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Abstract: Graphene hybrid-filler polymer composites have emerged as prominent materials that
revolutionize heavy industries. This review paper encapsulates an in-depth analysis of different
influential factors, such as filler/graphene type, aspect ratios, dispersion methods, filler-matrix
compatibility, fiber orientation, synergistic effects, different processing techniques, and post-curing
conditions, which affect the processing and properties of graphene hybrid polymer composites,
as well as their resultant applications. Additionally, it discusses the substantial role of graphene
reinforcement with other fillers, such as carbon nanotubes, silica, nano-clays, and metal oxides, to
produce functionalized hybrid polymer composites with synergistically enhanced tailored properties,
offering solutions for heavy industries, including aerospace, automotive, electronics, and energy
harvesting. This review concludes with some suggestions and an outlook on the future of these
composite materials by emphasizing the need for continued research to fully optimize their potential.

Keywords: graphene; polymers; hybrid composites; influencing factors; applications

1. Introduction

Graphene hybrid-filler polymer composites are a strong candidate in material science
due to their exceptional properties and transformative implications in heavy industries.
The remarkable mechanical, thermal, and electrical properties and lightweight of graphene
composites are due to graphene, a two-dimensional material with sp2 bonding of carbon
atoms. The integration of graphene in polymer matrices with various fillers leads to multi-
functional composites with magical properties that offer durability and competence under
rigorous engineering conditions. Due to its high tensile strength (≈1 TPa) [1], intrinsic
mobility of charge carriers (≈200,000 cm2 V−1 s−1) [2], and intrinsic thermal conductivity
(≈5000 W m−1 K−1 at room temperature) [3], graphene is ideal for producing polymer
composites with substantial increase in strength, conductivity, and thermal stability. More-
over, the presence of graphene with multi-fillers, e.g., carbon nanotubes (CNTs), nano-clays,
metal oxides, carbon black, silica, and one-dimensional nanowires plays a critical role in
producing polymer composites with diverse properties [4]. The introduction of graphene
with these fillers results in complex systems with synergistic effects [5] to produce hybrid,
ternary, and quadra polymer composites, which open avenues for advanced applications
in heavy industries [6]. For instance, graphene combined with CNTs creates an entan-
gled structure and increases mechanical strength and electrical conductivity [7]. However,
when combined with nano-clays, graphene promotes thermal stability and barrier proper-
ties [8]. Combining graphene with metal (e.g., silver and copper) nanoparticles offers higher
electrical conductivity and antimicrobial properties [9,10]. Furthermore, when combined
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with boron nitride microparticles (micro-BN), graphene nanoplatelets (GNPs) significantly
increase the thermal conductivity of epoxy composites [2].

However, the fabrication and performance of these polymer composites is highly influ-
enced by several factors [11], including the type of polymer matrix, types and morphologies
of multiple fillers, their concentrations, quality, and aspect ratio of graphene, as well as the
processing methods of composite preparation [12]. The production and performance of
graphene hybrid polymer composites are influenced by several key factors. The type and
proportions of graphene used can have a significant impact on the mechanical, thermal,
and electrical properties of the composite. The compatibility of the filler matrix, including
the interfacial interaction between the graphene and the polymer, is essential to ensure
effective load transfer and property improvement. The optimal concentrations of graphene
and other fillers must be balanced to achieve improved properties without compromising
processability. The uniform dispersion of graphene throughout the polymer matrix is
critical to avoid agglomeration, which could reduce benefits. The orientation of graphene
fibers or flakes, randomly distributed or aligned, can tailor the anisotropic properties of the
composite. Synergistic effects between graphene and other nano-reinforcements, such as
MXene, can lead to superior mechanical, thermal, and electrical performance. The process-
ing techniques employed, such as solution mixing, in situ polymerization, or melt mixing,
can influence dispersion, alignment, and interfacial interactions. Finally, post-treatment
and functionalization of graphene can further improve compatibility with the polymer
matrix and the overall properties of the composite [13,14].

The ability of graphene hybrid-filler polymer composites to withstand extreme con-
ditions while maintaining their durability and efficiency makes them vital for fulfilling
industrial demands. In heavy industries, graphene hybrid-filler polymer composites are
utilized in manufacturing lightweight structural components, thermal management sys-
tems for electronic devices, and conductive elements in energy storage devices [15,16].
Moreover, graphene hybrid polymer composites have been extensively studied for cru-
cial applications in the aerospace, automotive, electronics, and energy storage industries.
These composites improve the stability and longevity of graphene in lithium-ion batter-
ies (LIBs) by expanding layer spacing, preventing restacking, and providing additional
accommodation sites for Li+. The addition of carbon nanotubes (CNTs) or fullerenes into
graphene nanosheets further increases the specific capacitance of LIBs [17]. Additionally,
highly conductive 3D printable polymer-graphene hybrid composites have been devel-
oped for micro-supercapacitors and stretchable light-emitting displays. Fabricating highly
conductive flexible graphene circuits via 3D printing provides excellent shielding from
electromagnetic interference. These advances in graphene-based hybrid-filler polymer com-
posites have the potential to significantly improve the performance and efficiency of several
industries, such as aerospace, electronics, energy storage, and automotive [18]. Figure 1 rep-
resents global research trends on graphene hybrid polymer composites, including factors
affecting processing and properties, as well as applications in heavy industries.

