1. Object Detection under Background Interference

One of the difficult problems in UAV object detection is that objects are susceptible to
complex background interference. To solve this problem, existing deep learning-based ob-
ject detection methods primarily concentrate on enhancing the feature extraction capability
by focusing on increasing the network depth. However, these methods not only burden
the network but also result in insufficient spatial information because the size of the deep
network feature maps is relatively small. In view of the various problems that have arisen,
many researchers have put forward different research methods. Qu et al. [24] proposed a
detection head enhancement module (DHEM) that utilizes an attention mechanism and
multi-scale feature fusion to enhance the representational information of objects. However,
it only focuses on small objects and lacks attention to medium and large objects in UAV
images. Wang et al. [25] proposed a novel evaluation metric, the normalized Wasserstein
distance (NWD), which uses the 2D Gaussian distribution of bounding boxes to solve the
sensitivity problem of small object position deviation derived from intersection over union
(IoU). However, it lacks effective feature extraction and fusion mechanisms. In addition,
considering the problem that small objects are easily occluded, Li et al. [26] introduced an
occlusion-positioning sub-task, which, together with the object detection sub-task, consti-
tutes an occlusion-guided multi-task network (OGMN), effectively improving the detection
efficiency of occluded objects. Although these methods improve the detection accuracy of
objects subject to background interference, they ignore the most important spatial informa-
tion for object localization. Therefore, we design a spatial information extraction module in
the shallow network to construct the context information around objects.

2.2. Multi-Scale Object Detection

Building an efficient feature pyramid network is also the key to improving the effi-
ciency of multi-scale object detection. Liu et al. proposed the SSD [15], which uses the
idea of divide and conquer. It utilizes shallow feature maps for small object detection and
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deep feature maps for large object detection, which effectively reduces the computational
overhead. However, due to the lack of effective feature fusion from top to bottom, the
shallow feature maps lack adequate representational ability, leading to limited enhance-
ment in small object detection performance. Subsequently, the emergence of the feature
pyramid network (FPN) [27] and path aggregation network (PANet) [28] provided ideas
for feature fusion from both top-down and bottom-up perspectives, realizing information
exchange among feature maps of varying scales and improving the performance of small
object detection. In addition, many novel and efficient feature fusion networks based
on FPN and PANet have become mainstream, such as the bidirectional feature network
(BiFPN) [29] and the asymptotic feature pyramid network (AFPN) [30]. However, the above
feature fusion network structure leads to low fusion efficiency and feature redundancy
problems. To further reduce the burden caused by the feature pyramid and improve the
efficiency of feature fusion, we propose an efficient and lightweight feature fusion network
inspired by AFPN. By fusing the shallower feature map a single time, not only is the unique
object location information of the shallow feature maps taken into account, but the feature
redundancy caused by excessive fusion is avoided.

2.3. UAV Image Object Detection

In contrast to natural images, the shooting height and angle of UAV images are
highly random, which leads to the inapplicability of object detection methods that perform
well in natural images [31]. The objects in UAV images often display significant changes
in scale and irregular arrangement, which greatly increase the difficulty of UAV image
object detection. Fang et al. [32] proposed a dehazing subnetwork to detect UAV images
affected by fog. However, it does not perform well under normal lighting conditions.
Redmon et al. [33] proposed a CFA structure for parallel fusion of feature maps of different
scales to obtain high-quality feature fusion results and used an LASPP module to expand
receptive fields and maintain sensitivity to different receptive fields. However, it lacks
effective extraction of objects’ spatial information, resulting in weak detection ability for
small objects. Leng et al. [34] proposed a Reverse-attention Exploration Module (REM) to
obtain the location of challenging-to-detect objects and, through a Region-specific Context
Learning Module (RCLM), to improve the feature richness of the corresponding position
and improve detection efficiency. Although this method can accurately locate the key
region, it lacks an effective mechanism to process the feature information of the key region.
Ye et al. [19] proposed a Convolutional Multi-Head Self-Attention (CMHSA) method based
on an Efficient Convolutional Transform Block (ECTB) to improve the recognition ability of
occluded small objects by extracting contextual information of objects. However, due to the
incomplete extraction of fine-grained information in the process of feature extraction, the
false detection of occlusions increases. Lu et al. [35] proposed a hybrid model of a CNN
and transformer to achieve UAV image object detection, which is helpful in enhancing the
efficiency of object detection at various scales in UAV images. However, the introduction of
transform increases the complexity and redundancy of the network, which is unfavorable
for UAV image detection. Chalavadi et al. [36] proposed an effective network for detecting
objects at multiple scales named mSODANet, which uses hierarchical extended convolution
to establish contextual details from diverse objects across various scales and domains.
Shen et al. [37] proposed a divide-and-conquer method based on prior information. In this
method, the inertial measurement unit (IMU) is used to first calculate the object scale; then,
the UAV images are divided into three parts according to the object scale for object detection.
However, this method leads to the neglect of objects of other sizes in different domains.

In order to solve the problem of large changes in object scale and complex background
interference in UAV aerial images, we propose a spatial information extraction module
(SIEM), which strengthens the feature extraction ability of small objects and object context
relationships in shallow networks by combining residual connection and context-dependent
extraction modules similar to transform. In addition, we design a multi-level and multi-
scale feature fusion network based on AFPN named GAFN.
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3. Methods

Our main goal is to deal with the problems that objects in UAV aerial images are
susceptible to background influence and large-scale variation by strengthening the spatial
feature extraction ability of object detection and constructing an efficient multi-scale feature
fusion network. First, we propose a spatial information extraction module named SIEM,
which combines residual connection and a transform-like mechanism to establish a long-
distance dependency, effectively constructing high-quality contextual feature information
and avoiding excessive loss of object information at the image edge. Secondly, the extracted
effective object spatial information layer is aggregated with the other three layers for cross-
scale single adaptive aggregation, which fully retains the object features of each scale while
avoiding feature redundancy and excessive parameters caused by excessive aggregation.
Thirdly, the results of cross-scale single adaptive aggregation are integrated with deep
feature maps rich in semantic object information to further preserve useful information.
Figure 2 illustrates the overall structure of MFEFNet. The backbone adopts the combination
of CSPDarknet53 and SIEM for feature extraction. The neck network uses a three-level
global aggregation progressive feature fusion network (GAFN), which is composed of
single-level adaptive aggregation and two-level progressive feature fusion for multi-scale
feature fusion. The head is utilized to predict both the position and type of the object.

