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Abstract: This critical review provides a comprehensive analysis of various condition monitoring
techniques pivotal in additive manufacturing (AM) processes. The reliability and quality of AM
components are contingent upon the precise control of numerous parameters and the timely detection
of potential defects, such as lamination, cracks, and porosity. This paper emphasizes the significance
of in situ monitoring systems—optical, thermal, and acoustic—which continuously evaluate the
integrity of the manufacturing process. Optical techniques employing high-speed cameras and laser
scanners provide real-time, non-contact assessments of the AM process, facilitating the early detection
of layer misalignment and surface anomalies. Simultaneously, thermal imaging techniques, such as
infrared sensing, play a crucial role in monitoring complex thermal gradients, contributing to defect
detection and process control. Acoustic monitoring methods augmented by advancements in audio
analysis and machine learning offer cost-effective solutions for discerning the acoustic signatures of
AM machinery amidst variable operational conditions. Finally, machine learning is considered an
efficient technique for data processing and has shown great promise in feature extraction.
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1. Introduction

Additive manufacturing (AM) technologies have undergone successful development
and gained increasing attention from both academia and industry in recent years. Numer-
ous application scenarios result in significant benefits from these techniques, spanning
diverse fields such as robotics, electronics, automotive, and aerospace [1–3]. Additive
manufacturing, also known as 3D printing or rapid prototyping, involves the layer-by-
layer production of parts based on CAD models. This process allows for the creation of
objects with complex structures, an achievement that is often unattainable using traditional
methods [4–7]. Geometrical design constraints are notably reduced, leading to cost savings.
Consequently, additive manufacturing holds great potential to surmount the prevailing
challenges in the traditional manufacturing domain. Additive manufacturing covers a wide
range of techniques and technologies, each with their own unique approach to building
objects layer by layer. Some of different types of AM techniques include material extrusion
(MEX), powder bed fusion (PBF), binder jetting (BJT), and directed energy deposition
(DED). While additive manufacturing technologies have seen significant development
and yielded promising outcomes, ensuring the mechanical integrity of the manufactured
components remains a challenge. It is necessary to maintain caution in monitoring the
AM process and inspecting the parts’ quality during production [8]. Detecting defects
in the early stages of printing could trigger an alert to either pause or halt the printing
process. This allows for corrective measures to be implemented promptly, mitigating the
necessity to reprint the parts. The quality of the printed parts is heavily influenced by
factors such as the material properties and the potential emergence of defects, like lami-
nation and cracks [9,10], porosity [11,12], powder bed anomalies [13,14], balling [15,16],
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and residual stress [17]. Hence, achieving the precise monitoring of the manufacturing
process within the area of AM is necessary for the enhancement of the parts’ quality and
cost reduction [18,19]. Nonetheless, this undertaking poses significant challenges during
practical implementations due to the difficult nature of the process and the complexities
involved in analyzing noisy-condition monitoring data.

Monitoring aids play a crucial role in enhancing the quality of printed parts in additive
manufacturing processes. These aids encompass various techniques and technologies
designed to detect and mitigate the defects, ensure process stability, and optimize the
printing parameters. Real-time monitoring systems, such as optical and thermal imaging,
acoustic sensors, and vibration analysis, provide valuable insights into the printing process,
enabling the operators to identify anomalies and make timely adjustments to maintain the
quality standards. Additionally, in-line monitoring tools, including laser scanners and 3D
metrology systems, facilitate the inspection of printed parts during production, allowing
for immediate feedback and quality control. Furthermore, advanced data analytics and
machine learning algorithms can analyze monitoring data to predict potential defects
and optimize the printing parameters for improved quality and efficiency. By integrating
monitoring aids into additive manufacturing workflows, manufacturers can acquire higher-
quality printed parts, reduce the scrap rates, and enhance the overall process reliability.