Thus, in this paper, we summarized the key factors that play a decisive role in the
development and performance evaluation of graphene hybrid polymer composites, and
the applications of these polymer composites in various industrial sectors were critically
reviewed. In the end, a few suggestions and prospects will be proposed to overcome the
structural flaws and fully harness the potential of these polymer composites.
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ideal candidate for applications involving electrical conductivity, e.g., sensors and con-
ductive coatings [22]. 
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2. Influencing Factors of Graphene Hybrid Polymer Composites
2.1. Graphene Type and Aspect Ratio

Filler type and aspect ratio are the backbone of the fabrication of smart composites [19].
While dealing with graphene hybrid polymer composites, the choice of graphene type plays
a decisive role in portraying the structural and functional properties of the final composite.
Graphene comes in several forms, each with unique properties and applications. Here are
the primary types: pristine graphene, graphene oxide (GO), and reduced graphene oxide
(rGO), as shown in Figure 2. However, each type has its unique structural characteristics,
which significantly influence the performance and tailor the properties of the resultant
composites. For example, pristine graphene, a single layer of carbon atoms arranged in a
hexagonal lattice, greatly boosts mechanical features such as tensile strength and Young’s
modulus of polymer composites due to its intrinsic structural organization and atomic-level
thickness. Moreover, with a high aspect ratio, pristine graphene sheets present effective
load transfer and stress distribution properties [20]. On the other hand, GO keeps oxygen-
containing functional groups, which highly facilitate the dispersibility and strong interfacial
interactions through polymer matrices, directing them to enhanced thermal stability and
mechanical properties [21]. Reduced graphene oxide (rGO) is obtained by the reduction
of GO and owns several oxygen functionalities. However, the exceptional structure of
rGO supports effective charge transport in the composite compared to GO. It thus shows
higher electrical conductivity and mechanical strength, making it an ideal candidate for
applications involving electrical conductivity, e.g., sensors and conductive coatings [22].
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In recent years, various graphene derivatives and nanostructures have been employed
to manufacture polymer composites for desired applications. Graphene nanoplatelets
(GNPs), with their plate-like shape and high aspect ratio, improve the strength and tough-
ness of polymer composites [24]. Graphene and graphene oxide quantum dots, with their
quantum confinement effects and tunable electronic properties, optimize composite materi-
als’ electrical conductivity and optical characteristics [25]. Graphene nanoribbons (GNRs),
with their one-dimensional structure, offer exceptional mechanical strength and superior
thermal conductivity [26]. Ultralight and porous graphene aerogels (GAs) provide thermal
stability and energy absorption properties [27]. Finally, graphene masterbatches simplify
the incorporation of graphene into composites, ensuring uniform distribution for consistent
performance [28]. These innovations enable the design of advanced composite materials
with tailored properties for various industrial applications, opening new perspectives in
materials engineering.

Additionally, graphene holds great promise due to its discrete dimensions, which al-
low it to combine with other fillers. For instance, combining graphene with CNTs maintains
micrometer lengths and 10–30 nm diameters. This scheme establishes a synergistically infil-
trated network through polymers, producing materials with superb electrical conductivity
(1000–3000 S m−1), mechanical strength, and thermal conductivity [29,30]. Furthermore,
graphene combined with metal nanoparticles such as gold (Au), silver (Ag), and copper
(Cu), offers nanoscale dimensions (<100 nm in diameter) and produces a highly connected
network structure in the polymer matrix, presenting a higher electrical conductivity of
107 S m−1 [31,32]. Besides the dimension, the aspect ratio of graphene drastically impacts
the structural features and properties of the polymer composites. The higher aspect ratio
promotes better dispersion and interfacial adhesion and thus helps to achieve intercon-
nected network structures in polymer matrices, resulting in increased mechanical strength
and electrical conduction [33,34]. Long fibers, e.g., CNTs and CFs, can also make a continu-
ous network in a polymer matrix, even with low loading, which precedes excellent stress
distribution, heat dissipation, tensile strength, and resistance to structural deformation [32].

Conversely, the low aspect ratio of short nanoparticles results in gaps and irregular
networks, which hinder the overall performance of the composite. Nevertheless, filler type,
size, and aspect ratio are crucial to producing composite materials with tailored properties
for specific applications [35]. Table 1 summarizes the role of different types of graphene
with various aspect ratios reported in published research.
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Table 1. Graphene hybrid polymer composites with diverse aspect ratios and different types of
graphene types and major findings.

Composite Name Graphene
Type/Derivatives

Graphene Aspect
Ratio (wt.%) Findings Ref.

