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Abstract: Although machine learning models are widely used in critical domains, their complexity
and poor interpretability remain problematic. Decision trees (DTs) and rule-based models are known
for their interpretability, and numerous studies have investigated techniques for approximating tree
ensembles using DTs or rule sets, even though these approximators often overlook interpretability.
These methods generate three types of rule sets: DT based, unordered, and decision list based.
However, very few metrics exist that can distinguish and compare these rule sets. Therefore, the
present study proposes an interpretability metric to allow for comparisons of interpretability between
different rule sets and investigates the interpretability of the rules generated by the tree ensemble
approximators. We compare these rule sets with the Recursive-Rule eXtraction algorithm (Re-RX) with
J48graft to offer insights into the interpretability gap. The results indicate that Re-RX with J48graft
can handle categorical and numerical attributes separately, has simple rules, and achieves a high
interpretability, even when the number of rules is large. RuleCOSI+, a state-of-the-art method, showed
significantly lower results regarding interpretability, but had the smallest number of rules.

Keywords: interpretable machine learning; explainable artificial intelligence; rule extraction;
rule-based model; decision list; decision tree; tree ensemble approximator

1. Introduction

Artificial intelligence (AI) has made great advances and AI algorithms are currently
being applied to solve a wide variety of problems. However, this success has been driven by
accepting their complexity and adopting “black box” AI models that lack transparency. On
the other hand, eXplainable AI (XAI), which enhances the transparency of AI and facilitates
its wider adoption in critical domains, has been attracting increasing attention [1–10].

Tree ensembles are often used for tabular data. Bagging [11] and random forests
(RFs) [12] are known as independent ensembles, whereas gradient boosting machines
(GBMs) [13] such as XGBoost [14], LightGBM [15], and CatBoost [16] are known as dependent
ensembles. Tree ensembles are extensively utilized in academic and research contexts and
applied in practical scenarios across a wide array of domains [17]. Recently, these models
have been shown to be effective in many classification tasks. In fact, these models are used
by most winners of Kaggle competitions (Kaggle is a platform for predictive modeling
and analytics competitions in which statisticians and data miners compete to produce the
best models for predicting and describing the datasets uploaded by companies and users).
However, the structure of these algorithms is considered complex and very difficult to
interpret. The effectiveness of ensemble trees generally improves as the number of trees
increases, and in some cases, an ensemble can contain thousands of trees.

Rudin [18] pointed out the limitations of some approaches to explainable machine
learning, suggesting that interpretable models should be used instead of black box models
for making high stakes decisions. Recently, XAI has entered a new phase with the provi-
sional agreement of the AI Act aimed at explaining AI [19]. This is important because black
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box machine learning applications remain challenging in several domains, such as health
care and finance. In the field of health care, for example, it is not sufficient for a medical
diagnosis model to simply be accurate, it must also be transparent to health professionals
who use the output to make decisions about a given patient [6,20,21]. Moreover, in the field
of finance, recent regulations, such as the General Data Protection Regulation and the Equal
Credit Opportunity Act, have increased the need for model interpretability to ensure that
algorithmic decisions are understandable and consistent. Decision-making is critical and
requires a rationale. In fact, the predictions of the XGBoost classifier in regard to business
failures have been explained in a previous study [22]. These issues have been addressed
by interpretable machine learning models, which are characterized as models that can be
easily visualized or described in plain text for the end user [23]. On the other hand, some
domains highly prioritize classification accuracy. Furthermore, deep learning is an option
in domains where decision rationales are less important. Techniques that account for deep
learning still rely on subjective methods, such as saliency maps, which have a limited
explanatory capability for unstructured data, such as images. On the other hand, significant
progress has been made in making structured data explainable with deep learning [24].

Decision trees (DTs), rule-based approaches, and knowledge graph-based approaches
are widely used as examples of interpretable models [25–32]. Techniques for approximating
tree ensembles with DTs or rule sets have also been investigated [33–39]. However, al-
though tree ensemble approximators focus on reducing the number of rules and conditions,
they do not consider the interpretability of the rules. For example, handling categorical
and numerical attributes separately is known to increase interpretability [31].

There are three main types of rule sets generated by these methods: DT based, un-
ordered based (the last rule in the rule set is Else), and decision list based. Figure 1 shows
the concept of these three types of rule sets. However, previous studies have not provided
a metric to distinguish and compare these different rule sets. Therefore, even if an existing
metric such as the number of rules suggests a method’s superiority in terms of interpretabil-
ity, its practical interpretability may remain low. As existing studies have not properly
assessed the superiority of the proposed method, a new metric is needed to fill this gap.
Table 1 shows the existing interpretability metrics for rule sets.
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Figure 1. Concepts of the three types of rule sets. Decision list-based rule sets classify instances
by sequentially referencing rules from top to bottom. Unordered rule sets classify instances by
referencing rules in any order. Decision tree-based rule sets are variable according to decision trees
and differ from the other two types of rule sets in that all instances are classified using only a
single rule.
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Table 1. Interpretability metrics for rule sets.

Metrics Description

Number of rules This metric is the total number of rules.

Number of conditions This metric is the sum of the total or average number
of conditions.

Complexity [40] This metric relates the complexity, namely the number
of conditions, to the number of classes.

Fraction uncover [41] This metric measures the proportion of data points
covered by at least one rule in the rule set.

Fraction overlap [41] This metric calculates the degree to which rules in the
rule set redundantly cover the same data points.

Uniq [39] This metric quantifies the amount of non-redundant
conditions contained in the rule set.

explavg [42] This metric is the weighted sum of the number of
different attributes, based on the coverage of each rule.

Weighted sum of predictivity, stability,
and simplicity [43]

This metric combines three critical aspects: predictivity,
which assesses accuracy; stability, gauged through the
Dice–Sorensen index comparing rule sets; and
simplicity, measured by rule length sum, into a
comprehensive weighted sum.

In the present study, we propose an interpretability metric, Complexity of Rules with
Empirical Probability (CREP), to allow for comparisons of interpretability between different
rule sets. CREP enables a fair comparison of different types of rule sets, such as decision list-
and DT-based rule sets. We also explore the interpretability of the rules generated by the tree
ensemble approximators. Specifically, we present and compare not only objective metrics,
but also rule sets generated by the tree ensemble approximators and the Recursive-Rule
eXtraction algorithm (Re-RX) with J48graft [32].

