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Abstract: Efficient planning and management of health transport services are crucial for improving
accessibility and enhancing the quality of healthcare. This study focuses on the choice of determinant
variables in the prediction of health transport demand using data mining and analysis techniques.
Specifically, health transport services data from Asturias, spanning a seven-year period, are analyzed
with the aim of developing accurate predictive models. The problem at hand requires the handling
of large volumes of data and multiple predictor variables, leading to challenges in computational
cost and interpretation of the results. Therefore, data mining techniques are applied to identify the
most relevant variables in the design of predictive models. This approach allows for reducing the
computational cost without sacrificing prediction accuracy. The findings of this study underscore
that the selection of significant variables is essential for optimizing medical transport resources
and improving the planning of emergency services. With the most relevant variables identified, a
balance between prediction accuracy and computational efficiency is achieved. As a result, improved
service management is observed to lead to increased accessibility to health services and better
resource planning.

Keywords: data mining; ambulance response performance; variable importance measure; ambulance
demand prediction; exploratory data analysis

1. Introduction

E-health, a term coined to describe the integration of digital technologies into health-
care, represents a pivotal transformation in the delivery and management of health ser-
vices [1]. It encompasses a broad spectrum of applications, from electronic health records
(EHRs) to telemedicine and mobile health (mHealth) solutions [2]. The core objective of
e-health is to leverage information and communication technologies to improve healthcare
access, efficiency, and quality while empowering patients to take charge of their well-being
through digital tools and platforms.

Within the realm of healthcare services, the concept of e-health plays a fundamental
role in optimizing various facets, including the provision of healthcare transportation
services. By harnessing digital advancements, such as real-time tracking systems, telehealth
consultations, and data-driven logistics, e-health can significantly enhance the efficiency
and effectiveness of healthcare transportation [3]. Whether it involves ambulance services,
non-emergency patient transfers, or medical courier deliveries, the incorporation of e-health
technologies aims to streamline operations, reduce response times, and ensure prompt and
tailored care for patients during transit.

It is clear that in the healthcare system, medical transport plays a fundamental role
in ensuring both care and the efficient planning and management of services. While its
role in emergency situations stands out, it is equally necessary in the transfer of patients
requiring specialized care. Achieving a correct operation is possible thanks to different
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factors, including an adequate infrastructure of personnel and resources, as well as effective
coordination between the agents involved.

Determining the precise number of personnel and resources required can be com-
plicated, leading to occasional coordination lapses and two undesirable scenarios. On
the one hand, under-allocating services can saturate the system, jeopardizing guaranteed
healthcare and degrading care quality. On the other hand, if resources are overestimated,
the system will incur unnecessary expenditures that will have an impact on the budgets
allocated to other types of services. As a result, countries such as the United States have
proposed solutions to address this cost overrun [4].

The analyzed transport system, recently updated and rich in data, positions ambulance
services as ideal candidates for predictive model applications. Reference [5] indicates that
time series analysis offers potent short-term forecasts of future ambulance service needs.
Interestingly, simple models in this context may outperform complex and costly ones,
emphasizing the importance of focusing on predicting service volume rather than solely
relying on average run times and patient acuities.

Another critical area within healthcare, especially in organ transplantation, faces chal-
lenges in organ allocation. As per a different study [6], designing an optimal and efficient
organ allocation approach is crucial to balance organ supply and demand, preventing the
loss of patients awaiting suitable organs. Recent literature points to a gap in considering
simultaneous medical and logistical factors in organ allocation strategies.

In response to these concerns, a number of studies [7–9] are looking at new models
that can lead to better planning in the medical transport fleet. The first step to obtaining
these accurate models is to know which are the determining variables in this prediction,
which will allow simpler models to be much more powerful. Data mining techniques make
it possible to recognize and analyze these characteristics in order to provide an answer to
the questions posed.

Hence, integrating data mining techniques into ambulance service planning, alongside
insights from organ allocation studies, could offer a holistic framework for optimizing
resource allocation, predicting service needs, and enhancing the overall efficiency of health-
care transport systems. The primary aim of this research lies in leveraging statistical and
data mining methodologies to identify and discern the most pivotal variables crucial for
accurately predicting this demand.

This paper is divided into several sections. It commences with an analysis of existing
studies to date on predicting healthcare transportation demand, distinguishing between
the characterization of variables, the utilization of time series techniques, fleet manage-
ment, and spatio-temporal prediction. Following this, a data mining section is presented,
elucidating the underlying mathematical theory behind the applied techniques. This is
followed by an examination of available data, along with their contextualization, and the
exploration of external data sources that could be cross-referenced and correlated with the
existing dataset. The results obtained from these correlations and the decisions derived
from them are provided. Finally, the outcomes of implementing the techniques introduced
in the data mining section are presented, accompanied by an interpretation of these results,
culminating in a conclusion drawn from the conducted research.

