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Abstract: This study investigates the mode-II delamination performance of filament-wound unidirec-
tional composites with different types of epoxies as their matrix phase under room and cryogenic
temperatures. A typical vacuum infusion resin, an aerospace-grade cold-curing resin and crack-
resistant toughened resin systems were wet-wound with 12K carbon fiber tows to manufacture the
composite samples. Test samples with a (0)16 ply sequence were tested according to ASTM D7905-19.
The tested samples were investigated via microscopic analysis to assess the failure mechanisms associ-
ated with varying the matrix material and temperature. ENF tests at room temperature were found to
be susceptible to the inherent variance in the fiber architectures along with resin-viscosity-driven fiber
wetting. Cryogenic conditions induce a shift in the mode-II delamination behavior from a rather com-
plex failure mechanism to a consistent fiber/matrix debonding mode with diminishing GIIc values
except for the toughened resin system. The provided comprehensive fractographic analysis enables
an understanding of the various causes of fracture, which determines the laminate performance. The
combined evaluation of the distinctive damage modes reported in this study provides guidance on
the conventional wet-winding process, which still remains a volumetrically dominant and viable
option for cryogenic applications, particularly for vessels with limited operational durations like
sounding rockets.

Keywords: cryogenic; CFRP; filament-wound; delamination; end-notched flexure; mesoscale; mode II;
fractography; SEM; tow undulation

1. Introduction

The high demands of the aerospace and automotive industries have resulted in the
need to develop linerless composite pressure vessels due to their potential weight reduction.
The weakest links for any composite structure are matrix-related micro-crack formation and
accumulation, which may cause leakage problems and pressure-bearing capacity losses in
the vessel even at room temperature [1,2]. At cryogenic temperatures, the observation and
understanding of the thermomechanical response of matrix- and matrix/fiber-interface-
driven failure modes becomes even more important [3–5].

The development of composite pressure vessels requires a combined systematic
approach, including composite laminate design, modelling, material testing and large-
scale manufacturing.

Modelling studies focus on a multi-scaled approach, where constitutive relationships
are of concern at different length scales and are frequently studied using finite element
analysis [6,7]. The aim here is to deduct the vessel performance in order to (i) choose the
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constituents at the microscale [8], (ii) reinforce the tow architectures at the mesoscale [4,5]
and (iii) design related responses of vessels at the macroscale [9]. In addition to the
mechanical response, works investigating methods for determining the permeation rate
and for software development have also been reported [10]. Parallel to modelling efforts,
experimental studies share the multi-scaled approach and focus on large-scale composite
vessel manufacturing/testing, specimen-based laminate testing and constituent testing in a
cryogenic environment.

At the macroscale, studies on cryogenic composite pressure vessel have been focused
on the permeability characteristics under cryogenic conditions. Some of the most recent
works were presented by Flanagan et al. [11], who studied the cryogenic cycling effect
on the permeability of PEEK matrix composite pressure vessels considering variations in
the pressure, thickness, fiber and matrix type. Grogan [12] worked on the damage and
permeability of tape-laid thermoplastic composite tanks experimentally and numerically.
Yokozeki [13] evaluated helium leakage on carbon-fiber-reinforced plastic (CFRP) tubes by
applying tensile loading to the composite tubes at room temperature (RT) and at cryogenic
liquid nitrogen (LN2) temperature.

At the microscale, the constituent thermomechanical properties are also profoundly
significant in improving the composite laminate response under cryogenic conditions,
especially for matrix materials. For this reason, many research studies have been conducted
and continue to be carried out to understand the contribution of matrices to the mechanical
response of composite laminates. One of the leading areas of focus on matrix materials
is toughened epoxy systems for cryogenic environments. Their molecular movement ca-
pability under cryogenic conditions provides improved fracture toughness values, again
under cryogenic conditions. This behavior is explained by the “free volume-free space”
theory [14]. The general trend in the literature is toward toughening epoxy systems with
additives/fillers such as MWCNT [15], graphene platelets and rubbery particles [16–18].
Liu et al. [19] reported that the addition of nanosheet boehmite (AlOOH) provides an in-
crease in the interlaminar fracture toughness under room-temperature conditions; however,
it provides no improvement under cryogenic temperatures. The filler type and weight
ratio are critical for property maximization, and the optimal values can differ for room-
temperature and cryogenic conditions [20,21]. The chemical toughening method represents
another method for cryogenic environments, and it reduces transverse cracking under
cryogenic conditions [5,22,23]. Coronado et al. [22] studied the low-temperature fatigue
resistance of untoughened and toughened matrix systems and reported the favorable effect
of toughening on mode-I fatigue resistance. Also, damage morphologies such as river
markings, broken fibers and hackle patterns have been reported. However, transverse
cracking of chemically toughened epoxy systems under cryogenic conditions has not been
reported at the meso-mechanical scale with fractographic images.

