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Abstract: UAV remote sensing (RS) image object detection is a very valuable and challenging technol-
ogy. This article discusses the importance of key features and proposes an object detection network
(URSNet) based on a bidirectional multi-span feature pyramid and key feature capture mechanism.
Firstly, a bidirectional multi-span feature pyramid (BMSFPN) is constructed. In the process of bidi-
rectional sampling, bicubic interpolation and cross layer fusion are used to filter out image noise
and enhance the details of object features. Secondly, the designed feature polarization module
(FPM) uses the internal polarization attention mechanism to build a powerful feature representation
for classification and regression tasks, making it easier for the network to capture the key object
features with more semantic discrimination. In addition, the anchor rotation alignment module
(ARAM) further refines the preset anchor frame based on the key regression features extracted by
FPM to obtain high-quality rotation anchors with a high matching degree and rich positioning visual
information. Finally, the dynamic anchor optimization module (DAOM) is used to improve the
ability of feature alignment and positive and negative sample discrimination of the model so that
the model can dynamically select the candidate anchor to capture the key regression features so as
to further eliminate the deviation between the classification and regression. URSNet has conducted
comprehensive ablation and SOTA comparative experiments on challenging RS datasets such as
DOTA-V2.0, DIOR and RSOD. The optimal experimental results (87.19% mAP, 108.2 FPS) show that
URSNet has efficient and reliable detection performance.

Keywords: UAV RS images; object detection; bidirectional multi-span feature pyramid; key feature
capture mechanism

1. Introduction

In recent years, object detection technology in drone RS images based on deep learning
has developed rapidly. It utilizes cameras or sensors mounted on drones to capture
ground images, and then identifies specific objects on the ground through image processing.
This technology is widely applied in various fields, such as agricultural monitoring [1],
environmental protection [2], urban planning [3], disaster assessment [4], intelligence
reconnaissance [5], and more, providing significant support and contributions to the
development of human society. However, despite its rapid growth, it also faces a series
of challenges.

First, drones may be subject to interference from weather conditions and limitations of
their own equipment when collecting RS images, leading to noise in the captured images
and affecting the accuracy of object detection and recognition [6]. Second, due to differences
in the height and angle of drone photography, the same type of object may exhibit different
sizes and shapes, while the size differences between different types of objects are even more
pronounced. This imposes higher requirements for object detection algorithms [7]. Third,
unlike traditional images captured from a fixed perspective, objects in drone RS images
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may appear in any direction. This diversity in direction poses additional challenges for
detection [8]. Some typical examples of the above challenges are shown in Figure 1.
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Addressing the issue of noise in RS images, article [9] proposes a two-stage approach 
to separately filter out Gaussian noise and salt-and-pepper noise. It introduces dilated 
convolutions into a DnCNN (Denoising Convolutional Neural Network) for initial noise 
reduction. Additionally, the median of the filtering window is improved for secondary 
noise reduction. Lossy compression often leads to the generation of noise during image 
transmission. To address this, Kovalenko et al. [10] adjust the noise variance in three-chan-
nel images to predict a denoising threshold known as OPP. Subsequently, they use BPG 
(Better Portable Graphics) to obtain high-quality RS images. To preserve more object de-
tails in the images, Wang et al. [11] utilize wavelet technology to decompose the noise in 
RS images and then reconstruct the denoised images using wavelet techniques. To address 
the impact of varying object scales and complex backgrounds in RS images, Lin et al. [12] 
proposed a Multi-Scale Context Network (MSCNet). This network effectively addresses 
the issue of low precision through a multi-scale context feature extraction module and a 
pyramid aggregation mechanism. Detecting small-scale objects has always been a chal-
lenging task. Zhang et al. [13] focused on detecting small vehicles and improved the net-
work’s ability to discern features of small objects by modifying the loss function in 
YOLOv3. Similarly, aiming at complex backgrounds and small object detection, Article 
[14] employed an advanced architecture combining convolutional neural networks and 
transformers. This architecture utilizes a Cross-Shaped Window Transformer (CSWin) to 
build powerful feature representations, thereby enhancing the detection capabilities for 
small objects. The arbitrary orientation of objects in RS images makes it difficult for detec-
tion models to accurately locate and classify them, especially under the influence of com-
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Figure 1. Several challenging examples. (a) The image contains noise, clouds, and light and shadow
effects. (b) There is a significant variation in the scale of the objects in the image. (c) The objects
are distributed in arbitrary directions in the image. (d) The image contains extremely challenging
small objects.

Addressing the issue of noise in RS images, article [9] proposes a two-stage approach
to separately filter out Gaussian noise and salt-and-pepper noise. It introduces dilated
convolutions into a DnCNN (Denoising Convolutional Neural Network) for initial noise
reduction. Additionally, the median of the filtering window is improved for secondary
noise reduction. Lossy compression often leads to the generation of noise during image
transmission. To address this, Kovalenko et al. [10] adjust the noise variance in three-
channel images to predict a denoising threshold known as OPP. Subsequently, they use
BPG (Better Portable Graphics) to obtain high-quality RS images. To preserve more ob-
ject details in the images, Wang et al. [11] utilize wavelet technology to decompose the
noise in RS images and then reconstruct the denoised images using wavelet techniques.
To address the impact of varying object scales and complex backgrounds in RS images,
Lin et al. [12] proposed a Multi-Scale Context Network (MSCNet). This network effectively
addresses the issue of low precision through a multi-scale context feature extraction module
and a pyramid aggregation mechanism. Detecting small-scale objects has always been
a challenging task. Zhang et al. [13] focused on detecting small vehicles and improved
the network’s ability to discern features of small objects by modifying the loss function in
YOLOv3. Similarly, aiming at complex backgrounds and small object detection, Article [14]
employed an advanced architecture combining convolutional neural networks and trans-
formers. This architecture utilizes a Cross-Shaped Window Transformer (CSWin) to build
powerful feature representations, thereby enhancing the detection capabilities for small
objects. The arbitrary orientation of objects in RS images makes it difficult for detection
models to accurately locate and classify them, especially under the influence of complex
backgrounds. The authors of [15] propose an arbitrary-oriented detection method that
integrates an attention mechanism within the RCNN-like framework to highlight useful
features, enabling the model to possess state-of-the-art detection capabilities. To effectively
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handle randomly oriented objects in RS images, Shamsolmoali et al. [16] use a Rotation
Equivariant Feature Image Pyramid Network (REFIPN) to efficiently extract features of
widely distributed objects and spatially determine their locations and angles. The arbitrary
orientation of objects means that traditional horizontal bounding boxes cannot guarantee
accurate predictions by the model. To address this, Shi et al. [17] integrate a search frame-
work (NAS-FPN) into a dense detector (RetinaNet) based on angle classification to capture
target motion information and trajectories.

Furthermore, through research, we have discovered that key features are of crucial
importance for the tasks of object classification and regression in UAV RS images [18].
As shown in Figure 2, although the ship objects in both images are accurately located,
the key features of the object in Figure 2b are not accurately captured by the detection
model, resulting in a classification error. Therefore, the crucial role of key features provides
important insights for the construction of our subsequent methods.
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Figure 2. In both (a,b), the green boxes represent the ground truth boxes, the red boxes correspond to
the prior anchors, and the yellow boxes depict the predicted boxes obtained through regression based
on the prior anchors. It is evident from the figures that the object positions in both (a,b) are accurately
located. Nevertheless, the classification error in (b) arises due to the prior anchor’s inability to capture
crucial features, such as the island and bow of the ship.

The above section enumerates and discusses common methods for addressing several
typical challenges in object detection for drone RS images. It is evident that these methods are
designed to tackle individual issues independently. However, in reality, the challenges dis-
cussed often occur simultaneously. To address this, the present study introduces an efficient
and comprehensive detection model, URSNet, to overcome the aforementioned difficulties.