To address this, condition monitoring employs a variety of tools and strategies, in-
cluding real-time sensors, thermal imaging, acoustic monitoring, and machine vision
systems [20]. These techniques continuously assess factors such as the temperature gra-
dients, layer adhesion, dimensional accuracy, and surface defects during the printing
process. By detecting anomalies and deviations from the desired specifications, condition
monitoring allows for timely adjustments, reducing the risk of defects and ensuring the
production of high-quality AM parts. As the field of additive manufacturing continues
to expand, condition monitoring will remain a critical component in maintaining process
control and enhancing the overall reliability of 3D-printed components across various
industries [21,22]. In summary, condition monitoring is essential in additive manufacturing
to uphold the products’ quality, improve the process efficiency, reduce the costs, enhance
reliability, and ensure safety and compliance with the industry standards. It is a critical
component for the continued growth and adoption of AM in various industries. In the
scope of this investigation, we will conduct comprehensive analysis, a discussion, and the
comparative evaluation of different condition monitoring techniques. These techniques
are employed with the aim of elevating both the quality and efficiency of products pro-
duced through various additive manufacturing methodologies. This analysis will provide
a deeper understanding of the complicated relationship between monitoring strategies
and AM processes, shedding light on how the effective utilization of these techniques can
lead to improved final product attributes, increased operational efficiency, and cost savings.
This study is positioned to contribute valuable insights to the ever-evolving landscape of
AM, where quality assurance and process optimization are paramount in achieving the
industry’s and consumers’ expectations.

2. Condition Monitoring Techniques

Certainly, there are various methods of condition monitoring in AM to ensure the
quality and reliability of printed components. In this section, our emphasis is directed
towards in situ monitoring systems and defect identification methodologies tailored for
AM. Some typical examples of defects are presented in Figure 1. To commence, we pro-
vide a summary of the defect detection process and outline the requisites for monitoring
techniques. Subsequently, we conduct an in-depth examination of a range of approaches
pertaining to data acquisition and data analysis, all of which play pivotal roles in the
thorough inspection of defects in the AM process.
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warping (b) balling (c) [24], swelling (d) [25], micro-cracks (e) [26], and an under-filled part (f) [27]. 
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systems, which capture detailed information about the printing process in real time. Op-
tical monitoring can detect issues such as layer misalignment, warping, and delamination, 
helping to prevent defects early in the production process. Moreover, the use of optical 
methods allows for the inspection of the surface finish, dimensional accuracy, and the 
detection of anomalies that might be challenging to identify using other monitoring tech-
niques. The real-time and high-resolution capabilities of optical techniques make them an 
essential tool for quality control and process optimization in additive manufacturing. 
Gould et al. [28] performed the on-site examination of laser powder bed fusion by em-
ploying infrared and X-ray imaging cameras simultaneously at high speeds. The use of a 
high-energy laser beam typically results in elevated temperatures, rapid heating and cool-
ing cycles, and substantial temperature variations, culminating in multiple extremely dy-
namic physical occurrences that have the potential to introduce defects in the components. 
In that research, the authors showed a novel method that synchronizes high-speed X-ray 
imaging with high-speed infrared imaging to explore laser powder bed fusion processes 
in real time. This approach allowed for the simultaneous observation of multiple phenom-
ena, including visualizing a three-dimensional melt pool, analyzing the vapor plume dy-
namics, observing the spatter formation, tracking the thermal history, and measuring the 
point cooling rates (see Figure 2). The combined observation of these dynamic occurrences 
stands as a crucial factor in understanding the underlying principles of laser powder bed 
fusion and the comprehensive influence of process variables on the quality of printed 
parts. 

Zhao et al. [29] utilized high-speed synchrotron hard X-ray imaging and diffraction 
techniques to observe the laser powder bed fusion (LPBF) process of Ti-6Al-4V in real time 
and on-site. The researchers illustrated that numerous scientifically and technologically 
crucial phenomena within LPBF, such as the melt pool dynamics, powder ejection, rapid 
solidification, and phase transformation, can be examined with precise spatial and tem-
poral resolutions. Notably, the formation of keyhole pores was experimentally unveiled 
with high spatial and temporal resolutions, as shown in Figure 3. 

Figure 1. Typical examples of defects in additive manufacturing showing: macro-cracks (a) [23],
warping (b) balling (c) [24], swelling (d) [25], micro-cracks (e) [26], and an under-filled part (f) [27].