The effect of manufacturing parameters such as the fiber width and fiber undulation
parameters on the mechanical properties and damage modes of composite laminates has
also been investigated theoretically [24–26]. Numerical analyses have also focused on the
meso-scale effects of fiber undulations and winding patterns [27–29]. One recent study
conducted with a three-dimensional (3D) repeated unit cell (RUC) at the mesoscale by
Pourahmadi [30] indicates that fiber bundle crossovers and undulations can change the
mechanical and thermal properties by up to 15.7% when compared to the composite
lamination theory. Shen et al. [31] also investigated the effects of fiber crossover and
undulation on stiffness failure using numerical and analytical calculations, and they point
out that the strain levels are higher by about 1.07–1.13 times in the undulation regions
compared to the laminate regions. However, all these works are based on mesoscale
winding pattern analysis and do not discuss tow undulation effects at the microscale level.

Fracture toughness measurements to assess crack formation and propagation in com-
posite structures have thus become a challenging task due to the above-stated variances
in the different length scales. Such effects have been thoroughly investigated at room
temperature for several composite structures. Barcikowski and Rybkowska [32] studied
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the characterization of reactive rubber-added toughened epoxy resins. Rased [33] stud-
ied the asymmetrical stacking sequence effect on the fracture toughness values of carbon
fiber composites via double-cantilever beam (DCB), end-notched flexure (ENF) and mixed-
mode bending (MMB) tests. Morais [34] worked on the mode-II behavior of angle-ply
glass/polyester filament-wound specimens. Bonhomme et al. [35] investigated the mode-I
and mode-II interlaminar fracture surfaces of a unidirectional AS4/8552 carbon/epoxy
laminate with fractographic and numerical analyses at room temperature.

Studies on fracture toughness testing under cryogenic temperatures remain rather
unexplored when compared with RT testing efforts. Micro-crack progression was inves-
tigated by Li et al. [36], who discussed the effect of flexible molecular-structured epoxy
on the cryogenic mechanical performance of the matrix and CFRP laminates with tensile
and flexural tests under both room-temperature and cryogenic temperatures. Shindo [10]
studied the delamination growth of woven glass-reinforced epoxy with mode-II fatigue
loadings and four-point ENF tests at cryogenic temperatures. Choi and Sankar [37] per-
formed four-point bending tests on single-notched graphite–epoxy laminates at room and
cryogenic temperatures. Although these works have provided exemplary approaches, the
current state of the art lacks an experimental approach where resin (ex situ) and laminate
(in situ) testing are simultaneously performed. Moreover, the presented fractographic
analyses have focused on explaining selected laminate behaviors rather than the effect
of the resin choice and how the corresponding fracture mechanisms are affected under
cryogenic environments.

Originating from this point, this article aims to highlight the effect of the resin type
and manufacturing-related anomalies, such as resin bagging, fiber undulations and fiber
wetting, on the mode-II delamination behavior of wet-wound UD composite specimens.
Specific attention is given to the fractographic identification of such anomalies, which is of
utmost importance for the failure analysis of composite pressure vessels. Three different
resin systems were used for neat epoxy tests and for manufacturing CFRP laminate: low-
viscosity cold curing (CC), low-viscosity warm-to-hot curing (VI) and toughened epoxy
systems (T). Conventional filament winding by a four-axis winding machine was employed.
The ENF specimens were prepared from (0)16 laminates, which were manufactured by
filament winding on a flat mandrel. The specimens were tested for their mode-II strain
energy release rates (GIIc) under RT and cryogenic (LN2) conditions. The modes of failure
on the filament-wound CFRP laminates manufactured with different resin types and
the effect of the temperature on the resin morphologies were investigated by detailed
fractography analyses for each scenario. This thorough examination of these fracture
surfaces provides a comprehensive understanding of the complex interaction between
the behavior of epoxy systems and the damage mechanisms that arise within intricate
mesoscale-architecture filament-wound composite laminates.

