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Abstract: Fly ash has been utilized as a reinforcing material in the production of aluminum matrix
composites, and in this investigation, Al-Si (LM6) fly ash composites were fabricated using the
compocasting method. Various compositions of fly ash were incorporated into the samples (4, 5 and
6 wt%), and the preparation temperature ranged from 560 to 800 ◦C. This study investigated the
thermal (CTE and DTA) and chemical properties (XRD) of fly ash reinforcement and the aluminum
melt in the composites. The results revealed that composites with 5 wt% of fly ash exhibited the
lowest CTE value compared to those with 4 and 6 wt%. This observation was corroborated by XRD
analysis, indicating a reaction between the fly ash particles and the aluminum melt. However, the
DTA analysis did not find a significant impact of the addition of fly ash on the melting temperature of
the prepared composites. In contrast, this study identified and investigated the existence of reaction
effects between the fly ash particles and the aluminum melt.

Keywords: aluminum; composites; thermal; fly ash; compo-casting

1. Introduction

Fly ash, a by-product of coal combustion, is considered an environmental pollutant
when not appropriately disposed of [1]. This waste material is abundant and poses a risk
of environmental pollution if not handled properly. Instead of contributing to pollution
through disposal, extensive research has been conducted to repurpose this waste into
valuable materials. Various studies have explored the chemical composition of fly ash
particles and their potential applications in industries such as construction, automotive,
and other heavy-duty applications. Fly ash mainly contains SiO2, Al2O3, Fe2O3 and
oxides such as Mg, Ca and P, including lesser amounts of particles such as crystalline-
phase quartz, mullite and hematite [2,3]. Recently, fly ash particles have been used as
a reinforcement material in the fabrication of aluminum matrix composites due to their
chemical composition [4], light weight [1,5,6] and low cost [1]. The usage of fly ash particles
is reasonable and economical for replacing the conventional ceramic material (Al2O3,
SiC, TiC, etc.) reinforcement. Multiple studies confirm that the incorporation of fly ash
reinforcement enhances the strength, stiffness, damping capacity, wear resistance and
thermal resistance, simultaneously reducing the density of the aluminum composite [2,7,8].

Researchers have employed various methods, including powder metallurgy, in their
efforts to manufacture aluminum fly ash composites [4,9], liquid casting [1,4,10], hot press-
ing [6], pressure infiltration [5] and others. According to [4], the mechanical, thermal,
physical and chemical behavior of the aluminum composites were influenced by their
processing method. The successful incorporation of reinforcement particles into the alu-
minum matrix [11,12] and obtaining good bonding among the reinforcement particles and
matrix [12–14] are required in the enhancement of aluminum matrix composites. Thus, a
suitable fabrication method is essential to achieve the requirement. Because of its simplicity,
ease of adoption and suitability for mass production, the liquid casting method is preferred
over other methods. In this study, an effort is made to produce an Al-Si (LM6) alloy rein-
forced with fly ash particles using the compocasting method. The investigation focuses on
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the chemical reactions between fly ash reinforcement and matrix material, examining their
impact on the thermal properties of the composites.

2. Methodology

The matrix material employed is an aluminum alloy (LM6) sourced from Foundry
Equipment Supply, Selangor, Malaysia, while reinforcement material consists of fly ash
particles obtained from Jimah Power Plant in Port Dickson, Negeri Sembilan, Malaysia.
Fly ash particles are sieved to 45 µm to obtain smaller particle sizes. Aravindan et al. [15]
stated that a smaller particle size of the reinforcement leads to improved properties of the
composite. Subsequently, the fly ash used in this research undergoes both particle size anal-
ysis and chemical composition (XRF) analysis to verify the average particle size (<45 µm)
and the chemical compounds present in the utilized fly ash. The chemical compositions
of LM6 and fly ash are detailed in Tables 1 and 2. Figure 1 illustrates the phase analysis
of fly ash particles conducted through XRD analysis. Prior to its incorporation into the
aluminum slurry, the fly ash undergoes pre-heating at 600 ◦C for 3 h to eliminate impurities
and moisture content. The proportions of fly ash utilized by weight are 4%, 5% and 6%.