2.1. Optical Techniques

Optical techniques are valuable in the condition monitoring of additive manufacturing
processes. They offer a non-contact and non-invasive approach to evaluate different aspects
of the printing process and the quality of the printed parts. These techniques cover a wide
range of tools, including high-speed cameras, laser scanners, and structured light systems,
which capture detailed information about the printing process in real time. Optical moni-
toring can detect issues such as layer misalignment, warping, and delamination, helping
to prevent defects early in the production process. Moreover, the use of optical methods
allows for the inspection of the surface finish, dimensional accuracy, and the detection of
anomalies that might be challenging to identify using other monitoring techniques. The
real-time and high-resolution capabilities of optical techniques make them an essential tool
for quality control and process optimization in additive manufacturing. Gould et al. [28]
performed the on-site examination of laser powder bed fusion by employing infrared and
X-ray imaging cameras simultaneously at high speeds. The use of a high-energy laser
beam typically results in elevated temperatures, rapid heating and cooling cycles, and
substantial temperature variations, culminating in multiple extremely dynamic physical
occurrences that have the potential to introduce defects in the components. In that research,
the authors showed a novel method that synchronizes high-speed X-ray imaging with
high-speed infrared imaging to explore laser powder bed fusion processes in real time.
This approach allowed for the simultaneous observation of multiple phenomena, including
visualizing a three-dimensional melt pool, analyzing the vapor plume dynamics, observing
the spatter formation, tracking the thermal history, and measuring the point cooling rates
(see Figure 2). The combined observation of these dynamic occurrences stands as a crucial
factor in understanding the underlying principles of laser powder bed fusion and the
comprehensive influence of process variables on the quality of printed parts.

Zhao et al. [29] utilized high-speed synchrotron hard X-ray imaging and diffraction
techniques to observe the laser powder bed fusion (LPBF) process of Ti-6Al-4V in real time
and on-site. The researchers illustrated that numerous scientifically and technologically
crucial phenomena within LPBF, such as the melt pool dynamics, powder ejection, rapid
solidification, and phase transformation, can be examined with precise spatial and temporal
resolutions. Notably, the formation of keyhole pores was experimentally unveiled with
high spatial and temporal resolutions, as shown in Figure 3.
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Figure 2. Aligned and calibrated infrared (IR) and X-ray images reveal distinctive features discern-
ible through the synergistic application of these characterization methods. In each image, the direc-
tion of laser scanning is denoted by a dashed white arrow. (a and c) illustrate that the processed X-
ray image contrast can be used to identify the melt-pool length, which can then be correlated to the 
top-view IR image to mark out the melt-pool morphology on the surface plane parallel with the x-
ray beam. (c) X-ray images were divided by the first frame of this image series to highlight the con-
trast of the melt pool. (b and d) illustrate that filter 0 of the IR camera can be used to view the vapor 
plume, a feature that is not visible in X-ray imaging [28]. 

 
Figure 3. Dynamic changes in the melt pool during the laser powder bed fusion process of Ti-6Al-
4V [29]. 

Jacobsmu¨hlen et al. [30] presented a high-resolution imaging system for the inspec-
tion of LBM systems, which could be integrated into existing machines without the need 
for modifying the system’s optical path. This high resolution allows for the detection of 
any flaws or issues in the part being manufactured, which is crucial for ensuring the qual-
ity and structural integrity of the final product. The proposed system could acquire im-
ages at a resolution ranging from 25 µm/pixel to 35 µm/pixel, thus enabling the inspection 

Figure 2. Aligned and calibrated infrared (IR) and X-ray images reveal distinctive features discernible
through the synergistic application of these characterization methods. In each image, the direction of
laser scanning is denoted by a dashed white arrow. (a,c) illustrate that the processed X-ray image
contrast can be used to identify the melt-pool length, which can then be correlated to the top-view
IR image to mark out the melt-pool morphology on the surface plane parallel with the X-ray beam.
(c) X-ray images were divided by the first frame of this image series to highlight the contrast of the
melt pool. (b,d) illustrate that filter 0 of the IR camera can be used to view the vapor plume, a feature
that is not visible in X-ray imaging [28].
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Figure 3. Dynamic changes in the melt pool during the laser powder bed fusion process of Ti-6Al-
4V [29].