Specifically, first, the BMSFPN, which is composed of a bidirectional path, is proposed
to gradually filter out noise in the image and smooth the edge details of the object. Second,
the designed FPM enhances the key feature regions of the detection target through a polar-
ization attention mechanism, enabling the construction of robust feature representations for
both classification and regression. Additionally, given the arbitrary distribution of objects
in RS images, we utilize ARAM to construct rotationally aligned anchors that match the
key features of the target, facilitating the model’s extraction of accurate localization infor-
mation. Finally, the designed DAOM optimizes the label assignment of training samples,
effectively addressing the inconsistency in confidence between classification and regression,
and enabling the model to achieve precise classification and regression performance. The
superior experimental results of URSNet on large and challenging RS datasets validate its
efficient performance. The contributions of this paper can be summarized as follows:
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• BMSFPN is proposed to address the issues of noise interference and the loss of small
object detail features during the feature extraction process. It utilizes bicubic interpola-
tion and cross-layer connections in a bidirectional sampling path to gradually filter
out noise present in the feature layers, while simultaneously weighting and enhancing
the edges and texture details of the object.

• To mitigate the interference between classification and regression when sharing fea-
tures, FPM is employed to decouple the input features from the upper level and
construct robust feature representations specifically for each individual task.

• The designed ARAM further obtains high-quality initial candidate anchors that are
more aligned with arbitrarily directed objects through rotation alignment, based on
the key feature regions constructed by FPM. The refined anchor regions provide the
model with more accurate visual information for regression.

• DAOM addresses the issue of the confidence mismatch between classification and
regression during the training phase through a matching degree strategy. It primar-
ily optimizes the assignment of sample labels to enable the model to dynamically
select high-quality anchor samples with critical regression feature capture capabilities.
These positive anchor samples, after training, ensure the model’s ability to accurately
locate objects.

The rest of this article is organized as follows: Section 2 summarizes the current
research status of object detection in RS images; Section 3 elaborates on the proposed
method and its details; Section 4 implements experiments and analyzes the relevant results;
and Section 5 summarizes the achievements and limitations of this research.

2. Related Works

This section provides a comprehensive overview of the related work on object detection
technology in drone RS images. Below, we will specifically elaborate on several closely
related aspects of this study, including RS object detection, RS image denoising technology,
and key feature roles of RS objects.

2.1. RS Object Detection

In recent years, RS image object detection has made significant progress driven by
deep learning techniques. Traditional RS image object detection methods include manually
designed image feature methods (such as color and texture features) [19] and classifier-
based methods (such as SVM and Decision Trees) [20]. While these methods can achieve
object detection to a certain extent, their performance is limited by image quality and
complex scenes. In contrast, deep learning-based object detection methods, such as Con-
volutional Neural Networks (CNNs) [21], Region-based Convolutional Neural Networks
(R-CNNs) [22], and YOLO [23], can better adapt to RS object detection tasks in different
scenarios. For example, Article [24] proposed an RS object detection method based on deep
learning. The authors introduced DenseNet and SE into the original backbone network
Darknet-53 of YOLOv3, significantly improving the model’s feature extraction capability.
Small objects have very few pixels, making their features difficult to extract. To address this
issue, Teng et al. [25] innovated a small object detection model (GLNet) that collects global
contextual information through the Multi-Scale Perception (MSP) module and Clip-LSTM
encoding, providing crucial assistance for the model to detect small objects. Yu et al. [26]
focused on the issues of occlusion and overlap of objects in RS images, emphasizing the
strategy of large-scale proposal bounding boxes, and constructed a novel spatial adaptive
detector (RSADet). Zhao et al. [27] introduced non-striding convolution and an attention
mechanism into YOLOv7 to improve the feature extraction capability for small targets,
and optimized the fusion process of deep information for small targets using the Lion
optimizer. In article [28], a joint motion mechanism based on a three-degree-of-freedom
(DOF) framework was designed for drones in complex motion patterns to achieve real-time
active tracking of targets. Lai et al. [29] proposed a background subtraction method to
detect moving targets and used the Mask R-CNN model to identify target types. Article [30]
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provides an overview of the 2022 L4S competition aimed at overcoming the challenges of
detecting landslides in remote sensing images. The top-ranked team improved the image
patch size to overcome the weak representation of small landslides and achieved a high-
performance landslide detection capability by emphasizing self-operation. Ye et al. [31]
designed a detection model with an Adaptive Attention Fusion Mechanism (AAFM) to
address the sensitivity of RS multi-scale targets. This model balances the proportion of
multi-scale targets through a stitcher and introduces spatial and channel attention models
to enhance feature information. Compared to the current SOTA detectors, this model
improves accuracy and robustness.

2.2. RS Image Denoising Technology

Noise interference in RS images can lead to problems such as blurred object edges
and loss of details, which in turn affect the accuracy and stability of object detection.
Removing noise can enhance the recognizability of objects and improve the results of object
detection and recognition. In [32], the authors used ResNet and DenseNet to generate
an adversarial network (RRDGAN) and employed total variation (TV) regularization for
high-quality denoising and ultra-high-resolution image reconstruction. To address the
shortcomings of the BM3D algorithm in removing strong noise, Chen et al. [33] studied the
similarity between object edges and utilized an edge search strategy to match local image
blocks, resulting in excellent denoising effects. The presence of noise in RS images makes
supervised deep neural network training inefficient. To address this, Xie et al. [34] proposed
an unsupervised training method for specialized noise removal. They constructed a noisy
image dataset and improved the deep image prior (DIP) method, allowing the DIP model to
be fully trained and achieve powerful denoising capabilities using non-local regularization.
Article [35] proposes a Global-to-Local Scale-Aware Network (GLSANet), which aims to
improve the performance of multi-scale target detection in RS images by reducing complex
background interference and suppressing noise through the Global Semantic Information
Interaction Module (GSIIM), optimizing the feature pyramid, and introducing the Local
Attention Pyramid (LAP).

2.3. Key Feature Roles of RS Objects

The key features in RS images play a pivotal role in achieving high-performance
object classification and regression. By fully leveraging these critical features for object
detection, we can reduce false positives and false negatives, thus improving the precision
and robustness of the detection process. For instance, to address the challenges posed
by multi-scale objects, Lin et al. [36] focused on analyzing the critical distribution charac-
teristics of objects and proposed an efficient detection model based on prominent object
features. This model utilizes search operators to extract critical information about object
features, resulting in superior algorithm performance. Article [37] introduces a network
that addresses the shortcomings of feature pyramids and label allocation. This network
comprises the Aware Feature Pyramid Network (AFPN) and the Group Allocation Strat-
egy (GAS). These components are designed to capture high-level critical features from
the feature pyramid, enhancing the model’s capabilities in classification and localization.
Liu et al. [38] discussed the limitations of anchor-free detectors in detecting objects with
arbitrary orientations and proposed a novel detection network called CBDA-Net, which is
based on the Center-Boundary Dual Attention (CBDA) mechanism. This network primarily
leverages attention mechanisms to extract critical features of object centers and boundaries,
facilitating rapid object localization. Ghorbanzadeh et al. [39] employed optical data from
the Rapid Eye satellite to extract and select crucial training patches from satellite imagery.
After training a CNN model, they used the mIOU strategy to enhance the accuracy of
landslide detection. Remote sensing ship targets possess characteristics of an arbitrary
orientation and dense arrangement, posing significant challenges for target detection tasks.
To address this, Article [40] proposed a dynamic adjustment learning (DAL) strategy based



Drones 2024, 8, 189 6 of 31

on binary-coded learning (BCL) to improve the ability to capture key features and enhance
the accuracy of angle prediction.