Figure 2. The overall structure of MFEFNet.

3.1. Spatial Information Extraction Module

Due to the randomness of the UAV’s shooting height and angle, the surroundings
of the objects in the UAV aerial image are complicated. In the process of feature extrac-
tion, the object’s spatial information is lost due to the increase in the receptive field. In
addition, a complex background can result in ambiguity between object edge details and
background information. To solve the above problems, existing methods include reducing
the interference of background information by adding object detection branches. However,
this approach adds an additional burden to the network. Due to the lack of an effective
object spatial information extraction mechanism, complex background information can
easily interfere with objects and lead to location information loss in the feature extraction
operation of the model, which affects the efficiency of object detection.

Given the above problems that object spatial information is easily lost and objects
are easily disturbed by the environment, we designed a spatial information extraction
module. Figure 3 shows the structure of the SIEM. In contrast traditional convolutions, we
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not only use continuous 3 × 3 convolutions to expand the receptive field but also combine
multi-branch sampling and transform-like mechanisms to increase the influence region
and establish long-distance dependencies. Finally, the obtained results are weighted to
the original feature map by residual connection to achieve small object feature extraction
and context construction. To be specific, first of all, we extract local features from the input
feature map in two branches to improve the feature transformation ability and enlarge the
receptive field of the model. Then, the deep-extracted local features and lightly extracted
local features are spliced together by the Concat module to recover the original input
channel number. The calculation process is shown in Formula (1).

F1 = Cat(CBS3×3(CBS3×3(CBS3×3(Fin))), CBS3×3(CBS3×3(Fin))) (1)

where Fin denotes the input feature map, and F1 denotes the output result of the first stage.
Next, a 3 × 3 convolution is used to integrate the local feature information extracted from
the previous layer. To improve the global perception ability, we perform global interaction
calculations between the obtained features and the pixel values after further extraction
and activation to acquire global contextual features. The calculation process is shown in
Formula (2).

F2 = CBS3×3(F1)× So f tmax(CBS3×3(CBS3×3(F1))) (2)

where F2 denotes the output of the second stage. Finally, we use a Batchnorm layer and
two 1 × 1 linear mapping layers to increase feature diversity. At this point, we establish
stable long-range dependencies of the input feature maps. In addition, we employ a
maximum pooling layer to capture the essential feature information within the input
feature map. The extracted features are weighted, together with the global context features,
into the input feature map using the residual connection. The calculation process is shown
in Formula (3).

Fout = Conv1×1(BN(Conv1×1(F2))) + CBS3×3(F1) + Maxpool5×5(Fin) + Fin (3)

where Fout denotes the final output of the SIEM. Therefore, combined with the abundant
object location information in shallow feature maps, our model can effectively extract object
spatial location information and establish context relationships in the initial stage of the
feature extraction network, especially to avoid the loss of object edge location details caused
by the interference of complex backgrounds.

It is worth noting that the original intention of SIEM design is to efficiently extract
the object spatial information and construct the context relationship between objects and
the surrounding environment. However, the deep feature map itself loses a lot of object
location information because the receptive field is too large. In addition, the number of
channels in the deep network is usually 2–4 times that of the shallow network, and the
effect of SIEM in the deep network is not only very limited but also increases the burden
of the network. Therefore, considering that the shallow network still contains rich location
information and the number of channels is small, the ideal location of the SIEM is in the
shallow network. In Section 4, the experimental results of SIEM at different locations in the
backbone network confirm our idea. The position behind Stage 1 in Figure 2 proved to be
the most desirable. It is consistent with our original intention of designing this module.
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Figure 3. The structure of SIEM.

3.2. Global Aggregation Progressive Feature Fusion Network

Another notable feature of UAV images is that the object scale changes greatly. The
current mainstream approach to solve this problem is to utilize a combination of bottom-
up and top-down PANet. Shallow feature maps are rich in object location information,
which is beneficial for regression localization tasks, but a lack of semantic information
leads to insufficient classification ability. Deep feature maps are rich in object semantic
information, contributing to the classification task, but a lack of location information leads
to poor localization ability. Although PANet has good fusion efficiency, its high parameter
number and complex redundancy feature add a significant load to the network. AFPN
has become popular due to its light weight and high efficiency. Figure 4 shows the simple
structure of AFPN, which adaptively fuses each feature map in the backbone network
through progressive fusion. AFPN aims to reduce the semantic information difference
between cross-layer feature maps and to alleviate the multi-objective information conflict
in the process of feature fusion of spatial location. The fusion module it employs assigns
different spatial weights to features at different levels, which enhances the importance of
critical levels and mitigates the impact of contradictory information from different objects.
However, AFPN ignores the importance of high-level semantic information for object
classification in UAV images. Therefore, we design a more parsimonious and efficient
feature fusion network inspired by AFPN named GAFN, whose simple structure is shown
in Figure 5. A three-level adaptive feature fusion structure is adopted in the network.
Feature maps with different scales and different feature information are screened efficiently
by using an adaptive feature fusion module. Specifically, first of all, we perform an adjacent
adaptive fusion of four feature maps of varying sizes from the backbone network. It is
worth noting that to further improve the multi-scale object detection efficiency, feature
maps rich in object location information extracted by the SIEM are also involved in the
fusion network for a single fusion. Secondly, to establish the relationship between the
shallowest feature map and the deepest feature map, we carry out comprehensive adaptive
fusion on the two adjacent adaptive fusion results. Finally, considering the classification
problem at the end of the model, some semantic information is easily lost in the first two
fusion processes, so we re-add the top-level feature map rich in semantic information in
the last level of global adaptive fusion.
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Figure 4. The simple structure of AFPN.

Figure 5. The simple structure of GAFN.

The adaptive feature fusion module (AFFM) plays a crucial adjective role in the whole
feature fusion network; it can fuse 2–3 feature maps of varying sizes to perform feature
screening. The fusion process of two adjacent dimensional feature maps is shown in Figure 6a.

Case 1: The first fusion method is the adaptive fusion of the middle-layer feature map
with double up-sampling and the shallow feature map. The calculation method is shown
in Formula (4).