The contributions of this study are as follows:

1. Introduction of a New Interpretability Metric: We propose a metric designed to
evaluate and compare the interpretability of different types of rule sets. This metric
addresses the gap in quantitative assessments of the interpretability of rule sets.

2. Comparative Analysis of Rule Sets: We provide an exhaustive comparison of decision
list- and DT-based rule sets generated by the tree ensemble approximator. Our
analysis provides new insights into the strengths and weaknesses of each type of rule
set. Furthermore, we explain why categorical and numerical attributes should be
treated separately.

3. Focus on the Interpretability of Categorical and Numerical Attributes: We explain the
necessity of separating categorical and numerical attributes. This focus addresses a
significant gap in current research as many existing methods overlook the distinction
between categorical and numerical attributes.

2. Related Work

The Re-RX algorithm [31] is a rule-based approach that can handle categorical and
numerical attributes separately and extract rules recursively. By separating categorical and
numerical attributes, Re-RX can generate rules that are intuitively easy to understand. Re-
RX with J48graft [32] is the extended version of Re-RX. Numerous studies have conducted
research on Re-RX [44–49]. RuleFit [33] is a method that employs a linear regression model
with a DT-based model to utilize interactions. The rules generated by the ensemble tree
are used as new features and fitted using Lasso linear regression. inTrees [34] extracts,
measures, prunes, and selects rules from tree ensembles such as RFs and boosts trees to
generate a simplified tree ensemble learner for interpretable predictions. DefragTrees [35]
involves simplifying complex tree ensembles, such as RFs, to enhance interpretability by
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formulating the simplification as a model selection problem and employing a Bayesian
algorithm that optimizes the simplified model while preserving prediction performance.
Initially introduced for independent tree ensembles by Sagi and Rokach [36], Forest-based
Trees (FBTs) were later extended to dependent tree ensembles. Combined within both
bagging (e.g., RFs) and boosting ensembles (e.g., GBMs), FBTs construct a singular DT
from an ensemble of trees. Rule COmbination and SImplification (RuleCOSI+) [39], a recent
advance in the field, is a fast post-hoc explainability approach. In contrast to its precursor,
RuleCOSI, which was limited to imbalanced data and Adaboost-based small trees according
to Obregon et al. [38], RuleCOSI+ was designed as an algorithm that extends the capabilities
of RuleCOSI to function effectively in both bagging (e.g., RFs) and boosting (e.g., GBMs)
ensembles. DefragTrees, FBTs, and Re-RX generate DT-based rule sets, inTree generates an
unordered-based rule set, and RuleCOSI+ generates a decision list-based rule set.

Given this background, in the present study, we aim to provide new insights into the
reasons why DL-based and DL-inspired classifiers do not work well for categorical datasets
mainly consisting of nominal attributes [50].

3. Materials and Methods
3.1. Datasets

We used 10 datasets from the University of California, Irvine, Machine Learning
Repository [51] to compare each method. We provide the sources of these datasets in
Appendix A. The details of the datasets are shown in Table 2. For each dataset, we split the
data into training–test at a ratio of 8:2. Consistent splits were applied to all methods, with a
unique seed-based split for each iteration. Each iteration means 10× in the 10× 10-fold
cross-validation (CV) scheme described in Section 4.3.

Table 2. Dataset properties. In this paper, # indicates quantity.

Dataset #Instances #Features #Cate #Cont Major Class Ratio

heart 270 13 7 6 0.55
australian 690 14 6 8 0.555
mammographic 831 4 2 2 0.52
tic-tac-toe 958 9 9 0 0.65
german 1000 20 7 13 0.70
biodeg 1055 41 0 41 0.66
banknote 1372 4 0 4 0.55
bank-marketing 4521 16 9 7 0.89
spambase 4601 57 0 57 0.60
occupancy 8143 5 0 5 0.79

3.2. Baseline

We used scikit-learn’s DT and J48graft [52] as simple DT-based methods. J48graft is a
grafted (pruned or unpruned) C4.5 [53] DT. This DT generates a binary tree, while J48graft,
capable of handling categorical attributes, generates an m-ary tree.

We used FBTs and RuleCOSI+ for the tree ensemble approximator. Figures 2 and 3
show overviews of FBTs and RuleCOSI+, respectively. Both FBTs and RuleCOSI+ were im-
plemented using the official code provided by the authors (https://github.com/sagyome/
XGBoostTreeApproximator (13 March 2024) https://github.com/jobregon1212/rulecosi
(13 March 2024).

https://github.com/sagyome/XGBoostTreeApproximator
https://github.com/sagyome/XGBoostTreeApproximator
https://github.com/jobregon1212/rulecosi
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Figure 2. Overview of FBTs. (a) Fit the ensemble tree; (b) pruning: remove trees that do not improve
the accuracy from the ensemble tree; (c) convert the tree to rules; (d) conjunction of rules: generate
the conjunction set by gradually merging the conjunction sets of the base trees into a single set that
represents the entire ensemble; (e) convert to a decision tree.
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Figure 3. Overview of RuleCOSI+. (a) Fit the ensemble tree; (b) convert the tree to rule sets;
(c) combine rule sets: greedily verify all combinations and determine the rules to adopt and create a
new rule set; (d) sequential covering pruning: simplify the rule set; (e) generalize rule set: remove any
unnecessary conditions; (f) repeat (c–e) using the rule set generated in (e) and the rule set obtained
from the remaining ensemble tree (green rule set in the figure); (g) obtain the final rule set.

As a rule-based method, we used Re-RX with J48graft, an overview of which is shown
in Figure 4. In Re-RX with J48graft, a method derived from the Re-RX grafting family
that incrementally adds rules to form a rule set is conditionally selected. If the accuracy
does not significantly increase, it aims to improve interpretability. Re-RX with J48graft
and its interpretability are positioned at one end of the spectrum, leading to a smaller
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model. Thus, for large datasets or more complex ensemble models, Re-RX with J48graft
does not consider either tree ensembles or growth strategies for increased tree depth. In
learning a multilayer perceptron (MLP) in Re-RX with J48graft, we apply one-hot encoding
(we used OneHotEncoder from scikit-learn [54]) to categorical attributes to enable efficient
learning. With the application of the one-hot encoding to categorical attributes, we modified
the pruning algorithm for the MLP. In the original pruning algorithm, the attributes are
removed from D when wi,∗ = 0, where wi,∗ represents all weights in the first layer of the
MLP connected to the i-th attribute. Let C be the set of categorical attributes in the dataset
D, and C i be the set of one-hot encoded values for the i-th categorical attribute ci ∈ C.
In this study, we modified the pruning algorithm as follows: ∀j ∈ {j = 0, ..., |C i| − 1},
if wj,∗ = 0, then D ← D \ {ci}.