3. Overview of the Proposed Methods

The detection process of the proposed URSNet is depicted in Figure 3. Its backbone
framework employs ResNet-101 [41] to accomplish initial feature extraction and optimiza-
tion. Subsequently, BMSFPN is utilized to enhance and denoise the object features. In the
top-down process, bicubic interpolation is applied to mitigate the negative impact of noise
on the feature images. In the bottom-up process, cross-layer and cross-node connections
are leveraged to fuse multi-scale features, enabling the network to improve its ability to
extract features from small objects. Then, FPM decouples the upper-level input features
into task-specific sensitive features, providing more useful information for individual tasks.
Subsequently, ARAM generates high-quality initial candidate anchors based on the sen-
sitive features extracted by FPM, and further rotates them to create anchors that better
match the sensitive features. Finally, DAOM is employed to optimize the label assignment
approach during the training phase, enabling the model to dynamically select high-quality
candidate anchors and thereby eliminate biases between classification and regression.
Detailed descriptions of each component are provided in the following subsections.
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3.1. Bidirectional Multi-Span Feature Pyramid Network—BMSFPN

The upper-level backbone network, ResNet-101, has two types of negative impacts on
the accuracy of object detection during the feature extraction process. Firstly, as the depth
of feature extraction increases, the resolution of the image gradually decreases, making
it difficult to effectively preserve detailed information such as the edges and textures of
object parts. Secondly, noise generated by the performance of the image acquisition sensor
is amplified during feature mapping, further affecting the detection accuracy.

Figure 4 demonstrates the detection results for two types of objects with different
scales before and after processing with Gaussian noise [42]. The detection models used in
this comparison are two SOTA models: YOLOv7 [43] and Swin-Transformer [44]. As can
be seen in the figure, after introducing noise, both models exhibit a decrease in detection
accuracy for large objects, such as a plane. For small objects, like cars, YOLOv7 mistakenly
detects them as harbors, while Swin-Transformer fails to detect the cars at all. Overall,
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noise introduces significant interference to image quality, having a notable impact on the
accuracy and reliability of model detection.
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processed with Gaussian noise.

To enhance the model’s ability to address the aforementioned challenges, this section
proposes a Bidirectional Multi-span Feature Pyramid Network (BMSFPN), as shown in
Figure 5. The operations depicted in Figure 5 can be divided into three stages. In the
first stage, the initial input feature P1 ∼ P4 is passed through 1 × 1 convolutional layer
and Swish activation function to obtain the subsequent input feature map Pin

1 ∼ Pin
4 . In

the second stage, Pin
1 ∼ Pin

5 is processed through 1 × 1 convolutional layer and 3 × 3 max
pooling layer to obtain a new input feature Pin

5 , with a stride of 2. In the third stage,
Pin

1 ∼ Pin
5 , obtained from the preceding operations, is used as the final feature input for

the bidirectional multi-span feature pyramid structure. This stage represents the core
functionality of the BMSFPN. Specifically, the functionality of this structure is mainly
realized by the following two components:
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Figure 5. Structure and process of BMSFPN.

Firstly, during upsampling, the quartic bicubic interpolation method [45] is employed
to precisely smooth the feature images. This process primarily utilizes the continuous
relationship between pixels to enhance image resolution and filter out noise. Specifically,
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bicubic interpolation is first used to upsample the input feature Pin
5 . Then, the upsampled

features are added with Pin
4 in the channel dimension to obtain feature-rich P−

4 . Finally,
bicubic interpolation is once again applied to upsample P−

4 , and the upsampled features
are added with Pin

3 in the channel dimension to derive the final feature P−
3 . By repeating

this process, new P−
2 and P−

1 features can be obtained. After top-down upsampling, high-
level and low-level features are fused, thereby improving the model’s perception and
anti-interference capabilities.

Secondly, in the downsampling process, multiple cross-node connections are added
to the P1 ∼ P4 path, and multi-feature propagation is utilized to prevent the loss of target
information during feature extraction. Additionally, cross-scale connections are employed
to propagate features from shallow to deep layers, fusing features of different scales.
Specifically, through a skip connection, features P1 and P−

1 are added together along the
channel dimension to obtain the Pout

1 feature. Subsequently, 3× 3 max pooling with a stride
of 2 is performed on feature Pout

1 , and the result is added with the skip-connected features
P2 and P−

2 along the channel dimension to obtain Pout
2 . Similarly, this approach is used to

derive features Pout
3 and Pout

4 . Finally, cross-scale connections are used to concatenate the
input feature Pin

5 with Pout
4 along the channel dimension to obtain the Pout

5 feature. Below,
we illustrate the specific calculation formulas for P−

4 and Pout
4 in BMSFPN, as shown in

Equations (1) and (2).

P−
4 = conv

[
ω1 · Pin

4 + ω2 · BI
(

Pin
5
)

ω1 + ω2 + β

]
(1)

Pout
4 = conv

[
ω′

1 · P4 + ω′
2 · P−

4 + ω′
3 · Resize

(
Pout

3
)

ω′
1 + ω′

2 + ω′
3 + β

]
(2)

where Pi and Pin
i represent the initial and final input features in BMSFPN, respectively.

P−
i represents the fusion feature after bicubic interpolation, and Pout

i represents the output
feature. ω1 and ω2 represent the learnable weights in upsampling, and ω′

1, ω′
2 and ω′

3
represent the learnable weights in downsampling. β is taken as 0.0001. The BI function
represents the upsampling operation, which is implemented by bicubic interpolation. The
function Resize represents maximum pooling (stripe = 2, k = 3 × 3). By adjusting the size of
feature mapping, it makes each feature layer keep the same dimension.

3.2. Feature Polarization Module—FPM

Based on the noise reduction and feature detail preservation capabilities of the BMSFPN
described in Section 3.1, this section focuses on addressing the issue of incompatible shared
features between the regression and classification tasks. This is primarily achieved by
extracting key target features to enhance the model’s ability for accurate classification
and regression.

Currently, most visual detection models rely on shared features for both classification
and regression tasks. However, incompatibility often arises between these two tasks,
leading to a decline in detection performance to a certain extent [46]. To eliminate the
feature interference between the two tasks and assist the model in effectively extracting
key features for different tasks, this section proposes a Feature Polarization Module (FPM).
The structure of the FPM is illustrated in Figure 6.

Firstly, feature pyramid networks (FPN) are constructed for classification and regres-
sion tasks, respectively. Secondly, a well-structured polarization attention mechanism is
designed to enhance the representation capabilities of various types of features. Finally, we
utilize a polarization function to generate discriminative features for different task branches.
Specifically, for classification, we tend to select global features with high responses to reduce
interference from complex backgrounds. For regression, we pay more attention to the edge
features of the object and suppress irrelevant regions with high activation.
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Assuming the given input feature is f ∈ RC×H×W , the construction of the key feature
f ′ is detailed below, as shown in Equations (3) and (4).

M = Mc( f )⊗ Ms( f ) (3)

f ′ = M + ψ(σ(M))⊙ f + f (4)

where ⊗ denotes the tensor product symbol and ⊙ represents the element-wise multipli-
cation symbol. σ refers to the activation function Sigmoid. Firstly, during the process of
input feature convolution, the channel attention Mc and spatial attention Ms are extracted.
Here, channel attention serves to extract channel relationships from the feature layer. The
weights of each channel are extracted using both maximum pooling and fully connected
methods. The calculation formula for Mc is as follows:

Mc( f ) = σ
(
W1
(
W0
(

fgap
)))

(5)

where W0 ∈ RC/r×C and W1 ∈ RC×C/r represent the computational weights in the fully
connected layers, fgap is the result of applying maximum pooling to the input features f ,
and σ denotes the activation function Sigmoid.

Spatial attention Ms is primarily used to model the global dependencies among pixels
in the input image. The specific calculation process is shown in Equation (6).

Ms( f ) = σ
(

c3×3
(

cat
((

c3×3, c1×3
d , c3×1

d , c3×3
d

)
( f )
)))

(6)

where c3×3 denotes the convolutional operation using the filters of 3 × 3. c1×3
d , c3×1

d , c3×3
d

represent dilated convolutions with kernel sizes of 1 × 3, 3 × 1, and 3 × 3, respectively. cat
represents the concatenation of features. In this section, we enlarge the receptive field of
the convolutional kernels through dilated convolutions. Additionally, to accurately detect
elongated objects, we employ convolutional kernels with different proportions.