Short carbon fiber-reinforced polyether
sulfone composites by graphene oxide

(GO) coating
GO 0.5 31.7% enhanced Young’s modulus

and 12.1% tensile strength [36]

GO-coated short glass fiber-reinforced
polyether sulfone composites GO 0.5 25.4% enhanced Young’s modulus

and 10.2% tensile strength [37]

Multi-graphene platelets (MGPs) and
carbon nanotubes epoxy composites MGPs 0.9 146.9% increase in

thermal conductivity [38]

Graphene and copper nanoparticles-based
epoxy composites Pristine graphene 40 6650% increase in

thermal conductivity [39]

Reduced graphene oxide sheets
(RGO)/cellulose nanocomposite RGO 10 71.8 S m−1

Electrical conductivity
[40]

Moreover, Tarani et al. [41] examined the influence of graphene nanoplatelets (GNPs)
with an average platelet diameter of 25 µm (M25) aspect ratio on the mechanical properties
of high-density polyethylene (HDPE) nanocomposites. Figure 3 shows that adding GNPs
improves both the storage and loss modulus of the nanocomposite compared to pure
HDPE, indicating an enhancement of the mechanical properties. This enhancement is more
evident in nanocomposites with higher proportions of GNPs, suggesting that the aspect
ratio of GNPs plays a significant role in the reinforcement of the HDPE nanocomposite.
Tan (δ) is the ratio of the loss modulus to the storage modulus and is used to identify the
glass transition temperature of the material. A sharp peak in neat HDPE shows its glass
transition temperature. The broader and shifted peaks in the nanocomposites suggest that
the GNPs increase the thermal stability and have a significant impact on the mechanical
damping and thermal properties of HDPE, potentially extending its application range.
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2.2. Filler-Matrix Compatibility

Filler-matrix compatibility is a crucial factor in achieving robust and flawless compos-
ites. Graphene’s 2D structure, nanometer size, and high surface area aid in the infusion
capability to fabricate polymer composites with interlinked structures and expanded prop-
erties [42]. A well-maintained filler-matrix compatibility aids in realizing a uniform dis-
persion of the filler and an ordered structure with tailored properties [43–45]. Lu et al. [46]
conducted molecular dynamics simulations to compare the elastic properties of graphene-
and fullerene-reinforced polymer composites. They found that the size and morphology of
graphene fillers strongly influence stiffness improvement, with smaller graphene flakes
(2–4 nm radius) providing higher reinforcement than larger flakes or spherical fullerene
fillers. This effect was attributed to the improved ordering and densification of poly-
mer chains at the graphene-matrix interface. In another study, Li et al. [47] developed
dopamine (DA)-modified graphene oxide (GO) and copper nanowires (Cu NWs) hybrid
epoxy composites, and with the proportion of Cu-NWs @PDA:GO@PDA 7:3, a strong
filler matrix compatibility was observed, which resulted in higher thermal conductivity of
0.36 W m−1 K−1 along with outstanding electrical insulation properties.

Conversely, due to strong van der Walls forces, high aspect ratios of graphene lead to
agglomeration and non-uniform dispersion through the polymer matrix [48]. Graphene
is surface-functionalized using different chemical groups or polymers to break the bar-
rier, increasing the interfacial bonding and interaction between the filler and matrix. Ro-
masanta et al. [49] successfully produced poly(dimethyl)siloxane nanocomposites filled
with functionalized graphene sheets (FGSs) at a concentration of 2 wt.% FGS. A high
dielectric constant was achieved, with high mechanical properties. Likewise, D. R. Son
et al. [50] examined the compatibility of thermally reduced graphene (TRG) with multiblock
copolyesters composed of poly (butylene terephthalate) (PBT) and poly(tetramethylene
ether) glycol segments. The results showed that compatibility improved with an increasing
content of the PBT segment in the polyester. This compatibility behavior was quantitatively
analyzed using the electrical conductivity percolation threshold and Hansen solubility
parameters. The results suggest that the compatibility of TRG with a polymer increases as
the polymer’s total solubility parameter (dT) value approaches 24.0 (MPa)1/2. Several other
studies [4,51] have also reported using hybrid fillers, such as graphene/carbon nanotubes
or graphene/ceramic composites, to achieve synergistic improvements in the polymer
composites’ thermal, electrical, and mechanical properties. The compatibility between the
filler and the polymer matrix components plays a crucial role in determining the overall
performance of these hybrid systems.