MLP Pruning

Rule setRule setRule set

J48graft
(c)

Adopt a
rule?

Subset
Subdivion

Rule setRule setRulesetRule setRule setRule set

(a) (b) (d)

(e)(f)

Figure 4. Overview of Re-RX with J48graft. (a) Fit a multilayer perceptron; (b) pruning: reduce the
number of attributes; (c) fit J48graft; (d) convert the tree to a rule set; (e) adopt a rule: select a rule to
adopt as is; (f) subdivision: recursive (a–e) for a rule that is not adopted using data and has attributes
not included in the rule.

All fitted methods are converted to the RuleSet (https://github.com/jobregon1212/
rulecosi/blob/master/rulecosi/rules.py (13 March 2024)) module implemented by Obre-
gon and Jung [39].

4. Proposed Methodology

In this section, we present the methodology of experiments for comparing methods.

4.1. Data Preprocessing

We applied one-hot encoding to the categorical attributes because of the inability
of FBTs, RuleCOSI+, and DT to handle categorical attributes. For example, if there is a
categorical attribute c ∈ {x, y}, it is converted to the new attributes c =“x” ∈ {0, 1} and
c =“y” ∈ {0, 1}. For the numeric attributes, we applied standardization only to the training
and prediction of the MLP in Re-RX with J48graft.

https://github.com/jobregon1212/rulecosi/blob/master/rulecosi/rules.py
https://github.com/jobregon1212/rulecosi/blob/master/rulecosi/rules.py
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4.2. Interpretability Metrics

The metrics of interpretability, such as the total number of rules (Nrules) and average
number of conditions, are often used. However, these metrics cannot distinguish between
decision list-based, unordered, and DT-based rule sets.

We propose a new interpretability metric, CREP, to facilitate fair comparisons of
interpretability between different rule sets. CREP quantifies the complexity of rules based
on their empirical probability (coverage on the training data), and is defined as follows:

CREP = ∑
r∈R

Ncondr · cov(r,D) (1)

where Ncondr is the number of conditions in rule r, and cov(r,D) is the coverage of rule r
in training data D. If the rule set is a decision list or an unordered rule set, the instances
in the data refer to one or more rules in the rule set. Taking Figure 1 as an example,
the actual rule for an instance classified into Rule 2 (r2) in a decision list-based rule set
is ¬r0 ∧ ¬r1 ∧ r2 → y. In the unordered rule set, the actual rule for an instance classified
into Else is ¬r0 ∧ ¬r1 ∧ ¬r2 ∧ ¬r3 → y. Therefore, if the rule set is a decision list, Ncondr is
accumulated from the top, and if the rule set is an unordered rule set, the Ncondr of all rules
is added together for the Else rule in the rule set. The operation of Ncondr accumulation
allows CREP to compare different rule sets fairly.

CREP represents the expected value of the number of conditions in the rules using
the empirical probability obtained from the training data. In other words, if rules with a
high likelihood of being referenced have fewer conditions, CREP decreases, and if they
have more conditions, CREP increases. Conversely, rules with a low likelihood of being
referenced may have many conditions, but their impact is minimal. Compared with Nrules
and the average number of conditions, which evaluate the interpretability of the entire model,
CREP can be considered a more practical metric.

CREP in Equation (1) treats all classes equally and therefore underestimates the
interpretability of minority class rules when the dataset is class-imbalanced. This problem
can be solved by calculating CREP for each class. We redefine as follows:

micro−CREP = ∑
r∈R

Ncondr · cov(r,D) (2)

CREPc = ∑
r∈Rc

Ncondr · cov(r,D) (3)

macro−CREP =
1
|C| ∑

c∈C
CREPc (4)

where C is the set of all classes and Rc is the subset for each class in the rule set. micro-CREP
is useful for both unbalanced datasets and evaluating entire rule sets. In this paper, we
refer to micro-CREP as CREP.

4.3. Model Evaluation and Hyperparameter Optimization

We performed the experiment using a stratified 10× 10-fold CV (https://scikit-learn.
org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html (13 March
2024)) scheme, which is a 10-fold CV repeated 10 times. In each CV-fold, we performed
hyperparameter optimization using Optuna [55]. First, the hyperparameters of the base
model, which is an MLP in Re-RX with J48graft and XGBoost in FBTs and RuleCOSI+, were
optimized to maximize the classification performance. Then, the other hyperparameters
were optimized using multi-objective optimization (https://optuna.readthedocs.io/en/
stable/tutorial/20_recipes/002_multi_objective.html (13 March 2024)) to maximize both
classification performance and interpretability simultaneously. For both DT and J48graft,
the first step was skipped because these methods do not have a base model. We used the
area under the receiver operating characteristics curve (AUC-ROC) [56] for the classification

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html
https://optuna.readthedocs.io/en/stable/tutorial/20_recipes/002_multi_objective.html
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performance metric, and the inverse of Nrules (1/Nrules) for the interpretability metric. See
Appendix B for details on the hyperparameters in each method.

In the case of multi-objective optimization, the optimal hyperparameters are provided
on the Pareto front. From the Pareto front, we selected the hyperparameters that maximize
the following equation:

k = − log2 Nrules + α · AUC (5)

where α is a parameter that controls the trade-off between classification performance and
interpretability. This equation indicates that AUC increases by 1/α and Nrules decreases
by half, which are equivalent. A higher α prioritizes classification performance, whereas
a lower α prioritizes interpretability. In this experiment, we set α = 0.25. In other words,
the AUC value increasing by four points and Nrules decreasing by half are equivalent. We
excluded the Pareto solution with Nrules = 1. When Nrules = 1, the rule set R classifies all
instances into the same label, which is a meaningless rule set.

4.4. Summary of Evaluation Schemes for Each CV-Fold

Each CV-fold evaluation scheme of our proposed method is shown in Algorithm 1.
First, we preprocess the datasets Dtrain, Dval, and Dtest. Next, using the training dataset
D′train, we conduct hyperparameter optimization on the validation dataset D′val. From the
Pareto front, we select the optimal hyperparameters using Equation (5). Subsequently, we
fit the model to the dataset D′train with the selected hyperparameters and evaluate it on
dataset D′test. Finally, we return the score set S for the rule set Rbest. By using this scheme,
we are able to maximize the performance of each method.