Secondly, we multiply the channel attention Mc with the spatial attention Ms to obtain
a task-specific key response M. Subsequently, a comprehensive feature representation is
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constructed through a task-specific polarization function ψ(·). The curve of this function is
illustrated in Figure 6. Specifically, for the classification branch, we desire the features to
focus more on high-response regions while ignoring unnecessary parts that are only used
for object localization or produce interference signals. To achieve this, we can employ the
following excitation function to fulfill the classification functionality:

ψcls(x) =
1

1 + e−η(x−0.5)
(7)

where η serves as the intensity modulation factor during feature activation. In this experi-
ment, η = 15 is set accordingly. The high-response regions corresponding to key features
in classification tasks are sufficient to assist the network in achieving accurate classification,
thus eliminating the need to collect excessive additional information.

For the regression branch, as the key features are generally distributed along the object
boundaries, we expect the feature map to focus more on the object contours and contextual
information. Next, we process the input features through the following depression function
to achieve the aforementioned functionality:

ψreg(x) =
{

x
1 − x

if x < 0.5
otherwise

(8)

In regression tasks, a strong response generated from a small area along the object’s
edge cannot effectively determine the entire object’s location. The depression function in
Equation (8) suppresses similar high-response regions in the regression features, encourag-
ing the model to actively seek more potential visual information for precise localization.

Finally, by combining the designed polarized attention-weighted features with the
BMSFPN described in Section 3.1, the model is able to extract key features of the object
more effectively. Figure 7 provides a visual representation of the FPM results. As can
be seen in the figure, the key features required for regression are fully extracted by the
FPM, which facilitates the network’s better location of the object boundaries and improves
positioning accuracy. The extracted key features for classification are mainly concentrated
in the most recognizable parts of the target region, contributing to the improvement of
target classification accuracy.

Drones 2024, 8, x FOR PEER REVIEW 11 of 32 
 

more effectively. Figure 7 provides a visual representation of the FPM results. As can be 
seen in the figure, the key features required for regression are fully extracted by the FPM, 
which facilitates the network’s better location of the object boundaries and improves po-
sitioning accuracy. The extracted key features for classification are mainly concentrated in 
the most recognizable parts of the target region, contributing to the improvement of target 
classification accuracy. 

 
Figure 7. Visualization of the URSNet detection process. The blue parts in the figure represent high-
quality candidate anchor centers. 

3.3. Anchor Rotation Alignment Module—ARAM 
In current anchor-based object detection models, regression tasks are typically per-

formed on predefined dense anchors. However, due to the multi-scale and multi-direc-
tional variations exhibited by UAV RS objects, alignment issues arise between the anchors 
and rotated objects, making it difficult to achieve accurate positioning. To address this 
issue, this section proposes an Anchor Rotation Alignment Module (ARAM). This module 
generates high-quality initial candidate anchors based on the sensitive regression features 
extracted by the FPM in Section 3.2. Through rotation, it further obtains rotated anchors 
that better match the sensitive regression features. In the rotated anchor regions, the 
model is able to capture boundary and visual feature information that is conducive to 
precise positioning. 

The structure of the ARAM is illustrated in Figure 8. Firstly, horizontal anchors are 
set at each location on the regression feature map and represented as ( ), , ,x y w h . Here, 

( ),x y  denotes the coordinates of the center, while w  and h  represent the preset 
width and height of the horizontal anchors, respectively. Secondly, the ARAM regresses 
the new additional rotation angle θ  and the preset anchor offset to obtain refined ro-
tated anchors, which can be specifically represented as ( ), , , ,x y w h θ . Finally, the ARAM 
generates accurate rotated bounding boxes that align with the true object boxes. Specifi-
cally, the offset ( ), , , ,r

x y w ht t t t t tθ=  during the rotation of the anchor boxes is calculated 
using Equation (9): 

( )r a a
xt x x w= − , ( )r a a

yt y y h= −  (9) 

Figure 7. Visualization of the URSNet detection process. The blue parts in the figure represent
high-quality candidate anchor centers.



Drones 2024, 8, 189 11 of 31

3.3. Anchor Rotation Alignment Module—ARAM

In current anchor-based object detection models, regression tasks are typically per-
formed on predefined dense anchors. However, due to the multi-scale and multi-directional
variations exhibited by UAV RS objects, alignment issues arise between the anchors and
rotated objects, making it difficult to achieve accurate positioning. To address this issue, this
section proposes an Anchor Rotation Alignment Module (ARAM). This module generates
high-quality initial candidate anchors based on the sensitive regression features extracted
by the FPM in Section 3.2. Through rotation, it further obtains rotated anchors that better
match the sensitive regression features. In the rotated anchor regions, the model is able to
capture boundary and visual feature information that is conducive to precise positioning.

The structure of the ARAM is illustrated in Figure 8. Firstly, horizontal anchors are
set at each location on the regression feature map and represented as (x, y, w, h). Here,
(x, y) denotes the coordinates of the center, while w and h represent the preset width
and height of the horizontal anchors, respectively. Secondly, the ARAM regresses the
new additional rotation angle θ and the preset anchor offset to obtain refined rotated
anchors, which can be specifically represented as (x, y, w, h, θ). Finally, the ARAM generates
accurate rotated bounding boxes that align with the true object boxes. Specifically, the
offset tr =

(
tx, ty, tw, th, tθ

)
during the rotation of the anchor boxes is calculated using

Equation (9):
tr
x = (x − xa)/wa, tr

y = (y − ya)/ha

tr
w = log(w/wa), tr

h = log(h/ha)
tr
θ = tan(θ − θa)

(9)

where x, y, w, h and θ are used for box refinement, and xa, ya, wa, ha and θa are used for
anchor refinement.
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Compared to the traditional anchor setting approach, our method only presupposes
one anchor (A = 1) at each location on the feature map, enabling the model to achieve more
efficient performance. Combined with the special design of the ARAM, we can eliminate
the cumbersome setting of hyperparameters such as anchor angles and aspect ratios.

Figure 7 provides a visual representation of anchor refinement. Based on the sensitive
regression features extracted by the FPM, the preset square anchors undergo rotation
alignment under the guidance of the ARAM to generate accurate candidate bounding boxes.

3.4. Dynamic Anchor Optimization Module—DAOM

Sections 3.2 and 3.3 have introduced the sensitive feature extraction and anchor rota-
tion alignment components of URSNet. However, during the training process, we observed
a discrepancy between classification and regression, where a high classification confidence
score does not necessarily guarantee high accuracy in target regression. Therefore, this
section discusses the procedures used in response to this issue.
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During the training process, the detector typically assigns labels based on the IoU
between the anchor and the ground truth box, and then selects positive anchor samples [39].
Here, for ease of representation, we use IoUin and IoUout to denote the IoU between the
anchor and the ground truth box, and the IoU between the predicted box and the ground
truth box, respectively. In general, the more semantic information a selected positive anchor
sample has, the more favorable it is for object regression. However, from a statistical
perspective of confidence scores, even though there is a strong correlation between the
classification confidence and IoUin overall (as shown in Figure 9a), a high IoUin does not
guarantee high-precision localization of the anchor, as can be seen in Figure 9b. There is only
a weak correlation between the classification score and IoUout (i.e., the object regression
capability of the predicted box). We believe that this deviation is due to the unreasonable
selection of training anchor samples based on IoUin and the lack of precise alignment
between the localization anchor and key object features.
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To address the above issues, we propose a Dynamic Anchor Optimization Module
(DAOM). In the training phase, this method enables the model to dynamically select anchor
samples with critical regression feature capturing capabilities, further assisting the network
in improving the accuracy of object localization. Specifically, we introduce a matching
degree as a guiding criterion for selecting training samples, as defined in Equation (10):

MD = α · IoUin + (1 − α) · IoUout − µγ (10)

where α and γ represent different weighted hyperparameters before and after regression, re-
spectively. MD measures the spatial alignment capability and regression feature alignment
capability of the initial anchor through IoUin and IoUout, respectively. It can be seen that
the higher IoUout is, the better the predefined anchor can capture key feature information
for object regression and perform localization. However, due to uncertainty, some anchor
samples with a high IoUin but low IoUout may be falsely identified as negative samples
even though they are of high quality [47]. To address this issue, we introduce a penalty
term µ into the matching degree metric to reduce the impact of uncertainty. The definition
of µ is as follows:

µ = |IoUin − IoUout| (11)

We evaluate the erroneous anchor samples based on the change in IoU before and after
regression, and apply a distrust penalty to such uncertain samples using µ. By suppressing
uncertainty, reasonable training samples can be selected during the regression process.
In our experiments, we set a matching degree threshold, where anchor samples with a
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matching degree higher than 0.6 are considered positive samples, and otherwise, they are
considered negative samples.