Jacobsmühlen et al. [30] presented a high-resolution imaging system for the inspection
of LBM systems, which could be integrated into existing machines without the need for
modifying the system’s optical path. This high resolution allows for the detection of any
flaws or issues in the part being manufactured, which is crucial for ensuring the quality
and structural integrity of the final product. The proposed system could acquire images
at a resolution ranging from 25 µm/pixel to 35 µm/pixel, thus enabling the inspection
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of the melt results and the powder bed in detail (see Figure 4). The integration of this
system within the LBM process aimed to enhance process control, enabling the detection
of topological errors and assessing the surface quality of the built layers, which could be
beneficial for parameter optimization and flaw detection.
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Jacobsmühlen et al. [30] explained the significant impact of laser power settings on the
quality of parts produced using Laser Beam Melting (LBM) systems. Through high-resolution
imaging, the authors were able to identify the occurrence of super-elevations on the cylinder
sample surfaces, as shown in Figure 5 in their publication. In their study, Neef et al. [31]
illustrated the innovative use of Low-Coherence Interferometry (LCI) for real-time process
monitoring in the SLM process, an additive manufacturing technique. Figure 6 shows the
captures of the essence of the measuring range of the LCI sensor across the build platform,
illustrating the sensor’s capability to accurately map the topography of the surface.
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The importance of such a measurement is twofold: it ensures the precise application
of each layer and aids in the quick detection of any surface irregularities that could com-
promise the structural integrity of the final product. As the SLM process relies heavily on
maintaining a consistent layer thickness and powder density, the ability to map and mea-
sure the surface with such precision is invaluable. Furthermore, Neef et al. [31] focused on
the characterization of melted surfaces, where the surface topography of the SLM structures
was analyzed. This analysis is depicted in Figure 7 in their paper, which contrasts scans of
the powder material surfaces with those of the melted SLM structures. The color-coded
depth mapping in this figure clearly demonstrates the surface variations and anomalies
which LCI is capable of detecting. Leung et al. [32] used in situ and operando high-speed
synchrotron X-ray imaging for the detection of defects and molten pool dynamics in laser
additive manufacturing. Their results illustrated in Figure 8 accurately captured the tran-
sient phenomena of defect formation and molten pool dynamics within the laser additive
manufacturing (LAM) process.
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SLM structure [31].
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under P = 209 W, v = 13 mm/s, and LED = 16.1 J/mm [32].

The high-intensity synchrotron radiation utilized in their research allows for the un-
precedented observation of the thermophysical behaviors in LAM with acute temporal and
spatial resolutions, as detailed in Figure 8. These real-time visualizations provide critical
insights into the mechanisms governing the formation of melt tracks, spatter behaviors,
and the dynamic evolution of porosity, including the critical phenomena of pore migration,
dissolution, and dispersion during the manufacturing process.

In summary, optical methods offer several advantages for condition monitoring in
additive manufacturing processes. These techniques provide non-contact measurement
capabilities, enabling the assessment of complex geometries without physically touching
the surface, thus minimizing the risk of damage to delicate structures. Additionally, optical
methods offer a high spatial resolution and precision, allowing for the detailed characteri-
zation of surface features and defects. Moreover, optical monitoring techniques, such as
photogrammetry and laser scanning, facilitate the real-time monitoring of the manufactur-
ing process, enabling rapid feedback acquisition and quality control. However, these optical
methods also have limitations. For instance, they may be sensitive to environmental factors,
such as ambient light and temperature variations, which can affect the measurement accu-
racy. Furthermore, the optical methods may have a limited penetration depth, particularly
when inspecting opaque or highly reflective materials, restricting their applicability to
certain types of additive manufacturing processes. Overall, while the optical methods
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offer valuable insights into additive manufacturing processes, careful consideration of their
advantages and limitations is essential for effective condition monitoring.