Algorithm 1 Evaluation scheme for each CV-fold

Require: Training dataset Dtrain, Validation dataset Dval, Test dataset Dtest, Method M
Ensure: The score set S for rule set Rbest

1: D′train,D′val,D′test ← Preprocessing(Dtrain,Dval,Dtest)
2: ParetoFront← OptimizeHyperparametersWithOptuna(D′train,D′val, M)
3: SN , SA ← ParetoFront ▷ Get the sets of Nrules and AUC from the Pareto front
4: k← argmax

k∈{1,...,|SN |}
(− log2 SN [k] + α · SA[k])

5: Rbest ← Fit(D′train,D′val, M, ParetoFront[k])
6: S← Evaluate(D′test, Rbest)
7: return S

5. Results

In this section, we present the experimental results and their analyses.

5.1. Classification Results

The classification results are presented in Table 3. RuleCOSI+ outperformed the other
methods in many datasets. DT was inferior to RuleCOSI+ but superior to the other baselines.
FBTs and J48graft performed better than Re-RX with J48graft, but tended to generate more
rules and less interpretability than the other baselines, as discussed in the next subsection.
Re-RX with J48graft was inferior to the other baselines on average, but showed competitive
results against RuleCOSI+ in some datasets.
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Table 3. Results for classification performance (µ± σ). All metrics are reported as AUC. In this
paper, for each dataset, the top results are in bold (here, “top” means that the gap between this result
and the result with the best score is not statistically significant at a level of 0.05 (Welch’s t-test [57])).
For each dataset, ranks are calculated by sorting the average of the reported scores, and the “rank”
row reports the average rank across all datasets.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 72.60± 7.90 73.88± 6.20 69.99± 7.31 71.51± 5.61 72.37± 5.59
australian 86.21± 4.93 86.01± 2.81 84.91± 8.30 86.70± 2.14 86.73± 2.19
mammographic 76.96± 4.60 79.27± 2.81 76.76± 4.74 73.11± 4.98 77.84± 3.36
tic-tac-toe 77.35± 11.25 76.79± 3.92 65.76± 4.37 66.57± 2.86 71.26± 7.70
german 55.65± 4.94 64.48± 4.62 63.48± 5.31 62.65± 4.55 64.23± 4.56
biodeg 75.11± 3.77 75.08± 3.92 73.55± 4.51 77.28± 4.07 73.09± 3.06
banknote 91.74± 4.40 92.35± 2.45 89.31± 5.99 87.75± 4.83 88.21± 3.34
bank-
marketing

66.67± 6.51 71.35± 1.96 58.31± 3.87 62.75± 2.93 63.57± 6.69

spambase 79.40± 3.53 85.15± 1.55 82.91± 4.24 87.06± 1.72 82.57± 3.52
occupancy 98.72± 0.48 97.84± 0.60 98.90± 0.34 98.98± 0.22 99.00± 0.22

ranking 2.9 2.1 4.0 3.2 2.8

5.2. Interpretability Results

The interpretability results and the number of rules in Nrules and CREP are presented
in Tables 4 and 5. RuleCOSI+ outperformed the other methods for many datasets in
Nrules. In particular, the variance was considerably smaller than that of the other methods,
resulting in stable rule set generation. On the other hand, CREP was larger than other
methods. Because RuleCOSI+ generated a decision list-based rule set, CREP tended to be
large. This is discussed in detail in Sections 5.4 and 6.4. DT obtained superior Nrules and
CREP for many datasets. FBTs and J48graft produced very large Nrules for some datasets.
FBTs had higher Nrules variance in the tic-tac-toe, german, biodeg, and bank-marketing
datasets, indicating unstable rule set generation. Furthermore, CREP was larger for FBTs,
even though it is a tree-based method. Although Re-RX with J48graft resulted in Nrules
being slightly higher than the other methods, except FBTs, on average, CREP was much
lower than the other methods. Re-RX with J48graft and J48graft tended to have a large Nrules
because they both handle categorical attributes.

5.3. Summary of Comparative Experiments

Table 6 shows a summary of all the classification and interpretability results presented
in the previous subsections. RuleCOSI+ had the highest scores for AUC and Nrules, a result
that overwhelmed the other methods when Nrules was emphasized as an indicator of
interpretability. Although DT and Re-RX with J48graft were inferior to RuleCOSI+ in
terms of classification performance, they outperformed the other methods in CREP. In
other words, DT and Re-RX with J48graft are appropriate when the interpretability and
classification frequency of the rules by which instances are classified are important. FBTs
and J48graft were not significantly better than the other methods in any of the metrics,
and were relatively unsuitable when interpretability was more important.
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Table 4. Results for the number of rules.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 13.95± 28.59 3.80± 2.20 4.51± 2.82 6.26± 5.40 3.56± 2.86
australian 3.05± 6.09 2.19± 0.61 2.00± 0.37 2.17± 0.76 2.08± 0.58
mammographic 4.23± 4.51 2.15± 0.50 4.79± 2.00 4.38± 3.25 2.23± 1.08
tic-tac-toe 71.93± 136.98 3.39± 1.00 6.40± 10.96 4.70± 6.16 6.15± 7.11
german 37.14± 139.94 3.24± 1.31 10.59± 10.14 9.97± 7.83 3.76± 1.98
biodeg 69.41± 142.78 3.83± 3.28 12.54± 11.63 47.40± 38.84 2.92± 2.06
banknote 11.55± 16.74 4.06± 1.04 6.42± 3.89 8.06± 6.88 3.91± 2.25
bank-
marketing