2.3. Homogeneity of Dispersion

In the fabrication of excellent hybrid polymer composites, homogeneous dispersion is
crucial for determining performance and properties. In graphene-based hybrid compos-
ites [52], graphene and other fillers are first evenly dispersed with each other and then
uniformly distributed in a polymer matrix. Good dispersion results in a symmetrical struc-
ture and significantly boosts mechanical properties, i.e., fracture resistance, high tensile
strength [53], and load-bearing facilities. Electrical and thermal conductivities are also
improved, facilitating continuous charge transport, sensors, and heat management applica-
tions [47]. Tuichai et al. [54] prepared well-dispersed Ag-rGO/poly (vinylidene fluoride)
(PVDF) composites using a seed-mediated growing technique and achieved a highly con-
nected microstructure with a high dielectric constant. However, poor dispersion [55] results
in agglomeration and uneven distribution within hybrid fillers and the polymer matrix,
severely compromising the composite’s capabilities. Such composite presents an irregular
and non-uniform structure, leading to mechanical disruptions and ineffective electrical and
thermal conductivities due to interrupted pathways [56]. Gong et al. [57] used the chemical
vapor deposition (CVD) method to deposit graphene on the surface of nickel meshes,
followed by creating graphene woven fabrics (GWFs) by removing the nickel template.
Next, they stacked these graphene fabrics layer by layer to obtain an anisotropic graphene
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structure, which gave the polyimide (PI) composite an in-plane thermal conductivity of
3.73 W m−1 K−1 with 12 wt.% of graphene, as shown in (Figure 4a). On the other hand, Dai
et al. [58] employed a roller equipment to extend and roll the porous polyurethane (PU)-
graphene film, resulting in a large-scale monolith with a vertically aligned dual-assembled
graphene framework (DAGF), as shown in (Figure 4b). After the graphitization process and
epoxy resin infiltration, the resulting composite demonstrated an unprecedented thermal
conductivity of 62.4 W m−1 K−1.
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2.4. Fiber Orientation

Fiber orientation highly influences the performance of polymer composites. In fiber-
reinforced composites, unidirectional alignment offers high strength along the fibers but
weaker properties in perpendicular directions. Bidirectional laminates offer a balance
of properties, while graphene can improve different mechanical, thermal, and electrical
characteristics depending on its orientation. Controlling the orientation of multiple fibers
and graphene during processing allows the customization of composite properties for
specific applications. Liu et al. [59] prepared anisotropic graphene aerogels by reducing
GO with ascorbic acid at 70 ◦C for four hours, followed by freeze-drying (Figure 5a).
Later, the examination showed that these anisotropic graphene aerogel materials offer high
compressive strength in the axial direction and good compressibility in both directions,
together with sensitive electrical conductivity upon deformation. Additionally, they feature
ultra-low density, high porosity, fire resistance, and flexibility in organic liquids. After the
absorption of liquids, they can be easily recycled by combustion, distillation, and pressing.
Moreover, Zhang et al. [60] developed a vertically aligned graphene sheet membrane (VA-
GSM) using a freezing approach (Figure 5b). VA-GSM demonstrated water evaporation
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rates of up to 6.25 kg m−2 h−1 under four times solar illumination, with a solar thermal
conversion efficiency of up to 94.2%. This performance makes it possible to efficiently
produce clean water from sources such as seawater and wastewater, as well as concentrated
acid and alkaline solutions.
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In another study, thermally conductive polymer composites were obtained from
graphene oxide hydrogels via directional freezing and graphitization at 2800 ◦C. It was
observed that these aerogels exhibit excellent thermal and electrical conduction properties
due to the highly aligned network of graphitized graphene sheets. An epoxy compos-
ite containing 0.75% high-quality graphene exhibits a vertical thermal conductivity of
6.57 W m−1 K−1, along with improved mechanical strength and compressive deformation.
Figure 5c shows SEM images of vertically aligned graphene networks at different freezing
rates, captured from a top view [61].

An et al. [62] fabricated vertically aligned graphene hybrid foams (GHFs) via the
hydrothermal reduction process of GNPs, resulting in high-density foams. The integration
of GNPs improves the thermal conduction network’s density and prevents excessive foam
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shrinkage during manufacturing. By graphitization at 2800 ◦C, the oxygen-containing
groups are eliminated, and the defects are healed, obtaining high-quality graphene foams
(Figure 6a). It was observed that GHF/epoxy composites exhibit an extraordinary through-
plane thermal conductivity of 35.5 W m−1 K−1 at a graphene content of 19 vol.%, making
them compatible for thermal management applications (Figure 6b).
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2.5. Synergistic Effects