2.2. Thermal Monitoring

Thermal monitoring in additive manufacturing is a critical component in understand-
ing and controlling the complex thermal gradients and cooling rates that significantly affect
the microstructure and mechanical properties of the final product. Seppala and Migler [33]
have pointed out the details of infrared (IR) imaging, revealing how some systems yield
IR signals that intricately reflect material emissivity. When assessing raw IR data across
different materials, one must account for the fact that the data provide only a qualitative
indication due to this emissivity dependence. This principle is visually captured in Figure 9,
where the IR images effectively differentiate the extruder, the printing layer denoted as
LP (illustrated in vermilion), the underlying sublayers LP-n (depicted in blue), and the
foundational build plate (shown in black).
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Figure 9. Illustration and false color IR images of 3D printing process. From left to right, (a) an
illustration, (b) extrusion, a (c) hot extruder/no extruder, and (d) a cold extruder are shown (the color
scale is linear) [33].

The false-color IR images from Figure 9b–d clearly display the extrusion process with
a hot extruder, both active and idle, and a cold state. In Figure 9b, the nozzle’s heat is
visible as a dynamic spectrum from red to green, influenced by the melted polymer on
the nozzle and uneven heating. The central polymer trail, LP, shows a color shift from red
to green with increasing distance from the nozzle, indicating cooling. The LP’s vertical
color gradation may reflect an IR intensity gradient due to the extruded material’s shape.
Hussein et al. [34] discussed the critical role of in situ infrared temperature sensing in defect
detection during FDM additive manufacturing processes. They conducted an in-depth
study of how intentional voids of different sizes and under extrusion conditions affect the
temperature distribution during the printing of L-shaped samples. The results of their study
are shown in Figure 10, showing data from two infrared sensors, along with a control chart
demarcating the upper and lower control limits (UCL and LCL) [34]. These limitations were
critical for distinguishing the normal process variations from defect-induced anomalies.

The temperature data provided by Sensor-I in Figure 10 clearly showed the tem-
perature drops corresponding to gaps of 3 mm, 2 mm, and 1.5 mm widths, which are
successfully captured in the sensor readings below the LCL. Sensor-II provided conclusive
data, detecting similar voids with significant temperature drops. In Figure 11 provided by
Serio et al. [35], thermographic maps illustrate the maximum temperatures (Tmax) reached
during the Friction Stir Welding (FSW) process of aluminum alloy 5754-H111 sheets. These
maps, derived from the analysis of thermal sequences using MATLAB software, displayed
Tmax values for each pixel over the course of the welding tests. The thermographic data
offered a comprehensive field of temperature information, highlighting the temperature
gradients and patterns resulting from varying welding parameters, such as the tool rotation
speeds and the travel speeds.
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The tests, labeled T1 through T4, represented different combinations of travel speed
(in cm/min) and rotation speed (in RPM). For instance, T1 and T4 corresponded to travel
speeds of 20 cm/min and 30 cm/min with a rotation speed of 500 RPM, while T2 and T3
denoted tests conducted at 30 cm/min and 20 cm/min, respectively, but with a higher
rotation speed of 700 RPM. These variations in the FSW parameters visibly affected the
thermal profile of the welds, as evidenced by the different color intensities, representing
temperature distributions on the thermographic maps.

As a conclusion, thermal imaging methods offer several advantages for condition
monitoring in additive manufacturing processes. These techniques enable the non-contact,
remote temperature measurement of surfaces, providing valuable insights into the thermal
behavior of printed components during the manufacturing process. Thermal imaging
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cameras offer a high spatial resolution and sensitivity, allowing for the detection of small
temperature variations and hotspots indicative of defects or process anomalies. Moreover,
thermal imaging enables the real-time monitoring of temperature distributions, facilitating
the rapid identification of issues, such as insufficient heating or cooling, layer delamination,
and material inconsistencies. However, the thermal imaging methods also have limitations.
Variations in emissivity and surface reflectivity can affect the measurement accuracy, lead-
ing to potential inaccuracies in the temperature readings. Additionally, thermal imaging
may be limited by line-of-sight constraints and the inability to penetrate through opaque
materials, restricting its applicability to certain types of additive manufacturing processes.
Despite these challenges, thermal imaging remains a valuable tool for condition monitoring
in additive manufacturing, offering unique insights into the thermal performance and
integrity of the printed components.