2. Materials and Methods
2.1. Materials

Three different DGBEA epoxy systems were used for this study. The first one,
MARKUT 5025 (CC resin), was an aerospace cold-curing system, and the second one,
BASAT 11546 (warm-to-hot-curing vacuum-infusion resin system) (VI resin), was pur-
chased from CET Epoksi Teknolojileri A.Ş. (Istanbul, Turkey). The third one, CTD 7.1
Toughened Epoxy Resin (T resin), was a high-microcrack-fracture-toughness cryogenic resin
system purchased from Composite Technology Development Inc. (Lafayette, LA, USA).
Specific attention was given to the viscosity values to ensure that the chosen resin types
were suitable for the filament-winding process. The characteristics of the purchased resin
samples are shown in Table 1.

A-49 12K tow carbon fiber was purchased from Dow-Aksa (Istanbul, Turkey) and
used for manufacturing the CFRP laminates (Figure 1).
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CTD 7.1 Toughened 
Epoxy Resin 
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3.5 2 h 80 °C 1500–5000 at 50 °C 12 at 25 °C 66.3 80 

* Measurements were obtained from manufactured ENF samples. 

The selected resin systems exhibited significant viscosity differences, which was at-
tributed to both the resin and hardener viscosities, with the VI resin system having the 
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2.2. Specimen Preparation 
First, neat epoxy samples were prepared for both room-temperature and cryogenic 
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enhance the homogeneity of the resin, hardener and initiator components. These mixtures 
were then introduced into silicon molds shaped according to ASTM D790-17 [38]. The 
curing of the samples took place in a temperature- and humidity-controlled oven, follow-
ing the recommended curing specifications provided by the manufacturers (as outlined 
in Table 1). The Tg values from the in-house manufactured samples fell within an accepta-
ble range when considering the scale of production. 

ENF test specimens were manufactured in accordance with ASTM D7905/D7905M-
19 [39] (Figure 2). The filament winding of the (0)16 UD laminates was carried out using a 
specially designed mandrel following the ISO 1268-5 [40] guidelines. The winding process 
employed a single row of fiber with a 3.1 mm bandwidth (Figure 3a). The winding tension 
was set to 20 N, and the average winding speed was 15 rpm. Four hoop layups were 
wound, and a 12µm Teflon-based insert material was placed at both ends of the mandrel 
(Figure 3b). Subsequently, four additional hoop layups were added to create a symmet-
rical and balanced laminate. The CFRP specimens were then obtained from the manufac-
tured laminates through water jet cutting, as illustrated in Figure 3c, highlighting the un-
dulations caused by the filament-winding process. 

Figure 1. (a) Carbon fiber tow; (b) carbon tow bandwidth.

Table 1. Epoxy systems, pot life, curing cycle and viscosity properties.

Epoxy System Pot Life at
23 ◦C (hours)

Nominal Curing
Cycle

Resin Viscosity
(cPs)

Hardener
Viscosity (cPs)

Measured
Tg * (◦C)

Data Sheet
Tg (◦C)

MARKUT 5025
(CC resin) 2–3 1 day 23 ◦C+

4 h 100 ◦C 1000–1500 at 5 ◦C 40–60 at 25 ◦C 98.8 118–124

BASAT 11546
(VI resin) 4.5 1 h 80 ◦C+

4 h 120 ◦C 1200–1400 at 25 ◦C 10–30 at 25 ◦C 109.3 115–120

CTD 7.1 Toughened
Epoxy Resin

(T resin)
3.5 2 h 80 ◦C 1500–5000 at 50 ◦C 12 at 25 ◦C 66.3 80

* Measurements were obtained from manufactured ENF samples.