The presence of graphene in hybrid polymer composites results in synergistically
enhanced network structures, making them ideal for structural applications [63]. These
composites exhibit superior mechanical properties, such as increased tensile strength,
modulus, and toughness. Their high electrical and thermal conductivity makes them
suitable for flexible electronics, thermal management, and electromagnetic interference
shielding. Xiao et al. [64] developed PVDF composites with various combinations of CNTs
and GNPs (Figure 7a). The addition of 2 wt.% CNTs to PVDF/GNP composites generated
a three-dimensional hybrid network with improved thermal and electrical conductivity,
and the incorporation of 2 wt.% GNPs into the PVDF/CNT composites did not change the
percolated structure. Both CNTs and GNPs promoted the crystallization of PVDF without
significantly altering its crystallinity. Ternary composites demonstrated increased electrical
conductivity due to a three-dimensional conductive path. Particularly, PVDF/CNT/GNP
composites showed higher thermal conductivity and synergistic efficiency compared to
PVDF/GNP/CNT composites. In addition, Liang et al. [65] developed an epoxy nanocom-
posite with four times the thermal conductivity of pure epoxy, using reduced graphene
oxide (RGO)/functionalized single-walled carbon nanotube (f-SWCNT) filler loading at
3.65 vol%. This result was achieved due to a rigid and well-aligned 3D skeleton of RGO
walls connected by f-SWCNTs (Figure 7b), which not only improved the alignment of the
SWCNTs but also allowed a significant reduction in the amount of SWCNT used, helping
to reduce costs. The 3D networks improved both the dimensional and thermal stability
of the nanocomposite without compromising its electrical insulation properties. Shtein
et al. [66] explored the effective integration of GNPs into a polymer matrix to improve
thermal conductivity (TC) significantly. Through a scalable and straightforward disper-
sion process, the resulting composite demonstrated an ultrahigh TC of 12.4 W m−1 K−1,
compared to 0.2 W m−1 K−1 for the pure polymer, achieved by applying high compressive
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forces to close the spaces between adjacent graphene nanoplatelets. It was found that
the addition of boron nitride nanoparticles synergistically improved TC while reducing
electrical conductivity, preventing short circuits (Figure 7c). This advancement facilitates
progress toward large-scale production of thermally conductive composites based on GNPs.
Xue et al. [67] developed novel composite phase change materials (PCMs) by incorpo-
rating melamine foam with GO and GNPs (Figure 7d). The resulting aerogels exhibited
high structural stability and high load-bearing capacity. The composite PCMs exhibited
high-temperature shape stability and high phase change enthalpy retention capacity, as
well as significantly improved thermal and electrical conductivities. These results indi-
cate considerable potential for applications in energy efficiency and thermal protection of
microelectronic devices.
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Figure 7. (a,b) Diagrams illustrating the synergies between GNPs and CNTs in thermal
conduction [64,65]. (c) Schematics illustrating the synergies between GNPs (polymeric nanoal-
loys, represented by the blue slices) and BN (boron nitrate, represented by the red spheres) [66].
(d) Schematic illustration of the preparation process of both the graphene/MF foam (mixed fiber
graphene foam) and the derived graphene/carbon foam [67]. Reprinted with permission from
refs. [64–67].
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2.6. Processing Techniques

Composite processing methods are pillars to achieve a uniformly distributed mi-
crostructure with expanded properties. Graphene-based polymer composites can be pre-
pared using several methods, each with specific advantages that influence the final prop-
erties and applications of the composites. The most common techniques include solution
mixing, melt mixing, and in situ polymerization. In solution mixing, graphene is dispersed
in a solvent, then the polymer is added, and finally, the solvent is removed to ensure
good dispersion of graphene in the polymer matrix. Melt blending mixes graphene and
polymer at high temperatures and shear, affecting the size and morphology of graphene,
and is suitable for large-scale production. In situ polymerization involves growing the
polymer around graphene, creating strong interfacial interactions but requiring more com-
plex processing conditions. The choice of preparation method affects graphene dispersion,
interfacial interactions, and mechanical, electrical, and thermal properties of the compos-
ite. Effective dispersion of graphene with strong polymer interactions usually leads to
improved mechanical, electrical, and thermal performance of composite materials. These
graphene-polymer composites are used in industries such as electronics, energy storage,
and personal protective equipment [68–71]. Moreover, the fabrication techniques involving
compression mold, 3D printing, and filament winding affect the filler placement inside
the matrix. Fabrication of graphene-based hybrid polymer composites with uniform dis-
tribution of graphene highly aids in fully harnessing graphene’s unique properties and
synergistic relation with other fillers [16,72]. However, the tendency of graphene layers
to attach precedes clustering issues. Thus, efficient processing strategies, e.g., sonication,
high shear mixing, and extrusion methods, aid homogeneous graphene dispersion and
increase its reinforcing effect on the composite [73,74]. Moreover, curing conditions, e.g.,
time or temperature, significantly impact the interfacial bonding and load transfer ability
between filler and matrix, improving the composite’s mechanical properties and durabil-
ity. Additionally, specific processing methods, e.g., 3D printing, electrospinning, spray
coating, or shear-induced alignment, provide better control over the graphene orienta-
tion, enabling the fabrication of complex geometries with tailored anisotropic properties.
The choice of preparation process dramatically impacts the cost-effectiveness and scala-
bility of composites [75,76]. Several studies have compared the effectiveness of various
processing methods by characterizing filler dispersion and composite performance. For
example, Kim et al. [34] examined thermoplastic polyurethane (TPU)-based composites
containing thermally reduced graphene oxide (TRG) obtained via solvent dispersion, in
situ polymerization, and melt mixing (Figure 8a). The results indicate that the structure and
performance of composites are strongly influenced by the preparation methods, suggesting
the possibility of customization by optimizing manufacturing processes. Furthermore, it
was found that solvent-treated composites exhibit higher stiffness and a lower electrical
percolation threshold than those obtained via melt mixing, consistent with better dispersion
of filler particles. Cao et al. [77] developed 3D graphene networks using Ni foam as a
template in the ethanol-CVD process. The 3D graphene networks presented excellent
templates for the construction of graphene-metal oxide composites (Figure 8b). The NiO-
graphene composite showed a high specific capacitance of ≈816 F g−1 and stable cycling
efficiency, maintaining this specific capacitance even after 2000 cycles at a scan rate of
5 mV s−1. Pham et al. [78] produced poly(methyl methacrylate)/reduced graphene oxide
(PMMA/RGO) composites with an electrical conductivity of 64 S m−1 at 2.7 vol% by using
self-assembly of positively charged PMMA particles and negatively charged GO sheets
by reduction with hydrazine (Figure 8c). Moreover, thermomechanical properties were
improved, with a 30% increase in storage modulus and a 15 ◦C increase in glass transition
temperature with only 0.5 wt.% RGO.
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Figure 8. Different fabrication methods for making graphene-polymer composites. (a) Representa-
tions of TRG/TPU composite formulation routes and TEM images of TRG in TPU and 3 wt.% TRG/PU
composites fabricating processes, revealing the improved dispersion of TRG by solution blending
and in situ polymerization as compared to melt mixing [34]. (b) Porous graphene frameworks man-
ufactured by ethanol-CVD method: (i) represents the synthesis diagram of 3D graphene networks
on Ni foam by ethanol-CVD, (ii) represents Ni foam before and after the growing of graphene, and
(iii) depicts 3D graphene assemblies after elimination of Ni foam [77]. (c) Three-dimensional RGO
interaction by a self-assembly method [78]: (i) the self-assembly of PMMA latex and graphene oxide,
supported by hydrazine reduction of graphene oxide, and SEM images of RGO-PMMA composites
packed with various filler loadings; (ii) 2 wt.%; and (iii) 4 wt.% [14]. Adopted with permission from
refs. [14,34,77,78].