Table 1. Chemical composition of LM6 used.

Element Cu Fe Mg Mn Ni Pb Si Al

Percentage (%) 0.10 0.60 0.10 0.50 0.10 0.10 10.00–1300 Remainder

Table 2. Chemical composition of fly ash used.

Compound Na2O MgO Al2O3 SiO2 CaO K2O Fe2O3 TiO2 LOI

Percentage (%) 0.481 1.102 15.939 65.61 2.098 0.684 4.517 0.813 1.87
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Figure 1. XRD analysis of fly ash particles.

LM6 ingots were kept in a graphite crucible and subjected to heating in an electric
furnace at 800 ◦C over a period of 2 h. Subsequently, the temperature of the aluminum
slurry was decreased and sustained at 600 ◦C, reaching a semi-solid state. A measured
quantity of fly ash particles was then introduced into the semi-solid aluminum matrix. The
semi-solid mixture underwent simultaneous stirring using a mechanical stirrer powered
by an electric motor operating at 300 rpm (Figure 2). Stirring persisted until complete
integration of all fly ash particles into the semi-solid aluminum matrix. This mechanical
stirring process was employed to ensure a uniform distribution of fly ash particles within
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the aluminum matrix. Subsequently, the semi-solid aluminum composite was poured into a
pre-heated mold at room temperature. The mold had been pre-heated in advance to prevent
temperature shock to the aluminum composite during the pouring process. The pouring
temperature was maintained slightly higher than the casting temperature to improve the
fluidity of the slurry.
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Figure 2. Schematic diagram of casting process.

Samples for coefficient of thermal expansion (CTE), differential thermal analysis (DTA)
and phase analysis (XRD) characterization were derived from the castings. These samples
underwent mechanical grinding and polishing using standard metallographic techniques
to attain a cylindrical shape (10 mm × 15 mm) (length × diameter) for CTE analysis. The
alteration in dimension of the sample before and after exposure to heat is shown in Figure 3.
Additionally, other samples were subjected to mechanical polishing and etching (Keller’s
Reagent) for XRD analysis.
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∆T is the change in temperature, lo is the original length of sample before exposure
to heat, do is the original diameter of the sample before exposure to heat, l f is the final
length of sample during exposure to heat, d f is the final diameter of the sample during
exposure to heat, and ∆T is the change in temperature (To − Tf ). The change in length with
temperature for a solid material is stated as follows:

l f − l0
l0

= α1

(
Tf − T0

)( l f − l0
l0

)
= α1

(
Tf − T0

)
α1 =

1

l
(

dl
dT

) (1)
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where l0 and lf are the original and final lengths with the temperature change from T0 to Tf,
respectively. The parameter α1 CTE has units of reciprocal temperature (K − 1) such as
µm/m·K or 10–6/K.

3. Results and Discussion
3.1. Thermal Analysis of Pure LM6 and Fabricated Aluminum Matrix Composites (AMCs) Using
the Coefficient of Thermal Expansion

The coefficient of thermal expansion (CTE) is a key material property, especially when
a composite structure works in a temperature-changing environment. Figure 4 presents the
analyzed results of CTE of LM6 and AMCs performed in the temperature range between
25 and 250 ◦C.
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Based on Figure 4, the CTEs of LM6 and AMCs decreased as the amount of fly ash
particles reinforced increased from 4 to 6 wt%. This indicates that introducing a high
amount of fly ash particles to the Al-Si-based AMCs is beneficial to dimensional stability.
This is due to the presence of ceramic compounds (SiO2, Al2O3, etc.) in fly ash particles,
which led to a reduction in the temperature sensitivity of the fabricated AMCs, hence
improving their dimensional stability. This finding aligns with [15] conclusion that the
temperature sensitivity of aluminum diminishes when micro- and nano-sized ceramic
reinforcements are present. This is attributed to the fact that, at a constant volume percent,
the reduced distance between micro- and nano-sized ceramic particles contributes to
this effect.