Fout = AFFM(γ1 × F1, γ2 × Upsample2×(F2)) (4)

Case 2: The second fusion method is the adaptive fusion of the shallow feature image
with the middle-layer feature image after double down-sampling. The calculation method
is shown in Formula (5).

Fout = AFFM(γ1 × Downsample2×(F1), γ2 × F2) (5)

The fusion process of the feature maps of three adjacent dimensions is shown in
Figure 6b.

Case 3: The third fusion method is the adaptive fusion of the results of the deep feature
map after quadruple up-sampling and the middle feature map after double up-sampling
with the shallow feature map. The calculation method is shown in Formula (6).

Fout = AFFM(γ1 × F1, γ2 × Upsample2×(F2), γ3 × Upsample4×(F3)) (6)
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Case 4: The fourth fusion method is the adaptive fusion of the results of the deep
feature map after double up-sampling and the shallow feature map after double down-
sampling with the middle feature map. The calculation method is shown in Formula (7).

Fout = AFFM(γ1 × Downsample2×(F1), γ2 × F2, γ3 × Upsample2×(F3)) (7)

Case 5: The fifth fusion method is the adaptive fusion of the results of the shallow fea-
ture map after quadruple down-sampling and the middle feature map after double down-
sampling with the deep feature map. The calculation method is shown in Formula (8).

Fout = AFFM(γ1 × Downsample4×(F1), γ2 × Downsample2×(F2), γ3 × F3) (8)

where γ1 and γ2 are learnable weight parameters, F1 denotes the input shallow feature
map, F2 denotes the input middle feature map, Fout denotes the result of adaptive fusion,
F3 denotes the input deep feature map, and γ3 is a learnable weight parameter.

Figure 6. The fusion structure of AFFM. (a) represents the fusion process of two adjacent dimensional
feature maps; (b) represents the fusion process of three adjacent dimensional feature maps.

AFFM, together with other modules, constitutes the complete GAFN, which is shown
in Figure 2. CBS represents a set of convolution, batch normalization, and SiLU activa-
tion function operations. The convolution operation is mainly used to achieve feature
extraction, the normalization operation is mainly used to avoid the appearance of gradient
disappearance, and the SiLU activation function is mainly used to suppress the overfitting
phenomenon and improve the generalization ability of the model. The ELAN module is
an efficient network architecture that enables the network to learn more features and be
more robust by controlling the shortest and longest gradient paths. The IDtect module
is used to generate the final output of the object detection task, including steps such as
bounding-box prediction, category prediction, and post processing to provide accurate
object detection results.

By fusing multi-scale feature maps with adaptive weighting, the most valuable object
feature information can be preserved. The AFFM proposed in this paper independently
learns the weight parameters based on the information of each pixel of the input feature
map, which improves the fusion efficiency of feature information at various scales and fur-
ther enhances the model’s detection ability for multi-scale objects. In addition, eliminating
unnecessary modules is conducive to reducing the burden of the network. Our proposed
GAFN significantly reduces model parameters and avoids feature redundancy.

We show the adaptive fusion steps of the three feature maps in the AFFM in Algorithm 1;
the fusion of two feature maps is similar. First, we adjust the channel of X = {x1, x2, x3, x4}
after feature size matching to obtain Y = {y1, y2, y3}. Secondly, the obtained feature maps
are concatenated in the channel dimension to obtain F, and 1 × 1 convolution and softmax
are used to obtain the weight feature (W = {w1, w2, w3}) of the three channels. Finally, X is
weighted by W, and the adaptive fusion result (L) is obtained by 3 × 3 convolution.
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Algorithm 1 The feature fusion steps of AFFM.

Input: X = {x1, x2, x3, x4}, X refers to three feature maps after feature size matching.
Step 1: Y = {}, Y refers to the first intermediate feature map generated by the CBS1×1()
for channel adjustment. CBS() represents a series of convolution operations required.

for i = 1 to 3 do
yi = CBS1×(xi)
Y.append(yi)

end for
Step 2: F refers to the concatenation result of Y. W = {}, W refers to the weight feature.
Concat() represents channel concatenation operation.

F = Concat(y1, y2, y3)
W = so f tmax(CBS1×1(F))
for i = 1 to 3 do

wi = W[i − 1, i]
end for

Step 3: L refers to the output feature map generated by adaptive fusion.
for i = 1 to 3 do

li = wi × xi
L+ = li
L = CBS3×3(L)

end for
Output: Return L.

3.3. Loss Function

The most widely used loss function for bounding-box regression is the CIoU loss
function [38]. The CIoU loss function considers the overlap area between the prediction
box and the truth box, along with the distance between their center points and the disparity
in aspect ratios. The CIoU loss function takes into account almost all aspects affecting loss
accuracy, and its definition is shown in Formulas (9)–(11):

LCIoU = 1 − IoU +
ρ2(b, bgt)

c2 + αv (9)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (10)

α =
v

(1 − IoU) + v
(11)

where ρ denotes the center-point Euclidean distance between the truth box and the predic-
tion box; c is the length of the diagonal of the smallest external rectangle of the truth box
and the prediction box; v is used to calculate the consistency of the aspect ratios of the truth
box and the prediction box; α is the equilibrium coefficient of ρ; w and h are the length and
width of the prediction box, respectively; and wgt and hgt are the length and width of the
truth box, respectively.

It is worth noting that most of the existing loss functions, including CIoU loss, cannot
optimize the case where the prediction box and the truth box share the same aspect ratio but
differ in length and width values. In addressing this issue and enhancing the accuracy of
calculating the bounding-box loss, we use the MPDIoU loss function as the bounding-box
loss function for MFEFNet, which is defined as Formulas (12) and (13).

MPDIoU =
A ∩ B
A ∪ B

−
d2

1
w2 + h2 −

d2
2

w2 + h2 (12)

LMPDIoU = 1 − MPDIoU (13)

where A and B denote the truth box and the prediction box, respectively; d1 denotes the
distance of the upper-left vertices between the truth box and the prediction box; and d2
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denotes the distance of the upper-right vertices between the truth box and the prediction
box. The coordinates of the top-left point and the bottom-right point can be used to uniquely
identify a rectangle, and all the factors considered by the existing mainstream boundary
regression loss function can be reflected in the relationship between the four vertices of a
rectangle. Therefore, using the relationship between vertices to replace various complex
factors can simplify the calculation process and enhance the model’s prediction accuracy.