2.7. Post-Treatment and Functionalization

Post-treatment processes, such as surface treatments and protective coatings of com-
posites, significantly increase their resistance to humidity and corrosion. In particular,
the graphene filler and polymer matrix interaction is highly sensitive to environmental
conditions, and surface treatments can significantly improve composite resilience [79–81].

On the other hand, functionalization can be tailored to exploit the unique properties of
graphene. By modifying the graphene surface with specific functional groups or incorporat-
ing other nanoparticles, functionalization can enhance electrical and thermal conductivity
or even provide additional functionalities, such as sensing capabilities. This level of cus-
tomization is particularly advantageous in applications where precise control over material
properties is required, such as in advanced electronics or sensors [82,83]. Functionalization
opens new possibilities for graphene-based composites, enabling them to excel in areas
where traditional materials fall short. In essence, post-treatment and functionalization
strategies in graphene-based hybrid-filler polymer composites constitute sophisticated
techniques that unlock the full potential of these materials. They ensure the composite’s
robustness and longevity and empower it with diverse functionalities [84,85]. As the
field of materials science continues to evolve, the synergy between graphene and tailored
post-treatment and functionalization processes offers exciting prospects for developing
innovative and high-performance materials that can revolutionize various industries [86].
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3. Applications

The authors discuss the results and how they can be interpreted from the perspective
of previous studies and the working hypotheses. The findings and their implications are
discussed in the broadest context possible. Future research directions are also be highlighted.

3.1. Aerospace Evolution: Lightweight Structural Components for Enhanced Performance

Graphene-based hybrid polymer composites are an excellent candidate for aerospace
applications due to their exceptional mechanical properties, e.g., strength, stiffness, and
lightweight, which enable the creation of robust structural components. The combination of
lightweight, higher Young’s modulus and tensile strength improves fuel efficiency, payload
capacity, and overall aircraft efficiency [87]. Moreover, these composites can resist extreme
temperature conditions, mechanical stress, and corrosion, making them suitable for aircraft
frames, wings, and engine components. Space shuttles and high-velocity aircraft need
a thermal management system to mitigate overheating and structural issues. Graphene
composites serve in thermal protection systems, heat shields, and thermal barriers due
to their excellent thermal conductivity [88,89]. Figure 9 shows potential applications of
graphene-based polymer composites in different aspects of aerospace industries.
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Furthermore, installing graphene composite-based sensors in aircraft provides real-
time surveillance of structural deformation. Lightning strikes during flights cause severe
accidents due to the absence of electrically conductive materials in manufactured parts,
while graphene-based hybrid composites have excellent thermal and electrical conduc-
tivity and are effective in resolving lightning strike problems [91]. Furthermore, space
exploration demands robust materials to tolerate extensive radiation and vacuum con-
ditions [92]. Graphene-based hybrid composites offer impressive radiation shielding,
mechanical strength, and thermal stability, enabling the manufacture of spacecraft com-
ponents that are oriented to unforgiving space environments. However, utilizing the full
potential of these composites encounters issues such as cost-effectiveness, regulatory com-
pliance, scalability, and standardized practices [93,94]. Öztürkmen et al. [95] prepared
GNPs/hexagonal boron nitride (h-BN)/epoxy nanocomposites by integration of GNPs and
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h-BN into an aerospace-grade epoxy resin via three-roll milling to achieve significantly
improved nanocomposite properties. Five mixing cycles with a roller gap of 50 µm led to
promising results. It was observed that a hybrid nanocomposite (0.5 wt% GNP and 0.5 wt%
h-BN) showed a 69% increase in flexural strength, a 7% increase in thermal conductivity,
and a notable improvement of 108-fold increased electrical conductivity. Thus, these fillers
can be effectively designed for aerospace applications, such as lightweight avionics frames,
which require specific thermal and electrical properties. There are many references report-
ing on graphene hybrid polymer composites with desired properties for the aerospace
sector [88,96,97].