The selected resin systems exhibited significant viscosity differences, which was
attributed to both the resin and hardener viscosities, with the VI resin system having the
lowest mixture viscosity and the T system exhibiting the highest mixture viscosity.

2.2. Specimen Preparation

First, neat epoxy samples were prepared for both room-temperature and cryogenic
testing. Before the stoichiometric mixing, all samples were gently mixed for 15 min to
enhance the homogeneity of the resin, hardener and initiator components. These mixtures
were then introduced into silicon molds shaped according to ASTM D790-17 [38]. The
curing of the samples took place in a temperature- and humidity-controlled oven, following
the recommended curing specifications provided by the manufacturers (as outlined in
Table 1). The Tg values from the in-house manufactured samples fell within an acceptable
range when considering the scale of production.

ENF test specimens were manufactured in accordance with ASTM D7905/D7905M-
19 [39] (Figure 2). The filament winding of the (0)16 UD laminates was carried out using a
specially designed mandrel following the ISO 1268-5 [40] guidelines. The winding process
employed a single row of fiber with a 3.1 mm bandwidth (Figure 3a). The winding tension
was set to 20 N, and the average winding speed was 15 rpm. Four hoop layups were
wound, and a 12 µm Teflon-based insert material was placed at both ends of the mandrel
(Figure 3b). Subsequently, four additional hoop layups were added to create a symmetrical
and balanced laminate. The CFRP specimens were then obtained from the manufactured
laminates through water jet cutting, as illustrated in Figure 3c, highlighting the undulations
caused by the filament-winding process.
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2.3. Mechanical Tests

Initial attention was directed towards conducting cryogenic tests on the neat epoxy
samples to investigate the connection between the self-behavior and the in-situ behavior of
the selected resins.

Three-point bending tests were conducted on the neat epoxy samples to assess their
mechanical responses under both room-temperature and cryogenic conditions. Both the
cryogenic and room-temperature three-point bending tests on the cast epoxy samples
adhered to the ASTM D790 [38] standards and were performed using a 10 kN Shimadzu
AGS-X universal testing machine (Kyoto, Japan) at a crosshead displacement rate of
5mm/min. The force-versus-displacement values were recorded for the subsequent calcu-
lations of the parameters including the maximum flexural strain (εmax), maximum flexural
stress (σmax) and Eflex flexural modulus. These parameters were determined using the
following formulas:

σmax =
3FL
2Bd2 (1)

εmax =
6Dd
L2 (2)

Eflex =
FL3

2BDd3 (3)

where F represents the maximum recorded force in the force–displacement curves, L is the
half-span length, B is the specimen width, d is the thickness of the sample and D is the
deflection of the beam center [38]. A minimum of eight specimens were tested for each case.

For the ENF tests, the same three-point bending fixture was employed, maintaining
a constant crosshead displacement rate of 5 mm/min. Consequently, the non-precracked
GIIc values were calculated based on the direct beam theory, as reported in [41]. The
formula for calculating GIIc is as follows:
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GIIc =
9a2Pδ

2b
(

2L3 + 3a3
) (4)

where P represents the maximum force, δ is the maximum displacement, a is the delamina-
tion crack length, b is the specimen width and L is the span length. Both RT and LN2 tests
were carried out (See Figure 4).
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The room-temperature tests were conducted in an environment with a temperature
variation ranging from 20–25 ◦C, while the cryogenic tests involved submerging the speci-
men in liquid nitrogen (LN2). The LN2 temperature was measured with a thermocouple
and maintained at −196 ± 1 ◦C. Prior to testing in LN2, the specimens were pre-cooled
using boiled liquid nitrogen to prevent any thermal shock.

2.4. Microscopy

The tested ENF specimens were examined from their sides to observe the nature of
the cracking events resulting from the temperature change.

Fracture surface analysis of the ENF samples was performed using a Zeiss LEO Supra
VP35 (Oberkochen, Germany) field emission scanning electron microscope (SEM) (Sabanci
University, Istanbul, Turkey). Prior to the analysis, a thin conductive Au/Pd coating was
sputter-deposited onto the samples. The samples collected from both the end of the insert
and the fracture surface were investigated in two distinct regions: the pre-crack front (crack
initiation zone) and the far regions (crack propagation zone). This allowed for observations
and comments on the differences in the crack initiation and propagation during the testing.
The examination of the fracture surfaces was conducted in the secondary electron mode
with a gun voltage of 5 kV.