Furthermore, we use the binary cross entropy with LogitsLoss (BCEWithLogitsLoss) [39]
function as the classification loss and confidence loss function for our model; its definition
is shown in Formula (14).

LBCE =
N

∑
n=1

−[ynlog(σ(xn)) + (1 − yn)log(1 − σ(xn))] (14)

where N is the batch-size number, and yn and xn denote the label-predicted vector and
truth-value vector, respectively.

Our loss function comprises three components, namely confidence loss, regression
loss, and classification loss. The smaller the loss, the better the model detection effect. In
the model training phase, the loss function is minimized by continuously adjusting the
parameters using back-propagation. The loss function of our proposed method is shown in
Formula (15).

Loss = λ1Losscls + λ2Lossreg + λ3Lossobj

= λ1LossMPDIoU + λ2LossBCE + λ3LossBCE
(15)

where Losscls denotes the classification loss of the model; Lossreg denotes the regression
loss of the model; Lossobj denotes the confidence loss of the model; Loss denotes the overall
model loss; Pcls and Tcls denote the prediction class and truth class, respectively; Preg
and Treg denote the prediction box and the truth box, respectively; Pobj and Tobj denote
prediction confidence and truth confidence, respectively; λ1, λ2, and λ3 are the weight
parameters of the above three sub-loss functions, which are set to λ1 = 0.3, λ2 = 0.05, and
λ3 = 0.7, respectively.

4. Experiments
4.1. Datasets

This section introduces the datasets, evaluation metrics, and parameter settings
adopted for our experiments. In addition, we introduce a series of qualitative and quantita-
tive experimental methods to evaluate and contrast our model with other advanced methods.

In the experimental stage, we adopted two public UAV datasets.
(1) The VisDrone dataset [40] is mainly used for objection detection and image clas-

sification, with a total of 10,209 images, of which the training set consists of 6471 images,
the test set consists of 3190 images, and the verification set consists of 548 images. The
resolution of each image is 2000 × 1500 pixels. The images in the dataset were obtained from
14 different cities under different weather conditions, equipment conditions, and surround-
ings. After careful manual annotation, the dataset contained 342,391 objects and is divided
into the following 10 categories: people, pedestrian, motor, awning-tricycle, bicycle, car,
van, truck, tricycle, and bus. This dataset is the main dataset used in our experiments.

(2) The UAVDT dataset [41] consists of a total of 40,735 images, of which the training
set consists of 24,206 images and the validation set consists of 16,529 images, each with a
resolution of 1080 × 540 pixels. In contrast to the VisDrone dataset, UAVDT mainly focuses
on vehicle detection tasks from the perspective of drones, including images of urban roads
in different weather, different angles, and different scenes. The dataset includes only three
predefined categories of vehicles, namely car, bus, and truck.
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4.2. Implementation Details

The experimental setup of this paper is described as follows. The operating system of
the server used in this experiment is Ubuntu 18.04.6 LTS and the GPU used in the server is
an NVIDIA GeForce RTX 3090 (24G). The CPU used in the server is an Intel(R) Xeon(R)
Silver 4114 CPU @2.20 GHz. In addition, we use the Python deep learning framework,
where the versions of PyTorch and Python are 1.10.2 and 3.6, respectively, and the CUDA
version is 11.7. In the training phase of the experiment, the initial learning rate is set to
0.010, and we use the stochastic gradient descent (SGD) optimizer with momentum. The
batch size is set to 16, the weight decay coefficient is set to 0.0005, and the momentum
parameter is set to 0.937. During the training and testing phases of the whole experiment,
all image input sizes are 640 × 640. In the experimental tables, the units of the data are
percentages, except for the parameter number indicator, which is in megabytes.

4.3. Evaluation Metrics

For a precise assessment of the proposed object detection method’s performance in
detection, we use Precision (P), Recall (R), Average Precision (AP), and mean Average
Precision (mAP) as evaluation indexes of the model, where P stands for the ratio of the
number of correctly predicted positive samples to the total number of positive samples,
expressed as a percentage, and R stands for the ratio of the number of positive samples
with correct prediction to the total number of positive samples, expressed as a percentage.
The calculation processes of P and R are shown in Formulas (16) and (17), respectively.

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

where TP denotes the count of correctly predicted positive samples, FP denotes the count
of incorrectly predicted positive samples, and FN denotes the count of incorrectly predicted
negative samples. P and R are two indicators of mutual checks and balances, and AP
combines them to reflect the overall ability of the model. The calculation process of AP is
shown in Formula (18).

AP =
∫ 1

0
P(R)dR (18)

where P(R) denotes the precision value (P) associated with the recall value (R). mAP
is the average of AP values for all categories and is recognized as the most authoritative
evaluation metric to measure the quality of the current object detection method. The
calculation process of mAP is shown in Formula (19).

mAP =
1
n

n

∑
i=1

APi (19)

where APi denotes the AP value for the i-th category, and n denotes the count of categories.

4.4. Experimental Results on the VisDrone Dataset

We performed experiments using the VisDrone dataset and contrasted them with
the latest object detection methods, where the number of training iterations was 300. To
verify the authority of MFEFNet, COCO evaluation metrics [42] were used to evaluate the
model’s object detection ability at various scales; indicators include APS, APM, and APL.
Under the COCO standard, objects with pixel values below 32 × 32 are categorized as small
objects, objects with pixel values between 32 × 32 and 96 × 96 are categorized as medium
objects, and objects with pixel values higher than 96 × 96 are categorized as big objects. The
experimental results are shown in Table 1. According to the table, the methods proposed
by us achieved the highest values of mAP0.5, mAP0.75, and mAP0.5:0.95, which reached
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51.9%, 29.8%, and 29.9%, respectively, corresponding to improvements of 2.7%, 2.3%, and
2.1%, respectively, compared with the baseline YOLOv7. In addition, MFEFNet’s value of
APM also achieves the highest score of all object detection methods by reaching 41.4%, an
improvement of 2.6% compared to YOLOv7. In terms of small object detection accuracy,
our method achieves a 20.6% higher value than YOLOv7, which corresponds to a 2.0%
improvement. On the other hand, our MFEFNet exhibits a decline in the accuracy of large
object detection compared with YOLOv7 but still achieving 2.0% higher accuracy than the
baseline for other indicators, which further proves that our MFEFNet has better multi-scale
object detection ability. In addition, compared with CGMDet [43], which has the second
highest mAP0.5 value, our MFEFNet significantly improves in all five other indicators,
except the value of APL. Compared with the four commonly used versions of YOLOv8 [44],
except that the APL value of MFEFNet is slightly lower than that of YOLOv8x by about
0.2%, other indicators are greatly improved. Although NWD and DMNet [45] exhibit the
highest accuracy in detecting small objects and large objects, their mAP0.5 values are much
smaller than that of MFEFNet proposed by us. In general, our proposed object detector has
better multi-scale object detection capability and is more suitable for UAV aerial images
with complex backgrounds.