2. Related Work
2.1. Health Transport Demand Prediction

Over the past few years, several research studies have been conducted with the aim
of developing predictive models that can accurately estimate the demand for medical
assistance in the ambulance setting [10,11]. These studies have used different methodologi-
cal approaches and predictor variables to identify the factors that influence demand and
provide a solid basis for the development of more accurate and reliable models.

One of the key issues addressed in the scientific literature is the consideration of
temporal patterns of demand. Studies [12,13] have investigated the variability of demand
throughout the day, week, or year, identifying specific demand patterns at different time
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points. These analyses reveal the existence of peak demand at certain times of the day or
days of the week, as well as seasonal variations that may be influenced by external factors.

In addition to temporal patterns, geographic variables have been explored as another
influential factor in the demand for ambulance care [14,15]. Studies have analyzed the
influence of geographic location, highlighting that areas with a higher population density
or with specific geographic characteristics, such as mountainous or rural areas, may have a
higher demand for ambulance services. Furthermore, geographic variability in ambulance
use is large and is associated with variations in the health status and socioeconomic situation
of patients [16].

The relationship between demographic variables and the demand for ambulance
services has also been investigated [17]. Previous studies have examined the impact of
demographic variables, such as population, age, and gender, on the demand for ambulance
services. These demographic factors may be associated with certain types of medical
emergencies, which implies that their consideration is essential to develop accurate predic-
tive models.

In terms of the methodologies used, the scientific literature has covered a wide spec-
trum of approaches. They have ranged from traditional statistical models, such as linear re-
gression [18] or time series [19], to more advanced techniques, such as neural networks [20],
support vector machines, and machine learning algorithms [21]. These approaches have
proven effective in predicting care demand, with promising results in terms of accuracy
and generalizability.

2.2. Predicting Ambulance Demand for Care Using Time-Series Techniques

In [22], the importance of using time series prediction techniques for adequate health
planning is highlighted. The cited study employs the Holt-Winters exponential smoothing
model, a time series prediction technique, to detect seasonality patterns and demand
evolution, allowing quality predictions in the short term. This method has advantages
such as straightforward interpretation and implementation, as well as high reliability,
being surpassed only by procedures that require a more complex and detailed comparative
analysis. Therefore, this approach is recommended for routine use. Several adjustment
measures are evaluated, such as RMSE, MAE, or MAPE (the definitions of these metrics are
provided in Section 5), achieving short-term predictions with a MAPE of 5.9% at one week
and 10.4% at three weeks.

In [17], a modified clustering genetic algorithm is applied to compare optimal ambu-
lance locations, predict future ambulance locations, and determine the required number
of vehicles. The study predicts variations in care demand, in this case for emergencies,
by reassigning the location of ambulances to other nearby ones. This reduces the average
response time by 57 s. The importance of the age variable in considering the number of
services is highlighted, using demographic predictions to infer future cases of long-term
emergency health services.

A similar approach is explored in [23], wherein neural networks incorporating predefined
trajectories are used to predict the location of future demand for ambulance services. Leveraging
these forecasts obtained, ambulances are relocated before actual emergencies occur.

These studies demonstrate the value of time series techniques, genetic algorithms, and
neural networks in forecasting ambulance demand for care, allowing for efficient resource
allocation and improved response times in emergency situations.

2.3. Fleet Management

Ambulance fleet management has been the subject of most of the studies reviewed in
the literature, which have focused mainly on vehicle location and relocation, often sidelin-
ing the predictions regarding the number of services. A review of modeling approaches
used in ambulance fleet management was conducted in [24]. This examination considered
factors such as objectives, coverage and location constraints, number of ambulances, and
geographic region. Among the most commonly used techniques are branch and bound,
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branch and cut, heuristic methods, tabu search, the ant colony algorithm, and genetic algo-
rithms. In addition, Bayesian approaches are noted to have been proposed for predicting
the number of emergency calls in each area.

The Bayesian approach has proven to be an important feature in health management
applications as it allows the combining of available data with prior information in a sound
theoretical framework. In this way, subsequent inference can be used as prior information
when new data become available, as reported in [25]. For example, a Bayesian model has
been used to estimate the distribution of ambulance travel times in different road segments
of a city [26], as well as to predict the demand of patients attended by the home care
service [27] and emergency calls [28].