3. Results
3.1. Three-Point Bending Tests

Figure 5 depicts the representative flexural stress/strain curves obtained from the neat
epoxy sample tests, revealing a transition from elastoplastic behavior at room temperature
to fully elastic behavior at cryogenic temperatures. The overall results are summarized
in Table 2. When exposed to cryogenic conditions, the increase in Eflex for all three resin
systems was approximately 280–400%, which was primarily due to embrittlement. Simi-
larly, the strength values also showed an increase under cryogenic conditions for all three
systems when compared to the room temperature values. However, the maximum elonga-
tion values exhibited a significant decrease when transitioning to cryogenic levels. This
observation suggests that the chain mobility of the resin systems was reduced, leading
to a corresponding increase in the intermolecular binding forces. These changes directly
influenced the measured Eflex and elongation values [42–45].
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Figure 5. Representative flexural stress–strain curves of three-point bending tests of neat epoxy.

Table 2. Three-point bending and ENF results of epoxy specimens at room and LN2 temperatures.

Resin Type Test
Environment

σflex εflex Eflex
GIIc (kJ/m2) Vf

(MPa) (%) (MPa)

CC Resin
RT 83.4 ± 8.8 8.4 ± 1.6 1012.2 ± 123.1 1.74 ± 0.17

0.5LN2 139.7 ± 32.7 3.8 ± 0.9 3643 ± 63.2 0.88 ± 0.05

VI Resin
RT 100.5 ± 3.7 13.2 ± 1.1 764.8 ± 61.1 0.97 ± 0.21

0.55LN2 146.1 ± 26.0 4.6 ± 0.8 3180.2 ± 89.6 0.94 ± 0.08

T Resin
RT 101.8 ± 6.8 4.7 ± 0.4 2243.0 ± 322.0 1.27 ± 0.09

0.45LN2 170.9 ± 28.2 2.7 ± 0.3 6331.7 ± 578.2 1.22 ± 0.12

The toughened resin system (T resin) exhibited remarkable toughness during the
room-temperature test, enduring the test fixtures when they made contact, which serves as
a clear demonstration of the positive toughening effect. However, the toughness effect was
lost under cryogenic conditions, and the resin became brittle. This temperature-induced
brittleness effect was also observed in the CC resin and VI resin systems. An intriguing
point to note is that the Eflex value of the toughened resin system under room-temperature
conditions was closely comparable to the cryogenic-temperature Eflex values of the other
resin systems. The T system was the system most affected by the cryogenic temperatures,
as it exhibited the highest strength value and the lowest strain among all the other resins
under cryogenic conditions.

3.2. End-Notched Flexure Tests

Figures 6 and 7 display the representative force-elongation and flexural-stress–flexural-
strain curves of the tested ENF specimens, respectively. The GIIc values for the CC resin
system were measured as 1.74 ± 0.17 (kJ/m2) at room temperature and 0.88 ± 0.05 (kJ/m2)
at cryogenic temperature. In contrast, such a substantial decrease in the GIIc values was not
observed for the VI and T resins (Table 2). The room-temperature GIIc level for the VI resin
was 0.97 ± 0.21 (kJ/m2), while the cryogenic-temperature GIIc level was 0.94 ± 0.08 (kJ/m2).
For the T resin system, the force–elongation curve exhibited a remarkable similarity un-
der both room and cryogenic conditions, with GIIc values of 1.268 ± 0.091 (kJ/m2) and
1.216 ± 0.121 (kJ/m2) being obtained, respectively. The rationale behind the measured
GIIc values is discussed in more detail in the following section on the fractographic analysis.
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4. Discussion
4.1. Macro-Scale Interpretation of the Main Mode of Failure