In accordance with thermodynamic principles, SiO2 and Fe2O3 in fly ash particles have
the potential to react with molten Al, yielding Al2O3. Al2O3 possesses elevated mechanical
and thermal properties, thereby enhancing the overall characteristics of the manufactured
aluminum fly ash composites. Moreover, it also benefits the dimensional stability of the
composites, which results in a lower CTE being obtained. Fly ash particles decompose
progressively and release Si and Fe into the Al melt during the reaction. Meanwhile, the Si
and Fe elements were able to form intermetallic compounds with the Al and appear as the
second-phase precipitates in the castings during the solidifications that occurred. These
results were found by [16]. The reactions are shown in Equation (2) and (3) below:

2Al(l) +
3
2

SiO2(s) →
3
2

Si(s) + Al2O3(s) (2)

2Al(l) + 2Fe2O3(s) → 2Fe(s) + Al2O3(s) (3)

Based on Figure 4, the CTE of LM6 at 100, 150, 200 and 250 ◦C were 14.01, 16.25, 18.09
and 19.32 × 10−6/K, respectively. However, the CTEs of pure aluminum and Al-Si alloys
at 20 to 202 ◦C are 25.3 and 24.3 × 10−6/K, which is higher than the measured CTE. Upon
the addition of Si as the alloying element of Al-Si alloy, the CTE of the alloy has decreased
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by about 29% compared to pure aluminum. In this research, the LM6 was reinforced with
fly ash particles as the reinforcement. Based on the chemical composition of fly ash (Table 2
and Figure 1), the fly ash particles contained a high composition of SiO2 and other oxide
elements. The decreases in the CTE value of fabricated AMCs might have happened due
to the existence of the oxide content in fly ash particles. According to [17], the thermal
expansion coefficient of aluminum depended strongly on the oxide content and decreased
almost linearly with the increase in oxide content. Moreover, it was shown that the Si and
SiO2 were able to reduce the CTE of the AMCs. The ability of Si to reduce the density and
CTE and to improve the ambient temperature mechanical properties such as tensile and
hardness properties of aluminum had been catalytic in engineering considerable interest
in the materials science community to explore the possible application of Al-Si alloys
for heavy-duty industries [18]. The AMCs can obtain excellent physical and mechanical
properties resulting from the combination of good properties of matrix and reinforcement
materials. The properties have made AMCs able to withstand the extreme conditions often
encountered in changing high-temperature environments [19].

Generally, the CTE of AMCs can be controlled by adjusting the volume fraction
of reinforcement. On the other hand, this is limited by the low ductility and thermal
conductivity of the composite with a high volume fraction of reinforcement. Thus, their
ductility and formability decrease greatly as the reinforcement volume fraction increases,
despite smaller CTEs being obtained [20]. Upon the addition of 4 wt% of fly ash particles,
the CTEs at 100, 150, 200 and 250 ◦C decreased with a marginal reduction from 14.01, 16.25,
18.09 and 19.32 × 10−6/K to 13.68, 15.72, 18.02 and 18.94 × 10−6/K, respectively. It is
also shown that the CTE of AMCs increased with the increase in temperature. However,
the measured thermal expansion value of the AMCs was lower (1.97%) than the pure
LM6 (19.32 × 10−6/K). As the amount of fly ash particles reinforced increased to 5 wt%,
the CTE of AMCs measured decreased again to 13.29, 15.68, 17.33 and 18.32 × 10−6/K
at 100, 150, 200 and 250 ◦C. Based on Figure 4, AMCs with 5 wt% of fly ash particles
obtained the lowest CTE value. This is due to the fact that the fly ash particle reinforcement
was increased to 6 wt%, and the CTE values of AMCs increased to 13.94, 15.93, 18.10 and
19.30 × 10−6/K at the same temperatures. This result tallies with the XRD analysis obtained
(Figure 5). As the 6 wt% of fly ash particles was added, the intensity peaks of the SiO2
were distinctly increased. The intensity peaks depend on the orientation of crystallites
and the phases of the compounds [21]. Based on the XRD analysis, the SiO2 existed in
the quartz structure in the AMCs with 6 wt% of fly ash. On the contrary, the SiO2 existed
as a tridymite structure in the AMCs with 5 wt% of fly ash. According to [22], tridymite
structures resulted in lower CTE values compared to quartz structures. This variation of
structures exists due to the temperature variations that occurred during the fabrication
process. Thus, it might be the main factor that affects the CTE value of prepared AMCs.
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The lower CTE value of fly ash compared to the Al-Si matrix alloy and the ability of
the reinforcements to effectively constrain the expansion of the matrix might be the main
reason for the reduction in CTE values of AMCs. It is reported that fly ash has a CTE of
about 6.1 × 10−6/◦C in the temperature range of 20 to 202 ◦C [23]. Thus, upon the addition
of fly ash particles, the CTE value of AMCs was decreased. The higher amount of fly ash
particles added a lower CTE value of AMCs than the pure LM6.