The introduction of the matching degree further enhances the model’s capabilities in
feature alignment and positive–negative sample selection, enabling the accurate division of
classification and regression features. As can be seen from the visualization in Figure 7, the
designed DAOM dynamically selects candidate anchors that capture key regression features.
These high-quality anchors ensure that the model possesses precise object localization
capabilities after regression, further mitigating the discrepancy between classification
and regression.

4. Experiment

In this section, we first analyze the dataset to provide a good data-driven foundation
for model experimentation. Second, we outline the evaluation criteria and implementation
details during the experimental process. Finally, we conduct ablation experiments and
comparisons with multiple SOTA models to quantitatively and qualitatively verify the
effectiveness of the proposed method for object detection in drone RS images.

4.1. Dataset Preparation

To comprehensively evaluate the detection performance of the proposed URSNet
method from multiple perspectives, we specifically selected four RS datasets of different
scales and types: DOTA-V2.0 [48], RSOD [49], DIOR [50], and UCAS-AOD [51]. Below, we
will introduce them in detail.

The DOTA-V2.0 dataset is the latest upgrade of the DOTA series. It contains a larger
number of high-resolution images (11,268 images) with sizes ranging from 800 × 800 to
20, 000 × 20, 000 pixels, and includes a more diverse set of object categories (18 categories).
Additionally, the dataset boasts a significant number of instances, totaling 1,793,658. The
DOTA-V2.0 dataset is divided into training, testing, and validation sets in a ratio of 6:3:1.

DIOR, proposed by Northwestern Polytechnical University, is a large-scale bench-
mark RS image dataset. It consists of 20 object categories and 23,463 images, containing
192,388 object instances. All images have a size of 800 × 800 pixels and are annotated
using both HBB and OBB annotation methods. The images in this dataset were collected
during different seasons and weather conditions, and certain data augmentation techniques
were applied.

RSOD, an open object detection dataset released by Wuhan University, is designed for
the detection of aircraft, oil tanks, stadiums, and overpasses in RS images. It adopts the
HBB data annotation format and contains a total of 6950 object instances across 976 images.
Specifically, there are 446 images of aircraft, 189 of stadiums, 176 of overpasses, and 165 of
oil tanks. The image sizes are 512 × 512 or 1083 × 923 pixels.

The UCAS-AOD dataset includes two types of objects: airplanes and cars. It contains
a certain number of challenging samples (negative examples) and comprises a total of
1000 airplane images and 510 car images, with 14,596 relevant instances. The image sizes
are either 1280 × 659 pixels or 1372 × 941 pixels. This dataset adopts the HBB method for
image annotation.

The objects in these RS datasets are artificially designed and possess unique edge and
texture characteristics compared to natural objects. To clearly understand the distribution
of instances within the datasets and facilitate the subsequent analysis and evaluation of
model detection performance, we have summarized the basic data information of the four
datasets in Table 1 and presented the percentages of instance counts in Figure 10.
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Figure 10. This figure reflects the percentages of instance counts in the four datasets: DOTA-V2.0,
RSOD, DIOR, and UCAS-AOD. It can be observed that DOTA-V2.0 has rich instance categories and a
large number of instances, which is conducive to the training of the model proposed in this paper.

Table 1. Information on the four RS datasets: DOTA-V2.0, RSOD, DIOR, and UCAS-AOD.

Dataset Object Category Number of Images Annotation Method Image Size

DOTA-V2.0 [48] 18 11,268 OBB 800 × 800 to 20, 000 × 20, 000
RSOD [49] 4 976 HBB 512 × 512, 1083 × 923
DIOR [50] 20 23,463 HBB, OBB 800 × 800

UCAS-AOD [51] 2 1510 HBB 1280 × 659, 1372 × 941

4.2. Implementation Details

The backbone network of the proposed model URSNet in this paper is ResNet-101 [39].
To accelerate the training process during model execution, we pre-trained it on Google
Open Images-V4 [52] for 120 epochs and fine-tuned it on the training set of DOTA-V2.0.
Additionally, we employed data augmentation techniques such as Gaussian noise, HSV
jittering, and rotation to enhance some of the data and improve their richness.

In this section, we establish the experimental environment and uniformly set some
important parameters for the experiments. Unless otherwise specified, these settings will
be used by default. Specific details are presented in Tables 2 and 3.
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Table 2. Environment setup.

Environment Configuration

OS Windows 11
CPU Intel Core i7-10700k
GPU NVIDIA GeForce RTX 4060Ti

Python 3.8.12
PyTorch 1.9.1

Torchvision 0.9.1
OpenCV-Python 4.5.5.64

Table 3. Parameter settings.

Input Size Optimizer Learning Rate Momentum Batch Size Weight Decay Training Epoch

416 × 416 SGD 0.0001 0.937 32 0.0005 1200

4.3. Evaluation Metrics

In order to effectively quantify the experimental data and reasonably evaluate the
accuracy, speed and efficiency of each detection model, we selected the evaluation criteria
listed below based on the actual situation of this paper.

Precision (P) refers to the proportion of positive predictions that are actually positive
among all predictions made by the model. Recall (R) measures the proportion of positive
instances that are correctly predicted as positive among all positive instances. Additionally,
they can also be used to calculate the F1 score, which comprehensively considers the
balance between precision and recall. Their definitions are shown in Equations (12)–(14):

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)

F1 score =
2 × P × R

P + R
(14)

where TP represents the number of true positives, FP represents the number of false
positives, and FN represents the number of false negatives.

AP represents the average prediction accuracy of a model for a specific object category
across different confidence thresholds. mAP is a commonly used evaluation metric in
multi-class object detection tasks. It comprehensively assesses the performance of a model
across multiple categories by averaging the AP values of each category. The definitions of
AP and mAP are as follows:

AP =
∫ 1

0
P(r)dr =

n

∑
k=0

P(k)R(k)mAP =
1
C

c

∑
i=1

AP(i) (15)

mAP =
1
C

c

∑
i=1

AP(i) (16)

where P(r) is the precision at a certain recall rate in 0 ∼ 1, C is the total number of object
categories in the detection dataset, and AP(i) represents the average precision of a specific
object category in the dataset.

FPS stands for frames per second, indicating the number of images processed by
the model per second, which is used to measure the inference speed of the model. The
definition of FPS is shown in Equation (17):

FPS = 1000/(Pre + In f + Nms) (17)
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Params represents the number of parameters in the model, which is related to the
complexity and storage requirements of the model. Its definition is as follows:

Params ∼ O

(
D

∑
i=1

K2
i · Channelinput

i · Channeloutput
i

)
(18)

where D refers to the total number of layers in the algorithm, K represents the size of the
convolutional kernel, and Channelinput

i and Channeloutput
i indicate the numbers of channels

in the convolutional process.
FLOPs represents the number of floating-point operations executed by a model during

the inference stage, which is closely related to the computational complexity and inference
time of the model. The definition of FLOPs is as follows:

FLOPsNet ∼ O

(
D

∑
i=1

M2
i · K2

i · Channelinput
i · Channeloutput

i

)
(19)

where M represents the size of the feature map obtained during the convolution process.