The effect of tow undulation was evident from the cross-sectional views of the tested
specimens, as shown in Figure 2c. The side view of the tested specimens (Figure 8) revealed
a linear crack propagation pattern at room temperature, which was replaced with a zig-zag
crack propagation under LN2 conditions. The linear crack propagation was somewhat
expected from the ENF tests due to the propagation of a mode-II crack along the interlam-
inar plane [33]. The periodic zig-zag crack propagation in the LN2 environment, on the
other hand, suggests the coexistence of intra- and interlaminar damage propagation. The
reduction in the GIIc values, along with the presence of intra-laminar cracking, clarified
the dominant mode of failure as fiber/matrix debonding under LN2 conditions due to
the extreme cold affecting the regular resin types. These observations are linked to the
significant difference in the thermal expansion coefficients between the tested resins and
carbon fibers [10,36,37].
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4.2. Crack Propagation Surfaces and Resin Morphologies
4.2.1. Pre-Crack Region (Crack Initiation Zone)

Pre-crack insertion during conventional filament winding can be rather challenging
when compared to other mold-based manufacturing techniques (e.g., pre-preg laying,
RTM). In this process, the entire manufacturing operation must be temporarily halted, and
pre-cut non-sticking films need to be introduced at the crack-initiation regions on one part
of the flat mold. During this pause, the amount of liquid resin on the pre-tensioned carbon
fibers can change due to variations in the resin viscosities. As the process is continuous,
the tows subjected to this interruption form the upper part of the interlaminar region.
Consequently, the amount of resin on the interlaminar plane may vary, leading to the
occurrence of resin bagging [22]. To illustrate this effect, the pre-crack fronts of the selected
samples were analyzed using SEM.

The primary characteristic observed on the pre-crack fronts of all three types of samples
that fractured at room temperature was the presence of resin bagging (Figure 9A–C). This
issue led to the formation of periodic tow undulation. The undulated tow structure
created hills on the fracture surface, resulting in non-planar mode-II crack propagation.
This, in turn, left nearly perpendicular shear cusps at the side of the hills and caused
simultaneous fiber/matrix debonding to occur on the plateau. The damage shape of
the matrix was determined by the local stress state and the orientation of the hackles,
indicating the direction of crack propagation [46]. For the toughened T resin system, local
out-of-plane crack deflections revealed instances of crack jumping to other planes, and
non-uniform crack initiation occurred at the crack front. These characteristics are unique to
the conventional filament-winding process [30,31,33].

On the far region of the same undulated tow (Figure 9A–C), larger hackle formations
characteristic of mode-II crack propagation and fiber/matrix debonding regions were
demonstrated for the variance in the resin volume fraction along the interlaminar plane. The
fundamental reason for this was determined to be the limited control of the perpendicular
resin flow and tow overlapping [47,48] during the wet-winding process. In the investigated
cases, the resin flow problem was even more problematic due to the pre-crack sticking-film-
insertion process, where a total process stop was required.

For cryogenic conditions, the surface view was mostly flat and smooth, which suggests
fiber/matrix debonding without any plastic deformation (Figure 9D,E). The effect of tow
undulations was minor. However, again, for the toughened case, matrix hackle patterns and
fiber/matrix debonding damage modes can be seen together. Also, the tow misalignment
suggests that the tow movement was still effective for this toughened resin system due to
the sample’s plastic deformation capability under cryogenic conditions (Figure 9F).
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Figure 9. Fractographs belonging to the pre-cracked region of tested ENF samples; left shows RT
sample: (A) CFRP-CC resin; (B) CFRP-VI resin; (C) CFRP-T resin. Right shows LN2 sample: (D)
CFRP-CC resin; (E) CFRP-VI resin; (F) CFRP-T resin.

4.2.2. Far-Crack Region (Crack Propagation Zone)

Low-magnification images of the fracture surfaces of the investigated samples are
presented for all three specimen types in Figure 10. A fundamental difference in the CFRP-
VI resin laminate was the lower fiber wettability observed on the delamination surface.
In contrast, the size and quantity of the hackle patterns (serrations) [46] on the CFRP-CC
resin and CFRP-T resin surfaces were notably greater than those observed in the CFRP-VI
resin laminate. This discrepancy accounts for the variations in measured GIIc values at
room temperature. Another valuable observation was the coexistence of interlaminar
delamination (leaving hackle marks in between the continuous fibers) and fiber/matrix
debonding failure events for all three types of specimens (as highlighted in Figure 10A,C,E).
The continuous carbon fiber surfaces of the CFRP-CC resin laminates appeared relatively
smoother when compared to CFRP-VI resin, indicating poorer fiber/matrix adhesion in
the former. In contrast, the T resin system exhibited regions of the fiber/matrix interface
that were well preserved, indicating strong fiber/matrix adhesion. Even in cases of fiber
breakage, the presence of strong fiber/matrix adhesion was evident, leading to fiber
rupturing (Figure 10E).