3.2. Advanced Electronics: High-Performance Conductive Materials and Flexible Circuits

Given their significant electrical and thermal conductivity [62], lightweight graphene-
based hybrid polymer composites [98] present high-performance conductive coatings,
optimal fuel efficiency, efficient heat dissipation [99], effective signal transmission, and
electromagnetic shielding in electronics. These composites are perfect for flexible circuits
and wearable devices due to their flexibility and lightweight nature [100]. Moreover, the
synergy of their electrical and thermal properties with mechanical ability has revolutionized
smart textiles, sensors [101], and integrated electronic systems [102,103]. In a study [104],
highly flexible and electrically conductive multifunctional textile composites were produced
using GO films and Ag nanoparticles on a polyethylene terephthalate (PET) fabric. These
composites were employed to create flexible organic transistors, where the composite
fabric functioned as both a flexible substrate and a conductive gate electrode. Thermal
treatment improved the electrical performance of the textile transistor, with a mobility
of 7.2 cm2 V−1 s−1, an on/off current ratio of 4 × 105, and a threshold voltage of −1.1 V.
Furthermore, the textile transistors have demonstrated performance stability even under
extensive bending conditions, withstanding a bending radius of up to 3 mm and enduring
repeated testing over 1000 cycles. These results indicate that the fabrication methods of
graphene/AgNP textile composites for textile transistors could be successfully applied in
the development of large-scale flexible electronic clothing.

In their study, Li et al. [105] reported an orientated assembly of giant graphene ox-
ide (GGO) sheets via 3D printing and achieved flexible patterns with high surface area
and enhanced electrical conductivity of up to 4.51 (±0.18) × 104 S m−1. Moreover, these
orientated patterns were tested for the electrically driven soft actuators, and it offered
controlled deformation at a lower voltage. Figure 10 shows the detailed analysis and
fabrication process of graphene hybrid composites in flexible and printable electronics by
manufacturing a soft actuator with printed RGO electrodes. Figure 10a illustrates the elec-
trical stimulation of the bilayer RGO/polydimethylsiloxane (PDMS) actuator. Figure 10b
shows the maximum bending angle as a function of driving voltage. Figure 10c depicts
digital images of reversible shape change of the actuator at different bending angles, and
Figure 10d depicts a hand-shaped actuator enabling independent control of the fingers by
various gestures.
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Figure 10. Fabrication of soft actuator with printed RGO electrodes. (a) RGO/PDMS bilayer actuator
under electrical stimulation. (b) The maximum bending angle of the actuators as a function of
the driving voltage. (c) Digital images of the actuator at various bending angles, with reversible
shape change of the actuator. (d) The final look of a hand-shaped actuator with independent fingers
controlled by various gestures. Reprinted with permission from ref. [105].

3.3. Energy Storage Revolution: Efficient Batteries and Supercapacitor

Graphene-based hybrid polymer composites have revolutionized energy storage tech-
nologies [106]. Their remarkable electrical conductivity and large surface area lead to
elevated energy storage in batteries and supercapacitors by facilitating faster charging
and discharging rates, extending battery lifetime and improving energy density. This pro-
gression addresses the energy demands of portable electronics, renewable energy storage
systems, and electric vehicles, resulting in green energy solutions [107,108]. Addition-
ally, these composites’ electrical and thermal properties offer enhanced solar cells and
thermoelectric generators by improving electron mobility, light absorption, and thermal
conversion, resulting in efficient waste-heat recovery [100]. Lithium-ion batteries have
become the main source of energy for portable electronic devices. However, when used at
high charge/discharge rates, the rate of heat generation may exceed the rate of heat dissi-
pation, making the battery inefficient or even posing a fire risk. To keep the battery at an
optimal temperature, an effective thermal management system is required. To address this,
Khan et al. [109] presented the fabrication and characterization of polyacrylonitrile (PAN)
and polymethyl methacrylate (PMMA) nanofiber separators embedded with graphene
nanoflakes. The physical properties of nanocomposite separators were significantly im-
proved with increasing graphene concentration. For example, the contact angle with water
went from 120◦ to 145◦, the ionic conductivity from 3.31 × 10−4 to 5.52 × 10−4 S m−1, the
dielectric constant from 3.5 to 8.5 W m−1 K−1, and the thermal conductivity from 1.0 to
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5.0 W m−1 K−1 when the graphene concentration was increased from 0% to 8% in PMMA.
Similar trends were also observed in PAN fibers, suggesting that such nanocomposite
separators could provide a robust option for producing long-lasting lithium-ion batteries.