4.4. Experimental Results and Analysis
4.4.1. Ablation Experiments

In this section, we mainly conduct ablation experiments to verify the rationality
and effectiveness of the proposed module in combination with the baseline ResNet-101.
The DOTA-V2.0 dataset provides the data foundation for this experiment. To ensure the
scientific nature of the experimental process, we proceed from two perspectives:

(1) Quantitative Analysis. We use APS, APM, and APL to represent the average detec-
tion results of small, medium, and large objects in the dataset, respectively. Additionally,
mAP@0.5 and mAP@0.5 : 0.95 are used to represent the average AP value of all object
categories when the IoU threshold is set to 0.5 and the average mAP value of all object
categories with a step size of 0.05 when the threshold ranges from 0.5 to 0.95. Among these,
mAP@0.5 : 0.95 is the most effective metric in assessing the combination of the proposed
module with the baseline framework.

Table 4 demonstrates the detection results for the integration of BMSFPN, FPM, ARAM,
and DAOM with the baseline framework, with the optimal results highlighted in bold.
Specifically, the integration of the FPM, ARAM, and DAOM results in significant improve-
ments in APM and APL, outperforming the worst results by 9.18% and 8.54%, respectively.
Similarly, mAP@0.5 and mAP@0.5 : 0.95 increase by 12.88% and 9.89%, respectively. These
positive outcomes are attributed to the decoupling and refinement of classification and
regression features achieved by these three modules, simplifying the model’s handling
of remotely sensed objects with critical features and variable orientations. The combi-
nation of BMSFPN, FPM, ARAM, and DAOM yields the best overall performance, with
APS, APM, and APL reaching 65.29%, 85.30%, and 88.17%, respectively, and mAP@0.5 and
mAP@0.5 : 0.95 achieving 75.03% and 66.93%, respectively. This demonstrates that the four
modules designed in this paper can collaborate effectively with the baseline framework to
comprehensively address issues such as noise and the rotational distribution in drone RS
image object detection.

Table 4. Ablation results for each module combined with the baseline.

Baseline BMSFPN FPM ARAM DAOM Dataset APS APM APL mAP@0.5 mAP@0.5:0.95

✓ ✓

DOTA
-V2.0

50.13 68.41 77.36 53.94 51.30
✓ ✓ 45.26 67.02 75.72 52.15 50.13
✓ ✓ ✓ 53.70 65.97 78.05 60.47 54.40
✓ ✓ ✓ ✓ 52.99 75.15 84.26 65.03 60.02
✓ ✓ ✓ ✓ 60.41 82.36 86.73 72.19 62.35
✓ ✓ ✓ ✓ ✓ 65.29 85.30 88.17 75.03 66.93
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To further validate the efficiency and superiority of the combinations of each module
with the baseline framework in detecting objects of various scales, we analyzed the precision
and recall rates of the various combinations presented in Table 4 and utilized P-R curves
for comparison and verification. The combinations in Table 4 are named in sequential order
from I to VI, such as I (Baseline + BMSFPN), II (Baseline + FPM), and so on.

The P-R curves are presented in Figure 11. As can be seen in the figure, VI (the pro-
posed URSNet in this paper) occupies the optimal position in the detection of various object
sizes. For large- and medium-sized objects, the precision of VI is slightly higher than that
of the second-ranked V, but both significantly outperform the third-ranked IV. This demon-
strates that after image filtering, decoupling of key features, and anchor box refinement,
URSNet can generally ensure efficient precision. For small objects, VI exhibits the most
significant advantage, indicating that the enhancement of classification and localization ca-
pabilities for small objects in URSNet is strengthened by highlighting object detail textures
through BMSFPN, as well as the rotation and optimization of anchor boxes through the
FPM. Furthermore, the distribution of the P-R curves for all object sizes is consistent with
the data presented in Table 4, comprehensively reflecting the unique contributions of each
module and their indispensability, as well as validating the superiority of the proposed
URSNet in this paper.
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Based on the above analysis, we will now conduct experimental validation of the
rationality and scientific basis for selecting the ResNet-101 [41] backbone network using
the DOTA-V2.0 dataset. According to the models utilized by most researchers [53–58],
we have chosen several advanced neural network frameworks for discussion, namely
ResNet-50 [59], VGG-16 [60], LSKNet [61], Swin-Trans [44], and DLA-34 [62]. Figure 12
illustrates the P-R curves for these six types of backbone networks. As can be seen in
the figure, ResNet-101 exhibits superior precision and recall performance compared to
the other networks. In the low recall region, the precision of ResNet-101 is significantly
higher than the other networks, indicating its excellent performance in handling complex
backgrounds and distinguishing similar targets. In the high recall region, ResNet-101 still
maintains high precision, demonstrating its strong generalization ability and robustness to
noise and interference. Therefore, through an experimental performance analysis, it can be
verified that using ResNet-101 as the backbone network is feasible.
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Additionally, Table 5 presents the evaluation results for various baseline frameworks.
It can be observed that the ResNet-101 baseline selected in this paper generally exhibits the
best performance. It achieves an F1-Score of 85.72 and a top-1 accuracy of 82.95%, ranking
first with an 8.85% advantage over the top-1 accuracy score of DLA-34. Therefore, it can be
validated that the selection of ResNet-101 as the baseline framework for the model in this
paper is reasonable.

Table 5. Multiple evaluation results for each baseline framework on the dataset DOTA-V2.0.

Baselines F1-Score Params (M) Flops (G) FPS Top-1 Accuracy (%) Excess over DLA-34 (%)

DLA-34 [62] 74.49 7.10 0.58 50.00 74.10
H-104 [63] 80.13 11.40 3.70 51.60 76.84 +2.74

Swin-Trans [44] 75.36 28.00 4.50 73.77 79.60 +5.50
LSKNet [61] 77.90 30.98 17.39 61.80 81.30 +7.20
VGG-16 [60] 80.67 13.84 15.47 60.00 76.03 +1.93

ResNet-50 [59] 83.19 25.60 3.86 55.14 80.10 +6.00
ResNet-101 [41] 85.72 44.60 7.80 70.20 82.95 +8.85
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(2) Qualitative Analysis. To observe the ablation results more intuitively, we present
them in a visual form in Figure 13. Specifically, the three top-ranked methods (IV, V, and
VI) from Table 4 are selected for detection in five challenging scenarios of drone RS images.
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4.4.2. Comparison Experiments with SOTA Methods 

Figure 13. The heatmaps are utilized to visualize the detection results for three combinations of
methods on challenging images containing objects. Specifically, (a) represents an image with noise;
(b) depicts an image with clouds and fog; (c) shows an image with objects distributed randomly;
(d) illustrates an image with densely arranged objects; (e) presents an image with objects of vary-
ing scales.

Observing the output results, the heatmap of our method VI covers the largest number
of object regions, maintaining relatively accurate capture capabilities even in complex noisy
images. Additionally, for difficult objects with large scale differences, dense distributions,
and rotational characteristics, VI utilizes the FPM, ARAM, and DAOM to enhance the
expression of object boundary features and anchoring regression capabilities, extracting
more feature information compared to V and IV and resulting in more accurate detections.
Therefore, these results demonstrate that the strategy of combining the four modules
proposed in this paper with ResNet-101 is reasonable and efficient.
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4.4.2. Comparison Experiments with SOTA Methods

To fully demonstrate the unique advantages of the proposed URSNet in the task of
object detection in drone RS images, it is necessary to conduct a comprehensive perfor-
mance comparison experiment with similar SOTA algorithms. Therefore, based on the
stage division of deep learning detection algorithms, we selected over twenty of the most
advanced and classic object detection models for drone RS images from three categories:
anchor-free, single-stage, and two-stage algorithms. These include DRN [64], O2-DNet [65],
AOPG [66], CenterMap [67], S2ANet [68], and AO2-DETR [69], among others.