27.43± 81.14 2.73± 0.56 5.95± 2.03 7.89± 5.97 3.82± 1.85

spambase 3.95± 4.36 2.25± 0.79 13.69± 11.08 101.30± 51.57 3.72± 1.64
occupancy 2.54± 2.51 2.02± 0.14 2.07± 0.26 6.00± 0.00 2.04± 0.20

ranking 4.5 1.6 3.3 3.8 1.8

Table 5. Results for CREP.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 2.68± 1.59 5.01± 3.00 1.25± 0.48 1.47± 0.58 1.53± 0.89
australian 1.13± 0.72 2.62± 1.22 0.97± 0.25 1.05± 0.21 1.03± 0.23
mammographic 1.70± 0.92 2.18± 0.80 1.03± 0.14 1.27± 0.24 1.10± 0.37
tic-tac-toe 3.94± 2.84 5.62± 1.44 1.16± 0.56 1.11± 0.36 1.83± 1.32
german 3.27± 1.88 4.42± 2.50 1.43± 0.48 1.63± 0.37 1.86± 0.56
biodeg 3.83± 2.66 4.44± 4.01 3.15± 1.08 6.02± 2.67 1.38± 0.75
banknote 2.88± 1.35 3.90± 0.93 2.13± 0.64 2.33± 0.55 1.82± 0.75
bank-marketing 3.01± 2.03 3.18± 0.58 1.29± 0.44 1.65± 0.28 2.19± 0.90
spambase 1.56± 0.94 3.42± 1.03 3.29± 1.24 9.06± 1.20 1.95± 0.76
occupancy 1.17± 0.48 1.81± 0.40 1.02± 0.06 1.89± 0.01 1.03± 0.15

ranking 3.5 4.7 1.5 3.1 2.2

Table 6. Summary of classification and interpretability performance (µ ± σ) across all datasets.
For each metric, the top results are in bold (here, “top” means that the gap between this result and
the result with the best score is not statistically significant at a level of 0.05 (Welch’s t-test [57])).

Method AUC Nrules CREP

FBTs 78.04± 13.05 24.52± 85.43 2.52± 1.99
RuleCOSI+ 80.22± 10.20 2.97± 1.63 3.66± 2.28
Re-RX with J48graft 76.39± 13.14 6.90± 8.14 1.67± 1.06
J48graft 77.44± 12.23 19.81± 36.50 2.75± 2.70
DT 77.89± 11.60 3.42± 3.05 1.57± 0.85

5.4. Two Examples

We present two examples of rules actually generated in the german and bank-marketing
datasets and compare DT, Re-RX with J48graft, and RuleCOSI+. We excluded FBTs and J48graft
from the comparison in this section because of the relatively large numbers of rules and the
difficulty of analyzing the rules. For each method, rules with Nrules matching the median
were adopted.
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In RuleCOSI+ and DT, categorical attributes were renamed into columns by one-hot
encoding. For example, the one-hot encoding for element a of attribute x generates the
attribute x =“a”. In other words, a rule such as x =“a” > 0.5 is equivalent to x = a, and a
rule such as x =“a” ≤ 0.5 is equivalent to x ̸= a. To maintain consistency in notation, we
converted all one-hot encoded categorical attributes in the rules to the format x = a or
x ̸= a.

5.4.1. bank-marketing

Table 7 shows an example of the rule set generated by each method. The rule set
generated by RuleCOSI+ consists of complex rules involving both numerical and categorical
attributes. Furthermore, the rule for class 1 had extremely low interpretability because it
was expressed as follows:

rclass 1 := ¬r0 ∧ ¬r1 → [1] (6)

By contrast, the rule set generated by Re-RX with J48graft consists exclusively of rules
based on categorical attributes, resulting in a relatively high interpretability. Furthermore,
it is simplified by post-processing, as shown in Table 8. The rule set generated by DT, while
containing numerical attributes, was composed of simple rules.

Table 7. Rule sets generated from the bank-marketing dataset.

RuleCOSI+ Coverage

r1 (V16 ̸= success) ∧ (V12 ≤ 351.5) ∧ (V11 ̸= oct)→ [0] 0.744
r2 (V16 ̸= success) ∧ (V12 ≤ 645.5) ∧ (V1 ≤ 70.5)→ [0] 0.148
r3 → [1] 0.109

Re-RX with J48graft Coverage

r1 (V16 = unknown)→ [0] 0.820
r2 (V16 = failure)→ [0] 0.108
r5 (V16 = other)→ [0] 0.044
r3 (V16 = success) ∧ (V5 = yes)→ [0] 0.0
r4 (V16 = success) ∧ (V5 ̸= yes)→ [1] 0.029

DT Coverage

r1 (V12 ≤ 631.5) ∧ (V16 ̸= success)→ [0] 0.891
r2 (V12 ≤ 631.5) ∧ (V16 = success)→ [1] 0.025
r3 (V12 > 631.5)→ [1] 0.084

Table 8. Post-processed rule set generated from the bank-marketing dataset in Re-RX with J48graft.

Re-RX with J48graft Coverage

r1 (V16 ̸= success)→ [0] 0.971
r3 (V16 = success) ∧ (V5 = yes)→ [0] 0.0
r4 (V16 = success) ∧ (V5 ̸= yes)→ [1] 0.029

5.4.2. german

Table 9 shows an example of the rule set generated by each method. As in Section 5.4.1,
the rule set generated by RuleCOSI+ contained a complex mixture of numerical and cate-
gorical attributes, and the rule for class 1 was Equation (6), which had extremely low inter-
pretability. On the other hand, the rule set generated by Re-RX with J48graft was relatively
highly interpretable because the rules were composed of categorical attributes, except for r8
and r9. For r8 and r9, Re-RX with J48graft performed subdivision and added the numerical
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attribute duration to improve the accuracy of the rule for checking_status = 0<=X<200. Also,
as shown in Table 10, the rule set can be simpler, as in Section 5.4.1. The rule set generated
by DT, while containing numerical attributes, was composed of simple rules.

Table 9. Rule sets generated from the german dataset.

RuleCOSI+ Coverage

r1
(age > 19.5) ∧ (checking_status = no checking) ∧ (other_payment_plans =
none)→ [0] 0.329

r2 (duration ≤ 26.5) ∧ (checking_status ̸= <0) ∧ (credit_amount ≤ 10841.5)→ [0] 0.283
r3 → [1] 0.388

Re-RX with J48graft Coverage

r1 (checking_status = no checking)→ [0] 0.394
r2 (checking_status = >=200)→ [0] 0.063
r3 (checking_status = <0) ∧ (credit_history = existing paid)→ [1] 0.16
r4 (checking_status = <0) ∧ (credit_history = critical/other existing credit)→ [0] 0.067
r5 (checking_status = <0) ∧ (credit_history = no credits/all paid)→ [1] 0.013
r6 (checking_status = <0) ∧ (credit_history = all paid)→ [1] 0.022
r7 (checking_status = <0) ∧ (credit_history = delayed previously)→ [1] 0.012
r8 (checking_status = 0<=X<200) ∧ (duration ≤ 26)→ [0] 0.19
r9 (checking_status = 0<=X<200) ∧ (duration > 26)→ [1] 0.079

DT Coverage

r1 (checking_status = no checking)→ [0] 0.394
r2 (checking_status ̸= no checking) ∧ (duration ≤ 19)→ [0] 0.325
r3 (checking_status ̸= no checking) ∧ (duration > 19)→ [1] 0.281

Table 10. Post-processed rule set generated from the german dataset in Re-RX with J48graft.