Table 3 shows the dimensions of the LM6 and AMC samples before and after the CTE
test. It is shown that the dimensions (length and diameter) of LM6 increased to 0.15% in
length and 0.27% in diameter after the CTE test. Upon the addition 4 wt% of fly ash, the
increase in length after the CTE test was reduced from 0.15% to 0.08%. Besides that, the
diameter of the sample also decreased from 0.41% to 0.27%. Meanwhile, the addition of
5 wt% of fly ash shows some increase in the dimension of the sample after the CTE test.
The length of the AMC samples with 5 wt% fly ash had a marginal increase of 0.08% from
12.09 to 12.10. Meanwhile, the diameter of the sample increased by 0.17% from 6.35 to
6.36 mm. The addition of 6 wt% of fly ash shows no differences in the length of the AMC
samples after CTE. This is due to the AMC samples returning to their original length after
the CTE test, while the diameter of the AMC samples increased by 0.15% from their original
diameter. This result shows that the incorporation of fly ash particles as reinforcement in
LM6 alloy is able to reduce the CTE value of the AMCs.

Table 3. Dimension of pure LM6 and AMCs before and after coefficient of thermal expansion
(CTE) test.

Sample
Before After Percentage of Difference

(%) (Length)
Percentage of Difference

(%) (Diameter)Length (mm) Diameter (mm) Length (mm) Diameter (mm)

LM6 13.29 7.34 13.31 7.37 0.15 0.41
LM6 + 4%FA 11.90 7.31 11.91 7.33 0.08 0.27
LM6 + 5%FA 12.09 6.35 12.10 6.36 0.08 0.17
LM6 + 6%FA 10.41 6.46 10.41 6.47 0 0.15

According to [24], the CTE of particle-reinforced MMCs is affected by various factors,
such as interfacial reactions and plasticity. This is due to the fact there is a CTE mismatch
between the particle and matrix during heating or cooling, as well as residual stresses [24].
The incorporation of ceramic reinforcements in metallic matrices of MMCs generates
residual stresses during cooling from the material processing temperature due to the large
difference between the CTE of the reinforcement and matrix [25]. In general, the CTE of the
LM6 matrix was much larger than that of the reinforcing particulate. Thus, internal stress
rose in the composites as the temperature changed. The changes in the internal stresses
caused the dimensional of the AMC samples to change. Similar results are also found by
Kikuchi in his research on CTE of aluminum magnesia composites [22].

3.2. Thermal Analysis of Pure LM6 and Fabricated Aluminum Matrix Composites (AMCs) Using
Differential Thermal Analysis (DTA)

Differential thermal analysis (DTA) was performed on pure LM6 and aluminum
matrix composites (AMCs) to determine the reaction temperature between LM6 and fly ash
particles. It involves the measuring of the relative temperature (∆T) between the sample and
reference material. Both materials are placed at the same temperature (room temperature).
During DTA, all LM6 and AMC sample analyses were carried out over a temperature range
of 30 to 900 ◦C at a constant heating rate of 5 ◦C/min. The furnace chamber is then filled
with flowing argon at 20 mL/min. In this research, thermal analysis by differential thermal
analysis (DTA) was carried out in order to determine the effect of fly ash reinforcement on
the melting temperature of casted AMCs. Based on Figure 6, the addition of fly ash particles
did not produce a significant difference in the DTA results of fabricated AMCs. The highest
melting temperature was achieved by AMCs with 5 and 6 wt% of fly ash at 600 ◦C.
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Figure 6. DTA curves of pure LM6 and fabricated AMCs with (4, 5 and 6 wt%) of fly ash reinforcement.