2.4. Spatio-Temporal Prediction

Another strand of research has centered on both temporal and spatio-temporal predic-
tion of medical transport demand. To forecast the spatio-temporal demand for ambulances
in Toronto, Ref. [29] considered weekly seasonality, daily seasonality, and short-term serial
dependence during some specific hours. Notably, they addressed the seasonality of the area
without considering the exact routes. Prior to applying machine learning (ML) algorithms
in their work, a prediction was formed using an averaging formula over a spatial region of
1 km² for a duration of one hour. Previous research has used different methods to predict
aggregate ambulance demand as a temporal process, including autoregressive moving
averages [30], factor models considering hourly and daily seasonality [31], spectral analy-
sis [19], and grid-based neural networks in discrete time and space [32]. In the case of [29],
a discrete-time and continuous-space Gaussian model was adopted to predict emergency
call volumes.

More recent research has used decision models, such as a hybrid decision tree using a
naive Bayes classifier, to predict ambulance offload delay [33]. In this case, the predictor
variables used in the decision tree include the day of the week, time of day, call volume, free
ambulance rate, and total number of ambulances. Figure 1 shows the significance of these
variables obtained after applying the hybrid decision tree with a naive Bayes classifier [33].
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Figure 1. Importance of variables obtained after applying a hybrid decision tree with a naive Bayes
classifier to three different models. It is observed that, in all models, the most important variable is
the number of ambulances at ED, followed by the hour of the day or the number of calls per hour,
and the values provided by the National Emergency Department Overcrowding Scale (NEDOCS).
Less important are the day of the week and the ambulance clear rate. Figure redrawn from [33].

However, this is not the first time that ML techniques have been used to estimate
ambulance demand. In [18], these techniques were employed to quantify the characteristics
that influence demand. Among these characteristics, age plays an important role, as a
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region is likely to experience higher demand due to a larger elderly population. For this
purpose, actual patient data sets and demographic data from the past 10 years were used.
Other relevant factors include the day of the week and month, as demand tends to have
a periodic pattern, as well as short- and long-term historical demands in each region
(e.g., outbreaks, sporting events). The variables considered in this study were classified
into spatial (region ID), temporal (day of the week, day of the month, day of the year),
demographic (number of people over 50 years old in a specific year), short-term historical
demands (7 variables corresponding to the demands of the last 7 days in that region), and
long-term historical aggregate demand (total demand for the last 30 days, last 7 days, week
to sample date, month to sample date).

In addition, socioeconomic variables have been added in this research to analyze
whether the demand for ambulances is related to the socioeconomic characteristics of the
inhabitants of a region. For this purpose, methods such as regional moving average, linear
regression, support vector regression (SVR), multilayer perceptron (MLP), radial basis
function neural network (RBFN), and light gradient boosting machine (LightGBM) were
used. After comparing the different methods, it was concluded that the best solution was
LightGBM (regression tree). The most important characteristics were the ID of the region
in which the demand was predicted, the demand of the previous 30 days, and the demand
of the previous 7 days. The number of people over 50 years of age in the region was also
considered important. Table 1 shows a comparative table of the accuracies of the different
models used in ambulance demand prediction [18].

Table 1. Comparative table of accuracies for the different models used in ambulance demand
prediction. Table from [18].

Method WAPE (%) MAE MSE

Regional Moving Average 25.8 2.20 11.2
Linear Regression 24.5 2.09 10.1

MLP 24.6 2.10 10.1
RBFN 25.1 2.14 10.8
SVR 25.2 2.15 11.2

LightGBM 24.5 2.09 10.2
Bold indicates the best results for each column. WAPE: weighted percentage error; MAE: mean absolute error;
MSE: mean squared error; MLP: multiplayer perceptron; RBFN: radial basis function network; SVR: support
vector regression; LightGBM: light gradient boosting machine.

3. Data Mining

Data mining [34] refers to the process of extracting interesting new knowledge from
large data sets. Importantly, before building data models for the prediction of the demand
for healthcare transportation, various preprocessing techniques are used to determine the
key variables to be used in constructing them. In this study, descriptive mining techniques
are initially applied in order to explore the data in depth and determine the key variables
in the prediction of the demand for healthcare transportation.

3.1. Association Rules

Association rules are data mining techniques used to discover frequent patterns
between variables or elements in large data sets, as in our case. These associations are used
a posteriori in decision-making, behavior prediction, or product recommendation.