2.3. Acoustics

Acoustic monitoring in additive manufacturing refers to a technique where sound or
acoustic signals are utilized to assess and monitor the printing process. During additive
manufacturing, such as 3D printing, the equipment produces specific acoustic signatures
or sounds associated with the deposition and fusion of material layers. By analyzing
these acoustic patterns, researchers and manufacturers can gain insights into the quality,
consistency, and potential defects of the printed object. The acoustic monitoring method
involves using sensors or microphones to capture and interpret the emitted sounds during
different stages of the additive manufacturing process (see Figure 12). This approach,
however, is not without its challenges. The primary issue is the sensitivity of acoustic
signals to background noise and variability in the machine operation conditions, which can
complicate the accurate analysis of a machine’s health.
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In industrial environments, differentiating between background noise and the actual
acoustic signature of machinery is a significant challenge. Jombo and Zhang [36] discussed
how advancements in audio analysis for speech and music recognition have led to the
development of large acoustic datasets and pre-trained models that could potentially be
adapted for industrial sound analysis. For practical applications in machine condition mon-
itoring, Jombo and Zhang [36] illustrated how variations in acoustic image representations
can be utilized to classify the sounds that are indicative of machine malfunctions. They
discussed several 2D acoustic image representations, such as spectrograms generated from
a Short-Time Fourier Transform (STFT) method, Mel spectrograms, and cochlea grams.
These representations were effectively used in combination with deep learning models to
differentiate between the normal and abnormal machine sounds.

Koester et al. [37] explored the innovative application of in situ acoustic monitoring
in the additive manufacturing process. Their paper discussed the importance of in situ
acoustic monitoring as a non-destructive evaluation method to identify and analyze the
integrity and quality of materials during the additive manufacturing process. By deploying
an acoustic monitoring array, the researchers investigated how acoustic data can signal
various process conditions, such as the baseline, using a powder only, using a low laser
power, and using a low powder flow. These conditions affected the material deposition
and, consequently, the final product’s quality. For example, Figure 13 demonstrates mi-
crograph samples from a directed energy deposition process, illustrating variations in the
surface characteristics and defects corresponding to different build conditions [34] using
the acoustic monitoring method. The images displayed notable differences in the surface
morphology and crack development due to variations in the laser power and powder flow.
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Figure 13. Stitched micrograph sample images of each build condition showing differing surface
characteristics and surface breaking cracks. (a) Baseline condition, (b) surface roughness influenced
by a low-laser-power setting, and (c) significant cracks and rips generated in a low-powder-flow
scenario [37].

Raffestin et al. [38] explored in situ ultrasonic monitoring for internal defect detection
during the laser powder bed fusion (LPBF) process, which is an advanced additive manu-
facturing technique. Their study was particularly focused on the use of an ultrasonic (US)
system to monitor the formation and evolution of defects within bulk samples as they are
manufactured, as depicted in Figure 14. This figure shows the in situ recorded A-scans as a
spectrogram, where the amplitude of the ultrasonic signal is plotted on the vertical axis
against the number of printed layers on the horizontal axis. The displayed data represent
the amplitude of ultrasonic signals for every 10 layers, effectively mapping the internal
structural integrity as the part is built. This cumulative depiction corresponds to the final
height of the part, showing the progressive nature of the LPBF process.
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Figure 14. In situ monitoring of samples with internal designed defects [38].

The spectrogram in Figure 14a illustrates the monitoring of a sample with a 1 mm
defect, where the distinct echoes labeled as E1, E2, and E3 show the detection of anomalies
at various stages of the build. Likewise, Figure 14b showcases the in situ monitoring of a
sample featuring a 2 mm defect, while Figure 14c depicts a 5 mm defect. In both the cases,
the amplitude of reflected waves diminishes as the defect size decreases, highlighting the
sensitivity of the monitoring system. Millon et al. [39] detailed the application of laser
ultrasonics (LU) for real-time quality control in AM processes, particularly for industries
like aerospace and healthcare, where precision and reliability are paramount. Figure 15
illustrates B-scan images acquired during scanning, demonstrating the system’s capability
to detect notches of different sizes on the forged parts.