Table 1. Comparison results under the COCO standard on the VisDrone dataset. “*” means our
re-implemented results.

Method mAP0.5 mAP0.75 mAP0.5:0.95 APS APM APL

Faster R-CNN [8] 40.0 20.6 21.5 15.4 34.6 37.1
Cascade R-CNN [10] 39.9 23.4 23.2 16.5 36.8 39.4

YOLOv3 [12] 31.4 15.3 16.4 8.3 26.7 36.9
RetinaNet [16] 35.9 18.5 19.4 14.1 29.5 33.7

NWD [25] 40.3 \ \ 22.2 \ \
YOLOX [46] 45.0 26.6 26.7 17.4 37.9 45.3

YOLOv5l [47] 36.2 20.1 20.5 12.4 29.9 36.4
HawkNet [48] 44.3 25.8 25.6 19.9 36.0 39.1
QueryDet [49] 48.1 28.8 28.3 \ \ \

Edge YOLO [50] 44.8 26.2 26.4 16.3 38.7 53.1
ClusDet [51] 50.6 24.7 26.7 17.6 38.9 51.4
DMNet [45] 47.6 28.9 28.2 19.9 39.6 55.8
CEASC [52] 50.7 28.4 28.7 \ \ \

CDMNet [53] 49.5 29.8 29.2 20.8 40.7 41.6
CGMDet [43] 50.9 29.4 29.3 20.2 40.6 47.4

YOLOv8s [44] * 40.0 21.8 23.6 12.7 33.4 42.0
YOLOv8m [44] * 42.6 24.0 25.6 14.8 35.5 41.8
YOLOv8l [44] * 44.1 24.8 27.1 15.3 36.0 44.7
YOLOv8x [44] * 45.4 26.8 28.0 16.7 38.9 45.5
YOLOv7 [14] * 49.2 27.5 27.8 18.6 38.8 47.8

MFEFNet (Ours) 51.9 29.8 29.9 20.6 41.4 45.3

To visualize the detection capability of our MFEFNet, we select several state-of-the-art
object detection methods and plot their values of mAP0.5 and mAP0.5:0.95 as the number of
iterations increases. As shown in Figure 7, although YOLOv8 series algorithms have a faster
convergence speed, they lack the ability of continuous learning. In contrast, our MFEFNet
has a stronger learning ability and achieves a large improvement over the baseline model.

To further validate our model’s effectiveness, we compared the detection precision
of each category on the VisDrone dataset with some state-of-the-art detection methods.
Table 2 shows the experimental results. The detection accuracy of our MFEFNet is higher
than that of YOLO7 in all 10 categories, with an average of a 2.8% improvement. Compared
with CGMDet, except for the two categories of car and bus, whose accuracy is slightly
lower, the remaining eight categories have higher accuracy than CGMDet. Although
YOLO-DCTI [54] has the best performance on various larger object types, our MFEFNet
performs better on small and medium objects and outperforms other object detection
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methods on larger object types. Relative to Faster-RCNN, YOLOv3, YOLOv5l, YOLOv5s-
pp, and the YOLOv8 series of mainstream algorithms, our MFEFNet achieves superior
accuracy values in each category.

Table 2. Comparison of results for each category on the VisDrone dataset. “*” means our re-
implemented results.

Method Pedestrian People Bicycle Car Van Truck Tricycle Awning
Tricycle Bus Motor mAP0.5

Faster R-CNN [8] 37.5 19.4 13.3 71.9 42.5 42.8 19.8 18.1 58.4 34.4 35.8
YOLOv3 [12] 12.8 7.8 4.0 43.0 23.5 16.5 9.5 5.1 29.0 12.5 31.4
YOLOv5l [47] 44.4 36.8 15.6 73.9 39.2 36.2 22.6 11.9 50.5 42.8 37.4

YOLOv5s-pp [55] 51.7 39.6 19.0 82.1 44.1 36.0 26.3 14.7 55.3 48.2 41.7
YOLO-DCTI [54] 48.7 36.2 22.6 82.1 58.2 60.0 34.5 31.4 72.9 51.2 49.8

CGMDet [43] 59.7 50.7 25.4 86.2 53.4 47.4 37.9 20.2 66.3 61.6 50.9
YOLOv8s [44] * 43.4 33.4 13.7 79.7 44.1 37.9 28.5 15.0 58.3 45.5 40.0
YOLOv8m [44] * 47.0 36.9 16.9 81.0 47.1 40.9 31.6 17.6 57.9 49.1 42.6
YOLOv8l [44] * 46.8 37.2 18.4 81.4 49.8 42.2 34.4 18.0 62.6 49.9 44.1
YOLOv8x [44] * 49.1 38.0 19.3 82.5 50.0 44.5 34.5 18.4 65.6 51.9 45.4
YOLOv7 [14] * 57.7 48.5 22.5 84.7 52.2 45.5 38.2 20.1 62.3 59.9 49.2

MFEFNet (Ours) 59.9 51.2 25.9 85.8 55.3 49.4 40.3 23.2 65.1 63.1 51.9

(a) (b)

Figure 7. Comparison of mAP0.5 and mAP0.5:0.95 values on the VisDrone dataset. (a) represents the
comparison result of mAP0.5 values; (b) represents the comparison result of mAP0.5:0.95 values.