Figure 6 shows the DTA curves of pure LM6 and fabricated AMCs with different
compositions (4, 5 and 6 wt%) of fly ash particles. The DTA curve of each sample shows
endothermic peaks at different temperatures. These results are due to distinct reinforcement
compositions (4, 5 and 6 wt% of fly ash reinforcement). As can be seen, there is a single
endothermic and broad exothermic peak existing in the curve of the LM6 sample. This
result was also found by [26] in their research regarding the crystalline structure of a metal
impregnation. The endothermic peak indicates the melting point of the sample [15]. The
endothermic peak of pure LM6 was observed in the range of 580.61 to 600.19 ◦C. It was
shown that the pure LM6 starts to melt at 580.61 ◦C (liquid and solid) and becomes fully
liquid at 595 ◦C (Tm). Meanwhile, the crystallization temperature (Tc) was indicated at
580.61 ◦C. The broad exothermic peak in the curve of the LM6 sample existed at the range
of 600 to 900 ◦C. According to Balaraman et.al [27], the exothermic peak at around 800 ◦C
indicates the oxidation of aluminum in the alloy (Equations (4)–(6)). However, upon the
addition of fly ash reinforcement (4, 5 and 6 wt%), there is a single endothermic peak, and
a few weak exothermic peaks also exist. Generally, exothermic peaks in DTA exist due
to oxidative decomposition. Based on the chemical composition of fly ash (Table 2 and
Figure 1), the main composition of fly ash was in the form of oxide. Thus, the existence
of a few weak exothermic peaks in the fabricated AMCs might be due to the oxidative
decomposition that has occurred among the oxide element contained in fly ash particles. In
another finding by Zagorka et al. [28] the temperature interval from 100 to 450 ◦C hydration
water was altogether lost [28].

4Al3+ + 12e− → 4Al (4)

6O2− − 12e− → 3O2 (5)

4Al(l) + 3O2(g) → 2Al2O3(s) (6)

Upon the addition of fly ash particles, the endothermic peak of AMCs increased in the
range of 588.59 to 604.81 ◦C at 4 wt%, 597.87 to 606.66 ◦C at 5 wt%, and 595.44 to 606.67 ◦C
at 6 wt% of fly ash reinforcement, as shown in Figure 7b–d. The crystallization temperature
(Tc) of AMCs with 4 wt% of fly ash reinforcement increased by 1.4% from 580.61 ◦C (pure
LM6) to 588.59 ◦C (Figure 7b), while the melting temperature (Tm) AMCs with 4 wt% of
fly ash increased by 0.51% from 595 ◦C (pure LM6) to 598 ◦C (Figure 7b). As the amount
of fly ash reinforcement increased to 5 wt%, the crystallization temperature (Tc) of the
AMCs also increased by 2.97% to 597.87 ◦C from the melting temperature of pure LM6. The
melting temperature of AMCs with 5 wt% of fly ash increased correspondingly by 0.83%
from 595 ◦C (LM6) to 600 ◦C (Figure 7c). Meanwhile, the crystallization temperature of
(Tc) AMCs with 6 wt% fly ash reinforcement was increased to 595.44 ◦C (2.55%) from the
crystallization temperature (Tc) of pure LM6. However, the melting temperature of AMCs
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with 6 wt% of fly ash reinforcement is similar to the melting temperature of AMCs with
5 wt% of fly ash, which is 600 ◦C.
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Based on Figure 7b, a single and broad exothermic phase existed as 4 wt% of fly ash
reinforcement was added. A broad exothermic peak existed at the temperature range of
663.14 to 824.17 ◦C. According to Balaraman et al. [27], the broad exothermic at around
800 ◦C indicates the oxidation of aluminum [28]. The broad nature of this curve arises
from the fact that the Al2O3 that existed in the fly ash reinforcement maintained a gas-
impermeable layer over the liquid aluminum, and the thermal expansion mismatch be-
tween the layer and liquid resulted in cracking the Al2O3 layer and thus led to continuous
oxidation. Moreover, according to Figure 7c, two small exothermic peaks existed as 5 wt%
of fly ash reinforcement was incorporated. The first exothermic peak lies in the temperature
range of 640.19 to 664.35 ◦C, while the second exothermic peak lies in the temperature range
of 772.27 to 831.84 ◦C. According to Terzic et al. [29], the exothermic peak around 500 to
700 ◦C corresponds to the transformation of organic matter present in the fly ash composi-
tions that are incorporated into AMCs and to the decomposition of CaCO3 (Equation (7))
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(composition of fly ash in Table 2) and the burning of residual coal present in the fly ash,
whereas the second small exothermic peak at a temperature range of 772.27 to 831.84 ◦C
might be due to the oxidation of aluminum in the AMCs [28]. On the other hand, a weak
exothermic peak also existed in AMCs with 6 wt% of fly ash at temperatures in the range of
714.29 to 828.68 ◦C. Other than the oxidation of aluminum in AMCs, the weak exothermic
peak in the range of 600 to 1000 ◦C might be attributed to the reaction of MgO and TiO2 that
existed in fly ash reinforcement. According to Klancnik et al. [30], the TiO2 starts to react,
which causes the phases’ irreversible conversion to the equilibrium phase upon heating
above temperatures in the range 600–800 ◦C [30]. Conversely, according to Ropp, MgO
will produce light-burned magnesia (MgO) upon heating to 700 to 1000 ◦C (Ropp Elsevier).
Due to this reason, the exothermic peak that existed in AMCs might be attributed to the
reaction of the compound that existed in fly ash reinforcement that occurred in AMCs.