Shevchik et al. [40] implemented a Spectral Convolutional Neural Network (SCNN),
which was carefully constructed with four convolutional layers, each with a pooling layer
behind it. This architecture has been rigorously optimized, achieving a subtle balance
between computational complexity and classification efficiency. Their experience found
that reducing the number of convolutional layers slightly affected the accuracy of classifi-
cation, while increasing the number of convolutional layers did not significantly improve
performance, but did indeed prolong the training time of the SCNN.

The key aspect of their research involved analyzing the irregularity in the input struc-
ture of acoustic features. Shevchik et al. [40] utilized a sparse dataset, where the coordinates
of each feature are represented by the relative energy values on the frequency band. This is
shown in Figure 16, where the dataset includes thirty features from each defined quality
category—poor quality, medium quality, and high quality—each corresponding to a single
fragment in the feature space. To extract these complex data into a more interpretable form,
they used principal component analysis (PCA) to effectively project the multidimensional
feature space into the three-dimensional feature space. This projection not only facilitates
clearer visualization, but also emphasizes the heterogeneity of acoustic features, revealing
a mixture of attributes across all the quality categories.
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As described above, the acoustic methods offer several advantages for condition moni-
toring in additive manufacturing processes. These techniques utilize sound waves to detect
internal defects, structural irregularities, and process anomalies in the printed components.
Acoustic monitoring provides non-destructive evaluation capabilities, allowing for the
assessment of part integrity, without causing damage to the specimen. Additionally, the
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acoustic methods offer high sensitivity to defects, enabling the detection of subtle changes
in the material properties or structural integrity. Moreover, acoustic monitoring facilitates
the real-time detection of defects during the printing process, enabling prompt corrective
actions to be taken to prevent the production of faulty components. However, the acoustic
methods also have limitations. Environmental noise and background vibrations can inter-
fere with signal detection, potentially reducing the measurement accuracy. Additionally,
acoustic monitoring may be limited by the material properties of the printed component, as
sound waves can be absorbed or scattered by certain materials, affecting signal transmission
and detection. Despite these challenges, the acoustic methods remain a valuable tool for
condition monitoring in additive manufacturing, offering unique capabilities for defect
detection and quality assurance.

3. Conclusions

This study provides a comprehensive examination of various condition monitoring
techniques in additive manufacturing, emphasizing their crucial role in upholding the
quality and reliability of AM processes. This review highlights the effectiveness of optical,
thermal, and acoustic methods, each presenting distinct advantages and confronting specific
challenges. The optical techniques excel in real-time, non-contact inspection, playing a
pivotal role in defect detection and quality assurance. Similarly, thermal monitoring, by
precisely managing the temperature gradients, profoundly influences the microstructure of
AM components, emphasizing its significance in process control. Despite environmental
noise challenges, the acoustic and ultrasonic methods exhibit promise in non-intrusive
process assessment, supported by advanced data analysis. The integration of these diverse
monitoring systems is imperative for a comprehensive grasp and regulation of the intricate
AM process.

While condition monitoring methods offer valuable insights into the additive manufac-
turing process, they are not without limitations. Optical methods, such as photogrammetry
and laser scanning, may struggle with certain material properties, such as reflectivity or
opacity, limiting their applicability to certain types of additive manufacturing processes.
Thermal imaging methods can be affected by variations in emissivity and surface reflec-
tivity, leading to potential inaccuracies in temperature readings. Acoustic methods may
be prone to interference from environmental noise and background vibrations, impacting
measurement accuracy. Additionally, vibration analysis techniques may struggle to detect
defects in complex geometries or small features. Despite these limitations, advancements
in sensor technology and data analytics continue to improve the capabilities of condition
monitoring methods, offering manufacturers valuable tools for quality assurance and
process optimization in additive manufacturing. As AM advances, condition monitoring
must evolve as well, incorporating innovations that not only identify, but also predict and
pre-empt defects.
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