Simultaneously, we present the visualization results of the baseline model and MFEFNet
in different scenarios. We select five groups of representative comparison results from a
large number of comparison pictures. In Figure 8, the obvious contrast part is marked
with yellow dotted boxes and red arrows. As shown in Figure 8(a1), YOLOv7 incorrectly
detects the top-left bicycle as a pedestrian, while our proposed MFENet accurately detects
two side-by-side bicycles. In Figure 8(a2), YOLOv7 misses an awning tricycle in the dim
background, but our model can still correctly detect the awning tricycle in the face of such a
complex, dim background. Figure 8(a3,b3) show the detection results of an outdoor parking
lot. YOLOv7 mistakenly detects the chimney on the lower-right roof as a pedestrian, while
our MFENet does not produce such an error. To prove the detection performance of our
model under an extremely dim and complex background, we conduct a comparative
experiment, as shown in Figure 8(a4,b4). Our MFENet successfully detects a pedestrian
under an extremely chaotic background at the bottom right of the picture. In addition, we
show the detection results located achieved in a suburban area in Figure 8(a5,b5). YOLOv7
misdetects the roof on the right as a van and misses the awning tricycle in the middle of
the picture, while our model does not produce such errors.
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To verify our theoretical ideas about the location of the SIEM mentioned above, we
place the module in four different locations in the backbone network and conduct compara-
tive experiments. Table 3 shows the experimental results. From the experimental results, it
is easy to see that the most ideal position of the SIEM is after Stage 1, which achieves the
best results for each evaluation index with the fewest model parameters. Experimental
results prove that the theoretical ideas we put forward above are scientific and valid.

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 8. Cont.
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(a5) (b5)

Figure 8. Comparison of visualization results between YOLOv7 (a1–a5) and MFEFNet (b1–b5) on the
VisDrone dataset. The obvious contrast parts is marked with yellow dotted boxes and red arrows.

Table 3. Comparative experiment using different positions of the SIEM module in MFEFNet on the
VisDrone dataset.

Location Precision Recall mAP0.5 mAP0.5:0.95 Param (M)

After Stage 1 62.0 50.8 51.9 29.9 33.6
After Stage 2 60.2 49.0 49.3 27.8 43.2
After Stage 3 61.4 46.8 48.6 27.3 68.3
After Stage 4 58.7 48.7 48.7 27.5 68.3

To confirm the efficacy of our proposed GAFN for multi-scale fusion, we designed a set
of comparative experiments on feature fusion networks, and Table 4 shows the experimental
results. Although PAFPN has the highest precision value, it has a low recall value and a
lot of parameters. Although BIFPN has the highest recall value, it has a lower precision
value and a larger number of parameters. AFPN has the lowest number of parameters, but
it has the lowest mAP0.5 value. Our GAFN has the highest mAP0.5 value and mAP0.5:0.95
value, and its precision and recall values are about the same as the highest values. All in
all, the GAFN can better extract multi-scale feature information and has better detection
capability in UAV aerial images.

Table 4. Comparative experiment of feature fusion network on the VisDrone dataset. “*” means our
re-implemented results.

Method Precision Recall mAP0.5 mAP0.5:0.95 Param (M)

PAFPN [28] * 59.1 48.9 49.2 27.8 34.8
BIFPN [29] * 56.4 50.4 49.1 27.7 33.9
AFPN [30] * 57.8 49.7 48.7 27.7 27.4

GAFN (Ours) 57.9 50.0 49.5 28.0 31.5

In addition, a special experiment to verify the effectiveness of MPDIoU for UAV aerial
image detection is presented in Table 5. The MPDIoU is compared with five mainstream
boundary box regression loss calculation methods, obtaining the highest value of mAP0.5.
In addition, in 5 of the 10 categories of the VisDrone dataset, MFEFNet achieves the
highest value, among which pedestrians, people, awning tricycles, and motors are all small
objects. The highest values of other categories are similar to ours. The above results further
demonstrate the superiority of our method for detecting multi-scale objects.

In addition, in order to further demonstrate the effectiveness of our proposed SIEM,
present a visual comparison of the intermediate feature map after Stage 1. Figure 9 shows
the comparison results. It can be clearly seen that when we add the SIEM after Stage 1, our
model has stronger spatial information extraction ability. The SIEM can not only extract
more feature information but also distinguish foreground information from background
information effectively and reduce the interference of background information.
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Table 5. Comparison results of mainstream bounding-box regression loss with MFEFNet for each
category on the VisDrone dataset. “*” means our re-implemented results.

Method Pedestrian People Bicycle Car Van Truck Tricycle
Awning
Tricy-

cle
Bus Motor mAP0.5

DIoU [38] * 59.3 50.1 24.6 85.7 54.5 49.1 40.7 21.5 65.9 62.8 51.4
GIoU [56] * 59.7 50.4 26.2 85.9 54.3 49.0 40.4 22.2 65.0 62.3 51.5

Focal-EIoU [57] * 59.9 50.3 25.7 85.6 54.2 49.7 39.4 21.5 66.9 63.0 51.6
SIoU [58] * 59.1 50.5 25.5 85.7 53.8 48.4 39.4 22.2 64.9 61.9 51.1
CIoU [38] * 59.1 50.1 25.4 85.9 54.6 49.4 41.2 22.0 66.9 62.5 51.7

MPDIoU (Ours) 59.9 51.2 25.9 85.8 55.3 49.4 40.3 23.2 65.1 63.1 51.9

Figure 9. Intermediate feature maps. The first column is the original images; the second column is
the intermediate feature map results without the SIEM; the third column is the intermediate feature
map results with the SIEM.

To observe the effectiveness of our improved methods more directly, this study further
uses an ablation experiment to discuss each method. The results of the ablation experiment
are shown in Table 6 and analyzed as follows:

(1) SIEM: After adding the SIEM, the values of mAP0.5 and mAP0.5:0.95 on the
VisDrone dataset increase by 2.2% and 1.6%, respectively. This shows that the SIEM
can effectively extract the rich object representation information in the shallow backbone
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network, establish the context-dependence relationship around the object, and reduce the
negative impact of the background. Although the complex branch structure of the SIEM
increases the number of parameters, this additional overhead is acceptable in terms of the
benefits achieved.

(2) GAFN: To improve feature fusion efficiency and the detection effectiveness of
multi-scale objects, we designed a feature fusion network, GAFN, based on AFFM. The
addition of this structure improves the values of mAP0.5 and mAP0.5:0.95 on the VisDrone
dataset by 0.3% and 0.2%, respectively. It is worth noting that this network greatly reduces
the bloated degree of the original feature fusion network and the generation of redundant
intermediate feature maps, resulting in a 3.3M reduction in the total number of parameters.