Furthermore, the presence of perpendicular hackle patterns (Figure 10A) suggests
that the meso-structure resulting from the winding process induced non-planar crack
propagation. This, in turn, led to an increase in the measured GIIc values due to the tow
interlocking effect. The frequency of such patterns was relatively lower in the case of the
CFRP-VI resin (Figure 10C). When zoomed in (Figure 10B), the morphology of hackle
patterns revealed that the in-situ behavior of the CC resin was much more ductile when
compared to the VI resin. This is in contrast with the three-point bending results (Table 2).
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This contradiction suggests that the higher strain values measured for the CC resin system
during the ENF testing (Figure 7) were mainly due to the low fiber volume fraction ratio
and also the undulations in the tow structures, whose movement was enabled at room
temperature. On the other hand, the fiber/resin interaction was much more favorable in
the case of the VI resin and the CC resin, where the surfaces of the carbon fibers were not as
smooth, which caused a lower effect on the mode-II crack propagation (Figure 10D,E). The
toughened system’s resin damage morphology showed crack deflection in the investigated
region (Figure 10F). The toughness effect revealed its contribution to the damage mode
of the resin system due to the strong fiber/matrix adhesion and high shear deformation
capability (Figure 10F).
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4.2.3. Effect of LN2 on Multi-Scaled Interactions

In contrast to the tests conducted at room temperature, the quantity of resin failure
marks on the samples at cryogenic temperatures was notably smaller and less densely
distributed, indicating that resin failure and tow undulations had a reduced impact on
the fracture of the CC resin system (Figure 11A). Consequently, the zig-zag crack propa-
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gation (Figure 7B) observed on the macroscale was primarily attributed to fiber/matrix
debonding. However, in the case of the toughened resin system, the rate of resin failure
was significantly higher on the damaged surface, where the resin remained effective under
cryogenic conditions (Figure 11C). The overall appearance of the fracture surface of the
CFRP-VI resin laminates (Figure 11B) closely resembled that of the CFRP-CC laminates,
which further supports the similarity in the measured GIIc values.
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When zoomed in (Figure 11D,E), a notable shift in the resin morphologies for the CC
resin and VI resin was evident under cryogenic conditions. In this context, the fiber/matrix
interfaces displayed smaller and thinner hackles, a consequence of the brittleness effect [46].
Conversely, the dominance of resin damage was apparent for the T resin system, indicating
the contribution of the resin to the GIIc values under cryogenic conditions (Figure 11F). An
enhanced quality of fiber/matrix bonding was once again observed in the CFRP-VI resin
and CFRP-T resin laminates. This was particularly relevant for the cryogenic fracture of
the laminates, as the primary mode of failure was associated with fiber/matrix debonding.
Notably, the toughened CFRP-T resin still showed large fractured ductile hackles under
cryogenic conditions, alongside strong fiber/matrix adhesion. This explains the equivalent
GIIc values obtained between the RT and LN2 conditions for this resin system.

When further zoomed in, the shape of the hackles on the CFRP-CC resin laminate
unveiled an example failure mode unique to the cryogenic testing. This mode involved in
fiber/matrix interface cracking and fiber shear rupture (Figure 11G) due to the extreme cold
and large difference in the thermal expansion coefficients between the constituents [10].
This situation may have caused a self-cracking event prior to the loading, potentially leading
to a reduction in the GIIc values. This failure mode was not observed in the CFRP-VI resin
and CFRP-T resin laminates, where better fiber/matrix adhesion was achieved. In the case
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of the CFRP-T resin system, the strong fiber/matrix adhesion resulted in tow cracking
and splitting on the fiber (Figure 11I). Furthermore, the ductile resin failure morphology
revealed the cryogenic performance capability of this resin system (Figure 11I).