This experiment was conducted on four RS datasets: DOTA-V2.0, RSOD, DIOR, and
UCAS-AOD. The following is a specific explanation:

(1) The detection results for the DOTA-V2.0 dataset are presented in Table 6. The data
in the table are calculated and evaluated strictly according to the AP and mAP standards
in MS COCO [70]. For ease of expression, we have simplified the names of various objects
in the dataset, such as swimming pool (SWP), helicopter (HC), bridge (BE), large vehicle
(LVE), ship (SP), plane (PE), soccer ball field (SBF), basketball court (BC), airport (AT),
container crane (CCE), ground track field (GTF), small vehicle (SV), harbor (HB), baseball
diamond (BDD), tennis court (TCT), roundabout (RT), storage tank (ST), and helipad (HD).
Observing the data in the table, we can find that our model URSNet has the highest mAP
score (84.03%), which is 2.75 percentage points higher than the second-ranked LSKNet-S.
This indicates that URSNet has the optimal overall detection performance for various objects
in DOTA-V2.0. Additionally, in terms of AP performance, SGR-Net, which has an advanced
architecture of Swin-Trans, achieves the highest detection result for the small object HB
(72.04%), but falls behind URSNet in detecting SP, ST, and HC. This suggests that URSNet
still has relatively good performance in small object detection. For elongated objects such
as SWP and BE, URSNet has a unique advantage due to the carefully designed spatial
attention convolution kernel in the FPM. For medium and large objects with significant scale
and edge features, such as BC, TCT, and GTF, both URSNet and AO2-DETR achieve over
85%, with URSNet outperforming AO2-DETR by 0.71%, 2.16%, and 0.40%, respectively.

In addition, based on the data in Table 6, we will further analyze the target detection
performance of different SOTA models in challenging scenarios in the subsequent results
visualization section.
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Table 6. Comparison of results from the URSNet method proposed in this article with various SOTA methods using the DOTA-V2.0 dataset. Top-1 and top-2 results
are highlighted in red and green, respectively.

Method Backbone
Object Categories (AP (%)) mAP (%)

SWP HC BE LVE SP PE SBF BC AT CCE GTF SV HB BDD TCT RT ST HD

Anchor-free Methods:

DRN [64] H-104 69.43 57.86 45.21 75.73 56.85 90.74 55.45 80.18 78.63 80.47 65.16 73.25 70.33 73.35 90.54 65.33 80.81 86.87 72.01

O2-DNet [65] H-104 66.98 61.03 47.65 73.06 74.62 88.31 80.93 82.28 65.52 73.17 66.27 72.32 58.21 81.14 90.66 60.17 80.06 60.48 71.27

CenterNet-O [71] DLA-34 56.74 57.77 28.60 67.00 64.75 83.06 83.00 79.05 69.33 75.53 58.60 39.67 56.50 67.00 90.83 53.10 74.54 80.37 65.86

Oriented Rep. [72] ResNet-50 76.35 53.26 58.85 83.03 68.32 90.53 65.84 80.51 78.94 63.09 79.70 78.90 67.23 75.07 90.86 69.35 73.11 76.41 73.86

CFA-Net [73] ResNet-101 72.64 65.48 54.86 78.27 63.41 86.29 56.88 82.40 80.33 59.94 84.17 80.90 70.14 81.82 90.71 80.15 81.04 57.93 73.74

SGR-Net [74] Swin-Trans 77.40 63.16 64.07 80.17 59.13 88.54 77.15 83.46 78.04 69.53 75.57 80.90 72.04 67.65 90.83 78.00 78.54 75.80 75.56

Two-stage Methods:

AOPG [66] ResNet-50 78.85 73.29 70.74 84.73 57.95 89.96 69.07 84.60 76.48 75.80 83.38 78.90 70.72 84.87 90.78 83.21 81.07 65.53 77.78

CenterMap [67] ResNet-50 73.31 57.70 53.32 69.07 78.98 89.34 45.63 78.86 69.90 80.41 60.78 76.67 63.05 60.74 87.83 79.32 63.45 78.59 70.39

Faster RCNN-O [75] ResNet-50 69.41 65.48 43.87 79.52 67.55 85.73 48.68 79.86 68.77 68.77 58.89 69.54 67.32 80.69 90.85 60.09 74.39 83.17 70.14

LSKNet-S [61] LSKNet 83.55 79.86 67.75 87.69 78.06 88.52 85.34 85.97 78.58 80.01 84.03 83.31 68.88 89.65 90.06 86.11 68.70 77.01 81.28

LSKNet-S * [61] LSKNet 85.41 79.64 64.94 87.04 78.76 89.05 83.72 80.75 76.31 68.74 83.57 81.29 71.79 72.37 90.56 70.64 76.06 84.13 79.15

RoI-Trans [76] ResNet101 67.84 60.04 56.64 75.46 66.75 88.63 54.62 84.43 74.80 78.37 72.33 79.90 70.68 83.42 86.74 67.53 72.16 70.07 72.80

RC1&RC2 [77] VGG-16 66.72 74.38 58.78 76.01 69.93 85.53 79.66 79.60 70.65 81.21 69.09 76.31 69.52 85.96 89.90 80.51 80.93 75.47 76.12

Single-stage Methods:

S2ANet [68] ResNet-50 68.94 59.34 46.28 76.89 77.33 87.11 80.15 84.50 71.46 74.51 88.19 79.46 64.28 86.34 90.52 62.31 80.46 80.04 75.45

AO2-DETR [69] ResNet-50 80.81 77.69 59.92 83.15 67.53 91.59 83.24 87.19 78.77 80.00 85.51 81.46 69.64 91.53 90.31 80.04 78.95 83.72 80.61

RetinaNet-O [78] ResNet-50 69.92 60.94 49.56 71.45 69.12 88.36 77.91 82.10 80.18 74.13 82.76 75.49 62.48 81.52 91.24 81.53 75.41 78.04 75.11

RRD [79] VGG-16 74.25 57.91 47.24 70.61 60.76 80.79 84.05 84.42 78.51 81.00 67.18 58.19 70.14 90.42 90.85 72.41 80.59 75.13 73.58

R3Det [80] ResNet-101 69.25 67.46 58.24 78.54 78.42 89.15 62.08 85.13 80.43 68.14 87.43 75.16 67.49 70.16 90.42 83.15 73.15 83.64 75.97

R3Det-DCL [81] ResNet-101 69.54 66.19 56.94 82.43 67.51 89.55 73.54 84.23 75.81 80.07 68.14 76.44 68.54 82.56 90.48 64.59 75.77 85.90 75.46

RetinaNet-R [78] ResNet-101 76.59 74.17 71.12 80.14 76.58 85.62 80.61 80.64 66.97 78.41 70.15 80.10 48.16 76.58 87.47 78.64 79.31 80.15 76.19

URSNet (ours) ResNet-101 86.27 75.24 75.47 88.22 79.90 90.12 87.81 87.90 80.22 81.48 88.59 84.15 70.42 91.04 92.47 84.51 82.16 86.63 84.03

* O represents a model framework with a directional bounding box detection capability.
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(2) The detection results for the RSOD dataset are presented in Table 7. It can be
observed that the proposed URSNet method achieves the best AP and mAP scores for
the four types of objects in the RSOD dataset, surpassing the powerful YOLOv7 [43]
and Vision-Trans [82]. Specifically, the Anchor Rotation Alignment Module (ARAM) and
Feature Polarization Module (FPM) in URSNet are highly effective in handling aircraft
with a multi-directional distribution and overpasses with significant differences in length
and width.

Table 7. The detection results from multi class SOTA models for the RSOD dataset. The bold result is
the best.

Method Aircraft (%) Oil tank (%) Overpass (%) Playground (%) mAP (%)

CFA-Net [72] 63.92 57.83 80.04 89.30 72.77
SGR-Net [75] 72.05 78.01 83.25 90.13 80.86
LSKNet-S [61] 55.63 63.92 82.91 90.12 73.14
RoI-Trans [76] 78.39 71.77 84.62 92.45 81.81
RC1&RC2 [77] 65.07 70.62 78.33 86.53 75.14
YOLOv7 [43] 87.60 78.35 83.61 88.01 84.39

Vision-Trans [82] 85.73 70.02 86.35 90.36 83.12
URSNet (ours) 87.59 79.16 88.41 93.58 87.19

(3) The evaluation results for the DIOR dataset are presented in Table 8. The results
demonstrate that our method, URSNet, achieves an mAP score of 85.13% and a processing
speed of 108.20 FPS, indicating its superior performance in both detection accuracy and
image processing speed. This is attributed to the advanced modular architecture design
of URSNet. However, it is worth noting that URSNet does not achieve the highest level
in terms of model parameters (Params) and computational complexity (FLOPs), which
suggests that further improvements are needed in model lightweighting and hardware
resource allocation to achieve more efficient performance in future work.