(3) MPDIoU: MPDIoU provides a new idea for us to design an object boundary
regression loss function with simpler operation. The comparison results in Table 6 show
that when CIoU is replaced by MPDIoU, the precision value of MFEFNet is improved, while
the mAP0.5:0.95 value does not change. However, when we added the SIEM and GAFN to
the experiment with MPDIoU, the value of mAP0.5 improves by 0.2%, and the value of
precision improves by 2.7%. This proves that MPDIoU is useful for UAV image detection.

Table 6. Ablation experiments on the VisDrone dataset.

SIEM GAFN MPDIoU Precision Recall mAP0.5 mAP0.5:0.95 Param (M)

59.1 48.9 49.2 27.8 34.8
✓ 60.0 51.3 51.4 29.4 36.9

✓ 57.9 50.0 49.5 28.0 31.5
✓ 59.6 48.2 49.2 27.8 34.8

✓ ✓ 59.3 52.9 51.7 29.9 33.6
✓ ✓ ✓ 62.0 50.8 51.9 29.9 33.6

To further demonstrate the background interference resistance of our method, we use
Grad-CAMTable [59] to generate heat maps of the model visualization results. Figure 10
shows the visualization results. From the first row picture, it can be seen that our method
focuses on the sequential van better than YOLOv7. The second and third rows are for
detecting densely distributed small objects in a complex background. It can be seen
that our method can better eliminate the interference of the surrounding environment
and pay more attention to the object. The fourth and fifth lines are multi-scale object
detection on the road. It can be seen that YOLOv7 pays attention to both objects and
unnecessary background information, while our model reduces the attention to unnecessary
background information.

In order to test the effect of the values of λ1, λ2, and λ3 in Formula (15) on the
performance of MFEFNet, we perform a set of comparison experiments. The experimental
results are shown in Table 7; precision and mAP0.5 reach the highest values when λ1 = 0.3,
λ2 = 0.05, and λ3 = 0.7. Recall reach the highest value when λ1 = 0.3, λ2 = 0.03, and
λ3 = 0.7, but precision and mAP0.5 present differences in terms of their highest values. In
summary, our model achieves the best balance when λ1 = 0.3, λ2 = 0.05, and λ3 = 0.7, so
we choose them as the final values.

Table 7. The model’s performance for different values of λi.

λ1 λ2 λ3 Precision Recall mAP0.5

0.2 0.05 0.07 59.5 51.8 51.4
0.4 0.05 0.07 60.4 50.9 51.5
0.3 0.03 0.07 60.0 51.9 51.6
0.3 0.07 0.07 58.9 51.8 51.5
0.3 0.05 0.06 57.6 52.8 51.3
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Table 7. Cont.

λ1 λ2 λ3 Precision Recall mAP0.5

0.3 0.05 0.08 45.2 46.2 27.7
0.3 0.05 0.07 62.0 50.8 51.9

Figure 10. Visualization examples and heat maps. The first column is the original images; the
second column is the visualization results of YOLOv7; the third column is the visualization results
of MFEFNet.

4.5. Experimental Results on the UAVDT Dataset

We also conduct comparative experiments on the UAVDT dataset. Table 8 shows the
experimental results. Our MFEFNet has achieves excellent detection results on the UAVDT
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dataset. Compared with YOLOv7, MFEFNet increases the mAP0.5 value by 2.2% and
the mAP0.5:0.95 value by 1.9%. The average accuracy of the three types on the UAVDT
dataset is improved by 2.7%, 1.6%, and 2.3%, respectively, compared with the baseline
model. Compared to PRDet, our model has an input image size smaller than the 600 × 1000
that it used, but MFEFNet’s values of mAP0.5 and mAP0.5:0.95 are 3.1% and 8.9% higher,
respectively. In comparison with CFANet-s, the input picture size of MFEFNet is smaller
than the 800 × 800 that it used, but our mAP0.5 value and mAP0.5:0.95 value are 2.5% and
2.2% higher, respectively. YOLOv5l also performs well on the UAVDT dataset, but our
model outperforms in average accuracy and mAP values in various classes. In summary,
our MFEFNet also achieves excellent detection performance on the UAVDT dataset.

Table 8. Comparison results for each category on the UAVDT dataset. “*” means our re-implemented
results.

Method Car Truck Bus mAP0.5 mAP0.5:0.95

YOLOv3 [12] 30.8 3.9 26.4 36.3 20.4
YOLOX [46] 39.4 5.7 25.3 37.9 23.5

UFPMP-Det [60] \ \ \ 38.7 24.6
PRDet [34] \ \ \ 34.1 19.8

YOLOv5s [47] 78.1 13.3 45.6 45.0 26.5
YOLOv5l [47] 80.7 12.7 45.2 46.2 27.7
CFANet-s [33] \ \ \ 44.7 26.5
YOLOv7 [14] * 78.4 12.6 44.0 45.0 26.8

MFEFNet (Ours) 81.1 14.2 46.3 47.2 28.7

Figure 11 shows some visual inspection results for various scenarios on the UAVDT
dataset. Figure 11a,b were detected on a clear day, and our model detects almost all of the
objects in the images. The detection result of Figure 11c is under foggy weather; we can see
that the vehicles on the main road are mostly accurately detected. Figure 11d,e are from a
normal altitude level on a clear night, and Figure 11f is from a higher altitude at night; our
model accurately detects the vehicles in these images.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. Visualization results of MFEFNet on the UAVDT dataset. All the subfigures (a–f) show the
detection results in different environments.

5. Extended Experiments

We perform additional extended experiments using the DOTA-1.0 [61] dataset. The
dataset contains 15 predefined categories, namely small vehicle (C1), large vehicle (C2),
plane (C3), storage tank (C4), ship (C5), harbor (C6), ground track field (C7), soccer ball
field (C8), tennis court (C9), swimming pool (C10), baseball diamond (C11), roundabout
(C12), basketball court (C13), bridge (C14), and helicopter (C15). In the same experimental
environment, we train the model using the training set and validate its performance using
the validation set. The training set consists of 15,729 images, and the validation set consists
of 5297 images. Table 9 shows the experimental results with state-of-the-art methods.
Compared with YOLOv7, our method makes progress in the precision of nine categories
of the DOTA dataset. Among the remaining six categories, except small vehicle and
swimming pool, the accuracy of the remaining four categories exhibits little difference. In
addition, the mAP0.5 value of our method improves by 0.8% compared with YOLOv7.
However, the detection capability of our method on satellite remote sensing images is
not as good as that of EAutoDet-s [62], FRIoU [63], and PCG-Net [64]. This is because
MFEFNet is specifically designed for the features of UAV images, but those methods are
specifically designed for the detection of satellite remote sensing images. Although our
method has some shortcomings in performing satellite remote sensing image detection
tasks, the mAP0.5 value of our method is only 2.1% lower than the best of them. In addition
to this, we achieve the highest accuracy of plane, ship, harbor, and soccer ball field.