Re-RX with J48graft Coverage

r1 (checking_status = no checking)→ [0] 0.394
r2 (checking_status = >=200)→ [0] 0.063
r3 (checking_status = <0) ∧ (credit_history = critical/other existing credit)→ [0] 0.067
r4 (checking_status = <0) ∧ (credit_history ̸= critical/other existing credit)→ [1] 0.207
r5 (checking_status = 0<=X<200) ∧ (duration ≤ 26)→ [0] 0.19
r6 (checking_status = 0<=X<200) ∧ (duration > 26)→ [1] 0.079

6. Discussion
6.1. Why Should We Avoid a Mixture of Categorical and Numerical Attributes?

Many methods that have been proposed to enhance interpretability cannot handle
categorical and numerical attributes separately. If we could adequately express a rule using
only categorical attributes, the use of numerical attributes would reduce interpretability.
The conditions for categorical attributes are easy to understand intuitively because they
are categorized into a finite group. On the other hand, the conditions for numerical
attributes are difficult to understand intuitively because there are an infinite number of
thresholds, so the division is not deterministic. Furthermore, it is not common for the
division to be performed convincingly. For example, in the german dataset, there are
only four conditions for the attribute checking_status ∈ {no checking, <0, 0<=X<200, >=200},
whereas the conditions for the attribute credit_amount ∈ N are infinite. In the division
of the condition credit_amount ≤ 10,841.5 in r2 in RuleCOSI+ in Table 9, it is difficult to
understand why the value 10,841.5 was chosen. Furthermore, rules that contain many
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numerical attribute conditions make it more difficult to understand how each condition
relates to the other. Setting thresholds for numerical attributes is infinite, and an intuitive
understanding of how such thresholds affect the other attributes and the overall rules
is difficult. Combining the conditions of multiple numerical attributes exponentially
increases the complexity of the rule. By contrast, the conditions for categorical attributes are
clustered in a finite group, which makes their relationships and effects easier to understand.
Therefore, to realize high interpretability, mixing categorical and numerical attributes
should be avoided.

6.2. Optimal Selection of the Pareto Solutions

In this study, we selected the Pareto optimal solution from the Pareto front obtained
by multi-objective optimization with Optuna using Equation (5). However, the Pareto
optimal solution selected by Equation (5) is not always the optimal solution sought by the
user. As shown in Figure 5, we observed that the Pareto front depends significantly on the
dataset, method, and data splitting. In other words, to select the optimal Pareto solution in
real-world applications, it is desirable to verify the Pareto front individually.
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Figure 5. The Pareto fronts for each method obtained by multi-objective optimization using Optuna
with seed = 1 and CV-fold = 1, 2, 3 in the german (a–c) and bank-marketing (d–f) datasets.

6.3. Decision Lists vs. Decision Trees

DTs delineate distinct, nonoverlapping regions within the training data, which affects
the depth of the tree when representing complex regions. Conversely, decision lists are
superior to DTs in that they allow overlapped regions in the feature space to be represented
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by different rules, thereby generating more concise rule descriptions for decision boundaries
for the classification problem.

On the other hand, when interpreting rules corresponding to an instance, DTs only
require tracing the node corresponding to the instance, whereas decision lists require
concatenating rules until the instance is classified, which makes the rules more complex.
In other words, even if the apparent size of the decision list is small, such as Nrule and the
average number of conditions, it is actually a very complex rule set with less interpretability
than DTs. Therefore, if interpretability is important, DTs or DT-based rule sets are the
better choice.

6.4. CREP as a Metric of Interpretability

CREP measures the complexity of a rule set based on empirical probabilities and is
an intuitive metric of the interpretability of the rule set. CREP can be used to compare
the interpretability of both decision list- and DT-based rule sets because it is calculated
separately for these models. RuleCOSI+, which is a decision list-based rule set that was
concluded to have low interpretability in Sections 5.4.1 and 5.4.2, has a high CREP value
compared with the other methods in Table 5, showing that the examples and the indicator
are consistent. From the above, we can conclude that CREP is an appropriate metric for
evaluating the interpretability of rule sets.

6.5. Limitations

In this study, all datasets were used for the evaluation of binary classification. We
found the Pareto optimal solution from the Pareto front obtained by multi-objective opti-
mization using Equation (5), but this equation is specialized for binary classification. In
multi-class classification, effective results were not obtained using Equation (5). For exam-
ple, a solution in which there are no rules corresponding to a certain class was sometimes
selected as the best solution. To solve this issue, it will be necessary to devise an equation
which is specialized for multi-class classification.

Furthermore, it is important to recognize that the size of the datasets used in this study
was small to medium. The computational complexity of RuleCOSI+ and FBTs increases
exponentially with the size of the data and the number of attributes. This is primarily
due to the greedy algorithms employed in these methods. It was not practical to conduct
experiments on large datasets within a reasonable time frame; therefore, while comparisons
between tree ensembles and Re-RX with J48graft were possible, further validation is needed
to provide conclusive evidence for the effectiveness of CREP on broader datasets. Such an
attempt would improve our understanding of not only the metric’s applicability, but also
its generalizability across different domains and data types beyond those categorically
addressed in this study.

7. Conclusions

In the present study, we compared the tree ensemble approximator with Re-RX with
J48graft and showed the importance of handling categorical and numerical attributes
separately. RuleCOSI+ obtained a high interpretability on the measure with a small number
of rules. However, the rules that are actually used to classify instances are complex
and have quite a low interpretability. On the other hand, Re-RX with J48graft obtained
a low interpretability on the measure with a large number of rules. However, it can
handle categorical and numerical attributes separately, has simple rules, and achieves high
interpretability, even when the number of rules is large. We newly proposed CREP as a
metric for interpretability, which is based on the empirical probability of the rules and
measures their complexity. CREP can be used for a fair comparison of decision list- and
DT-based rule sets. Furthermore, by using macro-CREP in Equation (4), interpretability
can be evaluated appropriately, even for class-imbalanced datasets. Few studies have
considered handling categorical and numerical attributes separately, and we believe that
this is an important issue for future work. Existing tree ensembles do not distinguish
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between categorical and numerical attributes because they prioritize accuracy. Therefore,
they cannot be distinguished by tree ensemble approximators such as RuleCOSI+ and
FBTs. In the future, we plan to develop a tree ensemble that distinguishes categorical from
numeric attributes and serves as an approximator with even better interpretability.
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Appendix A. Dataset Sources

The sources of the datasets used in the experiments are listed in Table A1. We used
the OpenML-Python package [58] to obtain the datasets. Only the occupancy data were
directly obtained from the UCI repository. We utilized the datatraining.txt file for
our experiments.