Table 8. The evaluation results from multiple SOTA methods for the DIOR dataset. The optimal
results are bolded.

Method Backbone FPS Params (M) FLOPs (G) mAP (%)

FCOS [83] ResNet-50 51.50 32.10 38.60 81.01
YOLOX [84] Modified CSP V5 57.80 99.10 − 80.43
SAR-Net [85] ResNet-50 − 42.60 − 74.46

RetinaNet-R [78] ResNet-101 51.80 36.30 40.10 69.37
YOLOv5 [86] CSPDarkNet53 87.70 7.00 15.80 72.31
LRTrans [87] ViT 75.80 3.07 9.60 83.69

URSNet (ours) ResNet-101 108.20 36.33 50.41 85.13

(4) The performance evaluation results for the UCAS-AOD dataset are presented
in Table 9. The UCAS-AOD dataset contains only two types of objects: cars and planes.
However, these two types of objects exhibit characteristics such as an arbitrary orientation,
small scale, and dense distribution, making them complex targets that can be used to further
validate the effectiveness of the proposed method in this paper. As can be seen in the table,
most SOTA models have lower detection accuracy for planes than for cars. Additionally,
URSNet outperforms the second-ranked YOLOv7 by 4.05%, 0.15%, and 1.77% in the AP
and mAP metrics for both targets. This suggests that for cars with regular edges, most
models can effectively extract key feature information for classification and localization.
However, when faced with planes with complex boundary information, most models lack
efficient key information extraction and localization refinement capabilities, resulting in
lower detection accuracy. In contrast, URSNet maintains high accuracy due to the design
of BMSFPN and DAOM.



Drones 2024, 8, 189 23 of 31

Table 9. Performance evaluation results from several types of SOTA models for the UCAS-AOD
dataset. The added part of the optimal result is highlighted in bold.

Method Cars (%) Planes (%) mAP

O2-DNet [65] 78.93 59.43 57.27
Oriented Rep. [72] 80.05 74.01 70.83

YOLOv7 [43] 87.30 84.31 74.09
CenterMap [67] 75.03 80.02 63.11

Faster RCNN-O [75] 66.81 79.50 53.58
S2ANet [68] 83.65 75.74 68.03

R3Det-DCL [81] 86.59 83.92 73.16
URSNet (ours) +4.05 +0.15 +1.77

(5) Visualization of experimental results.
Figure 14 illustrates the visualized detection results from our proposed method

URSNet for the large-scale RS dataset DOTA-V2.0. As can be seen in the figure, targets
with multi-directional variations such as planes, ships, large vehicles, and small vehicles all
exhibit high detection results. This demonstrates that our designed ARAM and DAOM
can fully utilize the key features of such targets for anchor rotation refinement, and further
improve the classification and localization performance of URSNet for these targets through
label assignment.

Furthermore, for medium and large-scale objects such as a baseball diamond, tennis
court, and ground track field, URSNet maintains a superior detection level, achieving
accuracy rates above 70%. For densely distributed small objects like storage tanks and
harbors, URSNet ensures accuracy rates of over 60%. This is attributed to the powerful
feature extraction and detail representation capabilities of the designed BMSFPN and FPM.

Figure 15 demonstrates the visualization results from URSNet for the DIOR dataset.
Since DIOR contains 20 different categories of objects, the generalization and robustness of
URSNet have been thoroughly tested. For elongated objects such as bridges, airports, and
swimming pools, their aspect ratios vary significantly, making it difficult for conventional
models to extract effective feature information. However, the unique design of the spatial
attention convolution kernel in the FPM proposed in this paper effectively overcomes this
issue. As can be seen in the figure, URSNet exhibits excellent performance for such objects.

Furthermore, for targets such as golf courses with blurred backgrounds, small-scale
chimneys, multi-scale ships, and planes, URSNet effectively reduces the misalignment be-
tween predicted and actual bounding boxes by smoothing out redundant background details
and dynamically optimizing the target anchor boxes. This enhancement in both classification
and localization capabilities results in generally impressive detection performance.

Figure 16 demonstrates the detection results from several advanced SOTA models
for the RSOD dataset. Based on Table 7, we visualize the detection results from our
proposed URSNet, along with Vision-Trans, YOLOv7, and RoI-Trans, for four types of
objects: aircraft, oil tank, overpass, and playground. It can be observed that URSNet detects
the oil tank, which has a large size but a small scale, and the overpass, which is located
in a variable background, more accurately. At the same time, aircraft and playground are
also well detected. The efficient performance of URSNet further validates its advantages
and reliability.
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Figure 16. (a–d) The detection results from RoI-Trans, YOLOv7, Vision-Trans, and our proposed
method URSNet for the RSOD dataset. It can be observed that URSNet exhibits the optimal detection
performance. It successfully detects all four categories of objects in RSOD and achieves the highest
prediction accuracy score.

Figure 17 demonstrates the detection results from URSNet, YOLOv7, R3Det-DCL,
and Oriented Rep. for the UCAS-AOD dataset. As can be seen, for densely arranged
cars and planes on similar backgrounds, our proposed method detects all targets with
relatively high accuracy, while the other three models exhibit varying degrees of missed
detections and poorer accuracy. This illustrates that the advanced architecture of the FPM
designed for URSNet effectively highlights the key features of the targets, which are then
precisely captured and optimized by the ARAM and DAOM. The efficient performance
of URSNet further validates its reliability and applicability in handling small targets in
complex scenarios.
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Figure 17. (a–d) The detection results from URSNet, YOLOv7, R3Det-DCL, and Oriented Rep. for the
car and plane targets in the UCAS-AOD dataset. It can be observed that URSNet achieves a higher
detection rate and accuracy compared to the other three methods.

5. Conclusions

Based on the current development status and research achievements of object detec-
tion technology in the field of drone RS imagery, this paper proposes a target detection
network (URSNet) that incorporates a bidirectional multi-span feature pyramid and a
key feature capture mechanism to address the challenging issues of noise interference,
significant differences in target scale, and arbitrary directional distributions present in RS
images. Firstly, BMSFPN is constructed. During the top-down and bottom-up sampling
processes, bicubic interpolation, feature weighting, and cross-layer fusion are employed to
filter out image noise and enhance the detailed features of the targets. Secondly, our de-
signed FPM constructs robust feature representations for both classification and regression
tasks, making it easier for the network to capture key target features with high semantic
discrimination. Additionally, the ARAM is introduced to further refine the preset anchor
boxes, resulting in high-quality rotated anchors that better match the key regression fea-
tures. These refined anchor regions provide the model with accurate visual information for
localization. Finally, the DAOM is utilized to enhance the model’s feature alignment and
positive–negative sample discrimination capabilities, enabling the model to dynamically
select candidate anchors that capture key regression features and further eliminating the
discrepancy between classification and regression. We conducted comprehensive ablation
studies and SOTA comparison experiments on challenging RS datasets such as DOTA-V2.0,
DIOR, and RSOD. The comparison revealed that URSNet achieves superior experimental
results (87.19% mAP and 108.2 FPS) across multiple datasets, indicating that URSNet is
effective in addressing the challenges posed by complex drone RS images.

In the future, we will continue to enrich the multi-type object recognition capabilities
of URSNet and construct a more comprehensive RS dataset to enhance the robustness and
generalization of the model, making it more adaptable to real-world scenarios. Additionally,
due to the complexity of our method’s structure, it does not demonstrate superiority in
terms of model parameters (Params) and computational complexity (FLOPs). This reminds
us that further improvements are needed in model lightweighting and hardware resource
allocation in subsequent work.
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