Table 9. Comparison results for each category on the DOTA-1.0 dataset. “*” means our re-implemented
results.

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 mAP

SASM [65] 77.3 76.0 86.4 85.7 86.7 74.0 69.9 60.1 90.9 72.2 79.0 68.2 82.6 52.5 62.4 74.9
EAutoDet-s [62] 81.3 84.0 88.6 87.4 88.2 73.7 62.0 52.5 90.8 74.3 84.8 65.7 85.8 51.0 65.9 75.7

FRIoU [63] 78.9 84.0 89.0 83.4 88.0 76.9 76.1 66.1 90.1 73.0 84.6 68.9 85.4 54.5 54.7 77.0
PCG-Net [64] 80.0 84.4 89.6 85.7 88.4 75.1 77.2 65.6 90.1 71.8 82.7 69.1 86.1 54.5 62.8 77.6

YOLOv7 [14] * 74.5 88.1 93.8 79.1 89.1 86.3 69.3 71.3 94.9 65.1 76.5 57.4 71.3 48.8 54.2 74.7
MFEFNet (Ours) 70.2 87.8 94.4 78.9 89.3 86.5 70.2 71.6 94.8 63.1 77.0 61.7 71.1 52.3 63.3 75.5

We show the visualization comparison results of YOLOv7 and our method in Figure 12
on the DOTA dataset. By paying attention to the red dotted boxes and red arrows in each
group of pictures, we find that in Figure 12(a1,b1), YOLOv7 misdetects the cargo box in
the upper left as a large vehicle and the debris in the lower right as a small vehicle. It
also misses one small vehicle. However, none of our methods produces these errors. In In
Figure 12(a2,b2), YOLOv7 misdetects a large number of ships in the bottom right as large
vehicles, while our method only misdetects one ship at the bottom. In Figure 12(a3,b3),
YOLOv7 misdetects a ground sign as a plane. In Figure 12(a4,b4), YOLOv7 fails to detect



Drones 2024, 8, 186 22 of 26

a significant number of small vehicles in the lower-right region. The above experiments
prove that our method has good generalization ability.

However, our method does not achieve precision improvements in some small object
categories on the DOTA-1.0 dataset. According to the analysis, different kinds of small
objects are affected by the background environment differently. Although MFEFNet can
successfully extract the object location information and construct the context relationship,
it is easy to lose small object sensitivity in the face of remote sensing images with a wider
field of view, especially when such small objects are scattered near a building. Because of
this, although our method achieves good performance on remote sensing datasets, it is
better suited for object detection from the perspective of UAVs.

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

Figure 12. Visualization comparison results between YOLOv7 (a1–a4) and MFEFNet (b1–b4) on the
DOTA-1.0 dataset. The obvious contrast parts is marked with red dotted boxes and red arrows.
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6. Discussion

As can be seen from the results of the ablation experiment presented in Table 6, when
the spatial information extraction module (SIEM) proposed by us is inserted into the
most suitable position, the performance of our model for UAV image object detection is
greatly improved. This proves that research in this direction should focus on the mining of
image spatial information and context information. It can be seen from the results of the
comparison experiment on the feature fusion network presented in Table 4 that popular
feature fusion networks are not suitable for UAV object detection. Our proposed GAFN
improves the detection performance and parameter size of the model, but there is still a
lot of room for improvement in the future. Our MFEFNet has certain limitations. In an
intelligent environment, UAVs, as a kind of widely used edge equipment, carryout an
increasing number of tasks, and the demand for autonomous real-time detection of UAVs
is increasing. However, their limited carrying capacity requirements put more demands on
the model’s lightweight size. Although our method reduces the size of the baseline model,
it is not sufficient to meet the payload requirements of the UAV platform. Therefore, we
will further reduce the burden of the model with the aim of ensuring accuracy.

7. Conclusions

To solve the object detection problem in UAV aerial images, we designed a high-
precision object detection method based on the single-stage algorithm. First, we designed
an innovative spatial information extraction module(SIEM), which is used to extract the
location information of the object and construct the context relationship in the shallow
feature map. Secondly, we designed a global aggregation progressive feature fusion
network, which can efficiently fuse the location information and semantic information
of the object and improve the capability to detect objects at various scales. Finally, we
use MPDIoU as our bounding-box regression loss function to reduce the computational
complexity of IoU loss while improving the average detection accuracy.

A large number of experiments in this paper show that our proposed SIEM can
effectively extract the spatial location information of the target in the aspect of feature
extraction. In terms of feature fusion, our proposed GAFN can effectively fuse spatial and
semantic information of four different scale feature maps in the backbone network. In
general, the mAP0.5 value of our proposed MFEFNet on the VisDrone and UAVDT datasets
is improved by 2.7% and 2.2%, respectively.

Although our method has achieved some progress in UAV images, there is some
feature redundancy in the feature extraction stage of the network, which causes some
unnecessary burdens. Therefore, we will explore the relationship between different chan-
nels in the deep feature map in the future, which will help us reduce and utilize these
redundant features. In addition, we will also consider using dilation convolution, which
can enlarge the receptive domain while reducing the size of the model. At the same time,
we will further explore the similarity between UAV images and other images to improve
the generalization ability of the model.
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CNN Convolutional Neural Network
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YOLO You Only Look Once
SIEM Spatial Information Extraction Module
GAFN Global Aggregation Progressive Feature Fusion Network
MFEFNet Multi-scale Feature information Extraction and Fusion Network
AFFM Adaptive Feature Fusion Module
FPN Feature Pyramid Network
PANet Path Aggregation Network
BIFPN Bidirectional Feature Pyramid Network
AFPN Asymptotic Feature Pyramid Network
IOU Intersection over Union
P Precision
R Recall
AP Average Precision
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