CaCO3 → CaO + CO2 (7)

In the fabrication process, typically at 800 ◦C, the molten LM6 has an opportunity to
engage in a reaction with the fly ash. Elements like SiO2 present in the fly ash reinforcement
undergo reduction from their oxides and can diffuse within the molten LM6 in the compos-
ite. With an increase in the soaking time of the aluminum–fly ash composite, substantial
amounts of SiO2 and Al2O3 are reduced from the fly ash particles, releasing Si and Al,
which then integrate into the aluminum matrix [15] as shown in Figure 8. Upon melting the
LM6 alloy with fly ash particles, a reaction occurs in the subsequent sequence, facilitated by
the presence of various compounds, notably Al2O3 and SiO2, within the fly ash particles.
Given that chemical reactions ignite upon contact between molten aluminum and fly ash
particles, SiO2 and Al2O3 were reduced by the molten aluminum and subsequently diffused
into the fly ash-free spaces in the aluminum matrix [15].
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The rise in melting temperature (evident through an endothermic peak) may be at-
tributed to the presence of various compounds in the fly ash reinforcement with higher
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melting temperatures than pure LM6. Notably, compounds such as Al2O3 (2072 ◦C) and
SiO2 (1600 ◦C) [15,31] are involved. These compounds are recognized for their favorable
properties, including high melting temperatures and superior mechanical and physical char-
acteristics compared to pure LM6, contributing to the production of enhanced aluminum
matrix composites (AMCs).

4. Conclusions

The Al-Si (LM6) fly ash composites were fabricated using the compocasting method.
This study delved into the investigation of chemical reactions occurring between the fly ash
particles and the aluminum melt. From the obtained results, the following key conclusions
can be drawn:

(1) The CTE values of Al-Si (LM6) fly ash composites decreased with the addition of fly
ash particles. The lowest CTE value achieved by Al-Si (LM6) fly ash composites with
5 wt% of fly ash (18.32 × 10−6/K) is 5.18% lower than the CTE value of pure LM6.

(2) The values of CTE obtained were parallel with the chemical reaction obtained in
XRD analysis.

(3) Based on DTA analysis, fly ash particles have no significant effect on the melting
temperature of Al-Si (LM6) fly ash composites. However, the reaction that occurred
among the particles was detected in the DTA graph.
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