Table A1. Dataset OpenML id and UCI link.

Dataset ID URL

heart 53 https://archive.ics.uci.edu/dataset/145/statlog+heart (13 March 2024)
australian 40981 https://archive.ics.uci.edu/dataset/143/statlog+australian+credit+approval (13 March 2024)
mammographic 45557 https://archive.ics.uci.edu/dataset/161/mammographic+mass (13 March 2024)
tic-tac-toe 50 https://archive.ics.uci.edu/dataset/101/tic+tac+toe+endgame (13 March 2024)
german 44096 https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data (13 March 2024)
biodeg 1494 https://archive.ics.uci.edu/dataset/254/qsar+biodegradation (13 March 2024)
banknote 1462 https://archive.ics.uci.edu/dataset/267/banknote+authentication (13 March 2024)
bank-marketing 1558 https://archive.ics.uci.edu/dataset/222/bank+marketing (13 March 2024)
spambase 44 https://archive.ics.uci.edu/dataset/94/spambase (13 March 2024)
occupancy - https://archive.ics.uci.edu/dataset/357/occupancy+detection (13 March 2024)

Appendix B. Implementation Details and Hyperparameters

In this section, we provide the implementation details and hyperparameters for
each method. See our repository (https://github.com/somaonishi/InterpretableML-
Comparisons (13 March 2024)) for more details.

Appendix B.1. XGBoost

Implementation. We used XGBoost (https://xgboost.readthedocs.io/en/stable/python/
python_api.html#xgboost.XGBClassifier (13 March 2024)) for the base tree ensemble for
FBTs and RuleCOSI+. We fixed and did not tune the following hyperparameters:

• early_stopping_rounds = 10
• n_estimators = 250

In Table A2, we provide the hyperparameter space.

https://github.com/somaonishi/InterpretableML-Comparisons
https://archive.ics.uci.edu/dataset/145/statlog+heart
https://archive.ics.uci.edu/dataset/143/statlog+australian+credit+approval
https://archive.ics.uci.edu/dataset/161/mammographic+mass
https://archive.ics.uci.edu/dataset/101/tic+tac+toe+endgame
https://archive.ics.uci.edu/dataset/144/statlog+german+credit+data
https://archive.ics.uci.edu/dataset/254/qsar+biodegradation
https://archive.ics.uci.edu/dataset/267/banknote+authentication
https://archive.ics.uci.edu/dataset/222/bank+marketing
https://archive.ics.uci.edu/dataset/94/spambase
https://archive.ics.uci.edu/dataset/357/occupancy+detection
https://github.com/somaonishi/InterpretableML-Comparisons
https://github.com/somaonishi/InterpretableML-Comparisons
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier
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Table A2. XGBoost hyperparameter space.

Parameter Space

max_depth UniformInt (1, 10)
η LogUniform (1 × 10−4,1.0)

# Iterations 50

Appendix B.2. FBTs

Implementation. We used the official implementation of FBTs (https://github.com/
sagyome/XGBoostTreeApproximator (13 March 2024)). We fixed and did not tune the
following hyperparameters:

• min_ f orest_size = 10
• max_number_o f _conjunctions = 1000

In Table A3, we provide the hyperparameter space.

Table A3. FBTs hyperparameter space.

Parameter Space

max_depth UniformInt (1, 10)
pruning_method {auc, None}

# Iterations 50

Appendix B.3. RuleCOSI+

Implementation. We used the official implementation of RuleCOSI+ (https://github.
com/jobregon1212/rulecosi (13 March 2024)). In Table A4, we provide the hyperparame-
ter space.

Table A4. RuleCOSI+ hyperparameter space.

Parameter Space

con f _threshold Uniform (0.0, 0.95)
cov_threshold Uniform (0.0, 0.5)
c Uniform (0.1, 0.5)

# Iterations 50

Appendix B.4. Re-RX with J48graft

Implementation. We used the repository (https://github.com/somaonishi/rerx
(13 March 2024)) that we implemented for Re-RX with J48graft. We used batch_size =
2⌊log(d)+0.5⌋, where d is the amount of training data. In addition, we fixed and did not tune
the following hyperparameters in the MLP:

• epochs = 200
• early_stopping = 10
• optimizer = AdamW [59]

In Table A5, we provide the hyperparameter space of the MLP. We searched for the
optimal parameters of the MLP and then the other parameters of Re-RX with J48graft. In
Table A6, we provide the hyperparameter space for the other parameters of Re-RX with J48graft.

https://github.com/sagyome/XGBoostTreeApproximator
https://github.com/sagyome/XGBoostTreeApproximator
https://github.com/jobregon1212/rulecosi
https://github.com/jobregon1212/rulecosi
https://github.com/somaonishi/rerx
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Table A5. MLP hyperparameter space.

Parameter Space

dim UniformInt (1, 5)
learning_rate LogUniform (5 × 10−3, 0.1)
weight_decay LogUniform (1 × 10−6, 1 × 10−2)

# Iterations 50

Table A6. Re-RX with J48graft hyperparameter space.

Parameter Space

j48gra f t.min_instance {2, 4, 8, . . . , 128}
j48gra f t.pruning_threshold Uniform (0.1, 0.5)
pruning_lamda LogUniform (0.001, 0.25)
δ1 Uniform (0.05, 0.4)
δ2 Uniform (0.05, 0.4)

# Iterations 50

Appendix B.5. DT

Implementation. We used scikit-learn’s DT (https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeClassifier.html (13 March 2024)). In Table A7, we
provide the hyperparameter space. We used the default hyperparameters of scikit-learn for
the other parameters.

Table A7. DT hyperparameter space.

Parameter Space

max_depth UniformInt (1, 10)
min_samples_split Uniform (0.0, 0.5)
min_samples_lea f Uniform (0.0, 0.5)

# Iterations 100

Appendix B.6. J48graft

Implementation. We used J48graft as implemented in the rerx repository (https:
//github.com/somaonishi/rerx/blob/main/rerx/tree/tree.py (13 March 2024)). Table A8
shows the hyperparameter space.