5. Conclusions

The mode-II delamination behavior of filament-wound CFRP laminates with different
resin types was extensively investigated under both room-temperature and cryogenic
conditions by employing a detailed fractographic analysis. Notably, the GIIc values of the
CC resin system exhibited a significant reduction, decreasing from 1.74 ± 0.17 (kJ/m2)
at room temperature to 0.88 ± 0.05 (kJ/m2) at cryogenic temperature. In contrast, both
the VI and T resin systems displayed relatively stable GIIc values between room and
cryogenic temperature. The measured GIIc values of the VI resin were 0.97 ± 0.21 (kJ/m2)
at room temperature and 0.94 ± 0.08 (kJ/m2) at cryogenic temperature. The GIIc values
for the T resin system were 1.268 ± 0.091 (kJ/m2) under room-temperature conditions and
1.216 ± 0.121 (kJ/m2) under cryogenic conditions. The following conclusions were drawn
based on the experimental findings of this study:

• The three-point bending tests on the neat epoxy specimens demonstrated that cryo-
genic temperatures led to a decrease in the elongation and an increase in the strength
and stiffness due to embrittlement. It became apparent that the neat epoxy’s per-
formance may not accurately reflect the cryogenic performance of the composites
due to the dominant influence of fiber/matrix interactions on the damage behavior.
Consequently, experimental efforts focusing on single-fiber tow/resin interactions
may be favored.

• The mode-II delamination behavior was notably affected by inherent resin bagging
and tow undulation problems associated with conventional wet winding. Their
presence caused complex 3D crack propagation. Tow movement at room temperature
provided resin ductility, contributing to an increase in the GIIc levels through a tow
interlocking mechanism.

• Matrix shear failure, fiber/matrix debonding and even fiber fracture events were
observed during crack propagation at room temperature.

• Under cryogenic temperatures, the dominant failure mode shifted towards fiber/matrix
debonding, characterized by visible zig-zag crack propagation, as seen from side views
of the specimens.

• The VI resin, with the lowest mixture viscosity, suffered from a wetting problem that
increased the contribution of the undulated fiber architecture (tow interlocking). This
mechanism explained the similar GIIc values measured at both room and cryogenic
temperatures, with the embrittlement events observed for the neat resin system having
a limited impact on the laminate behavior.

• The CC resin system, with a moderate mixture viscosity, enabled better wetting of
the interlaminar plane. This was associated with the pre-crack insertion process,
where the overall winding process was temporarily halted. The combination of the
undulated fiber architecture and matrix phase contributed to the highest GIIc levels
measured at room temperature. However, this case also experienced the most signifi-
cant GIIc reduction under cryogenic temperatures, which may be attributed to resin
embrittlement. The fractographic analyses suggested that nanoscale matrix cracking,
fiber shear fracturing and fiber/matrix debonding events collectively contributed the
ultimate fracture.

• The T resin system, with the highest mixture viscosity, likewise offered good wetting.
Parallel to the VI resin system, the GIIc values of the T resin system remained stable
under cryogenic conditions. The fractographic analyses indicated better fiber/matrix
adhesion under cryogenic temperatures. This fact simultaneously allowed for an equal
contribution of the matrix phase during mode-II crack propagation. Notably, typical
shear hackles inherent to mode-II crack propagation were observed on the fracture
surfaces of the samples tested under cryogenic conditions. This situation was not
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present in any of the other resins due to the fact that the damage progression under
cryogenic temperatures was always initiated by fiber/matrix debonding followed by
other failure events.

In summary, the reported results and conclusions underline the key considerations re-
lated to material selection and manufacturing-related issues that influence the performance
of filament-wound laminates under cryogenic conditions. Although such problems may
be overcome by the use of more advanced AFP techniques, the presented interpretation
of the delamination behavior of wet-wound laminates may provide guidance for further
material development. With such efforts, pressure vessels with limited operational lifetimes
(e.g., sounding rockets) could still be efficiently manufactured through conventional fil-
ament winding, a method that remains a dominant and cost-effective manufacturing
approach in terms of volume.
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