He et al. [110] fabricated a very thin (0.5 mm width) graphene-based paper-like
electrode for a micro-supercapacitor with a current density ranging from 0.5 to 5 A cm−3 and
exhibiting a high volumetric capacitance of ~3.6 F·cm−3, with a highly specific capacitance
retention of up to 94%, even after 20,000 cycles. Figure 11 shows the detailed preparation
process of the composite and its integration into a micro-supercapacitor.
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Figure 11. Preparation process of a micro-supercapacitor. (I) Electrochemical exfoliation of graphite
foil. (II) Coating the graphene/graphite foil with gel electrolyte (PVA/H3PO4). (III) Peeling off
flexible graphene paper-like electrode. (IV) Building of interdigitated micro-supercapacitor devices
using the paper-like electrode. Reprinted with permission from ref. [110].

3.4. Transportation Innovation: Lightweight Automotive Components for Enhanced Efficiency

Graphene-based hybrid polymer composites are fundamental in developing robust
and fuel-efficient vehicles due to their unique mechanical and lightweight properties. The
high electrical conductivity of graphene-based composites dramatically improves the charg-
ing efficiency of lithium-ion batteries, resulting in optimum battery lifetimes in electric
vehicles [111]. High mechanical strength [112] and higher flexibility facilitate tailored,
impact-resistant, and safely enhanced vehicle modules [15]. Furthermore, outstanding ther-
mal conductivity influences electric vehicles’ energy efficiency and component durability by
heat dissipation through batteries, electric motors, and power electronics [113–115]. Kenaf-
based composites are known for their high strength-to-weight ratio, but the weakness of the
fiber-matrix interface limits their automotive application. To address this problem, a new
multiphase composite fabrication technique has been developed, using GNPs, kenaf fibers,
and an epoxy matrix. The composites were produced via vacuum infusion molding, with
uniform dispersion of the GNPs using a bath sonicator. Composites containing 0.2 wt.%
GNP showed the greatest improvements in mechanical properties, with a 30.5% increase in
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tensile strength, a 61.5% increase in tensile modulus, a 17.6% increase in flexural strength, a
22.7% increase in flexural modulus, a 35.1% increase in interlaminar shear strength, and
a 17.1% increase in fracture toughness. Furthermore, the resistance to water absorption
was improved by 7%. These improvements were attributed to the uniform distribution of
GNPs and better bonding to the fiber surface. The composites developed in this way have
the potential to be used in the interior parts of automotive vehicles, such as dashboards,
interior panels, and luggage compartments [116]. Figure 12 presents various graphene
composites examined for load-bearing and structural automotive applications, such as
seats for Daimler Chrysler sports cars, a diagonal support beam for Porsche, and bumper
structures for BMW.
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4. Conclusions

In conclusion, graphene hybrid polymer composites are at the forefront of material
innovation, offering a unique combination of mechanical strength, electrical conductivity,
and thermal stability. Our review paper delves into the critical factors influencing the
performance and industrial applications of these composites. The choice of graphene
type, whether graphene oxide, reduced graphene oxide, or pristine graphene, sets the
stage for the composite’s properties, with aspect ratio playing a key role in determining
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strength and flexibility. The compatibility between the filler and the polymer matrix
is paramount, ensuring a robust interface that allows for efficient stress transfer and
prevents delamination. Achieving a homogeneous dispersion of graphene within the
polymer matrix is a technical challenge but crucial for consistent composite properties.
Fiber orientation is another significant aspect, affecting the anisotropy of mechanical
and electrical properties, enabling tailored solutions for specific applications. Synergistic
effects, resulting from the combination of graphene with other fillers, can lead to enhanced
performance that exceeds the sum of its parts. The processing techniques used, such as
extrusion, molding, or additive manufacturing, affect the scalability and quality of the final
product, while post-treatment and functionalization offer opportunities to further tune
the composites’ properties, enhancing conductivity or chemical resistance. These factors
collectively influence the effectiveness of graphene hybrid polymer composites in various
industrial applications. In aerospace, their lightweight strength offers fuel-saving benefits;
in advanced electronics, their conductivity and flexibility are invaluable; for energy storage,
their high surface area and conductive properties improve battery and supercapacitor
performance; and in transportation, their resilience and durability contribute to safer and
more efficient vehicles. Understanding and optimizing these factors is key to harnessing
the full potential of graphene hybrid polymer composites across diverse industries.

5. Future Perspectives

Developing efficient and scalable manufacturing methodologies for high-quality
graphene materials is critical for multiple industries, including electronic devices, thermal
management, and transparent conductive electrodes. Chemical vapor deposition (CVD)
on metal sheets offers a promising route to infinite-length graphene sheets suitable for
roll-to-roll processing, but advances in quality and transfer processes are needed. Control-
ling graphene layer thickness remains challenging, especially for double- and triple-layer
graphene. Understanding the underlying mechanisms is essential to improve economic
production through chemical methods, such as graphite oxidation and subsequent re-
duction. Future research should focus on optimizing graphene surface functionalization,
investigating new structures, and developing graphene hybrid polymer composites. These
efforts aim to combine the unique properties of graphene with the versatility of polymers,
facilitating their application across a wide range of applications. However, significant
research gaps persist, particularly in optimizing fabrication techniques, understanding
interfacial interactions, and tailoring the properties of graphene-polymer composites for
specific applications. Addressing these gaps is thus crucial for driving innovation in
multifunctional materials.
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