Table A8. J48graft hyperparameter space.

Parameter Space

min_instance {2, 4, 8, . . . , 128}
pruning_threshold Uniform (0.1, 0.5)

# Iterations 100

Appendix C. Results for Other Metrics

We show the results for the other metrics in Tables A9–A12.

https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://github.com/somaonishi/rerx/blob/main/rerx/tree/tree.py
https://github.com/somaonishi/rerx/blob/main/rerx/tree/tree.py
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Table A9. Results for the average number of conditions.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 2.68± 1.59 1.76± 0.63 1.43± 0.65 1.96± 1.00 1.53± 0.89
australian 1.13± 0.73 1.25± 0.51 0.98± 0.29 1.10± 0.42 1.03± 0.23
mammographic 1.70± 0.92 1.05± 0.30 1.12± 0.26 1.28± 0.29 1.11± 0.39
tic-tac-toe 3.95± 2.85 1.95± 0.25 1.27± 0.74 1.20± 0.63 1.90± 1.44
german 3.27± 1.87 1.71± 0.66 1.85± 0.93 2.01± 0.69 1.90± 0.53
biodeg 3.82± 2.64 1.55± 0.63 5.10± 2.82 10.83± 2.64 1.37± 0.70
banknote 2.87± 1.34 1.54± 0.20 2.72± 1.03 2.91± 0.96 1.81± 0.73
bank-
marketing

3.00± 2.01 1.57± 0.30 1.72± 0.65 3.02± 1.34 1.92± 0.70

spambase 1.56± 0.94 1.64± 0.34 4.30± 1.96 15.72± 1.78 1.89± 0.70
occupancy 1.18± 0.52 0.90± 0.20 1.05± 0.17 3.33± 0.00 1.03± 0.13

ranking 4.0 2.1 2.5 4.1 2.3

Table A10. Results for precision.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 71.26± 11.18 70.09± 11.06 68.07± 16.82 69.04± 7.27 70.97± 8.66
australian 78.78± 5.99 78.28± 5.10 75.81± 17.96 79.91± 4.63 79.55± 4.17
mammographic 75.10± 4.02 75.22± 4.22 72.66± 8.34 71.21± 4.20 75.03± 4.64
tic-tac-toe 70.55± 15.35 56.39± 5.07 54.12± 11.70 57.44± 6.02 61.32± 9.12
german 49.86± 19.72 47.61± 6.93 49.79± 10.35 54.68± 7.31 53.08± 7.49
biodeg 62.36± 7.88 61.56± 7.79 72.00± 9.73 71.10± 8.89 58.79± 5.57
banknote 88.72± 6.51 90.79± 3.75 87.17± 11.11 82.96± 6.90 85.99± 5.84
bank-
marketing

42.10± 13.51 50.03± 5.13 58.60± 8.95 54.12± 9.86 49.12± 17.98

spambase 78.06± 8.65 78.48± 5.70 80.17± 9.17 86.04± 3.62 76.75± 7.50
occupancy 93.58± 3.04 87.20± 3.88 94.35± 2.08 95.14± 0.97 94.95± 1.30

ranking 2.8 3.3 3.3 2.5 3.1

Table A11. Results for recall.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 68.62± 13.44 77.46± 13.27 62.42± 17.81 68.29± 9.37 68.58± 11.26
australian 93.08± 3.35 93.11± 6.68 87.82± 20.65 92.20± 4.65 92.66± 3.78
mammographic 79.14± 12.84 85.77± 6.67 81.64± 11.28 74.67± 9.63 82.02± 8.61
tic-tac-toe 71.13± 14.72 92.61± 12.00 56.58± 12.34 55.72± 5.57 64.12± 12.08
german 19.85± 16.90 55.42± 16.79 49.28± 21.15 40.32± 12.32 46.22± 8.96
biodeg 74.35± 8.95 75.24± 8.98 60.52± 11.76 69.94± 6.14 72.76± 7.57
banknote 93.43± 6.25 92.35± 4.25 88.70± 10.97 90.86± 6.19 88.30± 4.56
bank-
marketing

42.04± 18.36 49.25± 4.51 18.34± 8.62 28.92± 6.52 30.80± 15.45

spambase 73.48± 10.28 86.26± 3.62 80.45± 11.49 83.01± 2.99 82.07± 5.03
occupancy 99.30± 0.50 99.70± 0.31 99.42± 0.34 99.33± 0.32 99.42± 0.29

ranking 2.9 1.1 3.9 3.8 3.0
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Table A12. Results for F1-score.

Dataset FBTs RuleCOSI+ Re-RX with
J48graft J48graft DT

heart 68.99± 10.30 72.00± 7.25 63.98± 14.88 68.22± 6.31 68.85± 7.19
australian 85.14± 3.88 84.73± 3.07 81.19± 18.77 85.42± 2.24 85.47± 2.27
mammographic 76.35± 6.78 79.86± 2.82 76.67± 8.84 72.64± 6.04 77.99± 3.89
tic-tac-toe 70.61± 14.44 69.54± 4.17 54.77± 10.63 56.26± 4.15 62.52± 9.87
german 24.99± 15.37 49.91± 8.21 46.76± 12.02 45.07± 8.52 49.02± 7.25
biodeg 67.10± 4.71 67.04± 4.75 64.45± 6.84 70.04± 5.34 64.59± 3.80
banknote 90.79± 4.73 91.46± 2.69 87.70± 10.10 86.54± 5.22 86.95± 3.60
bank-
marketing

38.39± 11.63 49.40± 3.40 26.87± 9.16 36.94± 6.35 35.92± 15.36

spambase 74.72± 4.99 81.93± 1.91 79.20± 5.49 84.42± 2.15 79.00± 4.15
occupancy 96.33± 1.60 92.98± 2.12 96.81± 1.11 97.19± 0.53 97.13± 0.68

ranking 3.0 2.1 4.0 3.0 2.9

References
1. Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl.

Based Syst. 2023, 263, 110273. [CrossRef]
2. Barredo Arrieta, A.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; Garcia, S.; Gil-Lopez, S.; Molina, D.;

Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward
responsible AI. Inf. Fusion 2020, 58, 82–115. [CrossRef]

3. Adadi, A.; Berrada, M. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access 2018,
6, 52138–52160. [CrossRef]
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