According to [34], an association rule is defined as an implication of the form A =⇒ B,
where A ⊂ I, B ⊂ I, A ̸= ∅,B ̸= ∅, and A ∩ B = ∅. This rule is satisfied on the set of
total transactions, D, with a support s, which represents the percentage of transactions in D
containing A ∪ B and is computed as the probability of A ∪ B, P(A ∪ B). In addition, it has
a confidence c on the set of total transactions, D, where c is the percentage of transactions
in D that contain A and also contain B, and is calculated as the conditional probability
P(B|A).
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Another important measure for determining the importance of an association rule in a
data set is the lift measure. This measure is based on the idea that if P(A ∪ B) = P(A)P(B),
then A and B are independent. Therefore, the calculation of the lift measure, defined as
P(A ∪ B)/(P(A)P(B)), allows the dependence between A and B to be determined. Values
close to 1 indicate that the occurrence of A is not related to B, while larger or smaller values
indicate positive or negative dependence, respectively.

In this study, the a priori algorithm, proposed by R. Agrawal and R. Srikant in 1994,
is used to obtain association patterns in the data set. This algorithm is based on prior
knowledge of frequent transactions and uses an iterative approach for its implementation.

3.2. Dickey–Fuller Test and Autocorrelation Functions

Time series are composed of three elements: the trend, which represents smooth
changes over the medium to long term; the seasonal component, which shows periodicity
over time; and the random component, which follows no discernible pattern [35]. Iden-
tifying the presence of a seasonal component in a time series can improve the quality of
predictions and allow the application of more robust techniques. For this purpose, there
are statistical tests and tests to verify the existence of seasonal components in time series,
and the Dickey–Fuller test is one of the most widely used.

The Dickey–Fuller test is a statistical test developed by David Dickey and Wayne Fuller
in 1979. This test evaluates the presence of unit roots in a time series. A unit root indicates
a stochastic trend, i.e., the absence of stationarity [36]. Under the null hypothesis (H0),
the time series has a unit root and, therefore, is not stationary [37]. Under the alternative
hypothesis (H1), the time series does not have a unit root and, therefore, is stationary.

Once it is determined that a time series is not stationary, it is important to know
if it has seasonal patterns, i.e., periodicity. For this purpose, there are tools such as the
autocorrelation function (ACF), which allows us to identify dependence patterns and
temporal structures in the data. The ACF does not serve as a similarity index to measure
how much similarity exists between the behavior of a time series at present and other
dates [38]. Instead, it aids in identifying the presence of a linear relationship between
the observations of the time series at various lags. However, the ACF can be affected by
intermediate values, so the partial autocorrelation function (PACF) is used, which measures
the correlation between the time series and its own values at one particular lag when the
effect of all the other lags is removed.

3.3. Gradient Boosting

There are many diverse existing approaches to evaluate the importance of predictor
variables in prediction algorithms. Some of the most commonly used methods include,
as seen in previous research, the calculation of correlation coefficients and the use of
gradient-boosting models.

One of the techniques used in data mining for decision-making is decision trees.
Decision trees are a type of machine learning algorithm used for both classification and
regression tasks. They construct a tree-like model where each internal node represents
a decision based on input features, and each leaf node represents the final prediction.
Decision trees are easy to interpret and visualize, making them valuable for understanding
the decision-making process in the model. In their construction, the most relevant variables
tend to appear in the first splits. Measures such as the Gini index, which assesses the purity
of a data split based on the distribution of classes, are used to identify relevance. Smaller
values of the Gini index after a split indicate a higher relevance of the variable used for
the split.

However, the use of decision trees can be highly dependent on the seed and initial
node, which reduces their reliability. For this reason, ensemble techniques such as random
forest or gradient boosting are used. In gradient boosting, trees are built sequentially, with
each tree correcting the errors of the previous one, allowing the model to fit the data more
closely [39]. The final prediction is made by summing the weighted predictions of all the
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trees. On the other hand, in random forest, trees are built independently in parallel, each
trained on a random subset of the data. During prediction, the predictions of all the trees
are combined through voting (in classification) or averaging (in regression) to obtain the
final prediction. Both methods are highly effective and widely used in the field of machine
learning due to their ability to handle complex data and provide accurate and reliable
results. Ensemble techniques tend to generalize well and provide robust performance
across various datasets due to the diversity of trees. They are widely used in machine
learning for their ability to handle high-dimensional data and deliver reliable results.

In this case, the gradient boosting algorithm is used, where the importance of the
variables is evaluated according to three metrics:

• The weight metric considers the frequency with which a variable is used to split the
nodes in the individual trees.

• The gain metric takes into account the improvement of the loss function obtained by
performing a split in the data using a particular variable.

• The cover metric evaluates the proportion of samples affected after splitting the data
set based on a variable.

In the specific case considered, the extreme gradient boosting (XGB) algorithm is
used because it allows working with qualitative variables in Python without requiring
additional transformations [40]. Most algorithms require the variables to be quantitative,
and the most common method for this involves transforming categorical variables into
dummy variables. This involves creating as many variables as there are possible values
for each qualitative variable, which can generate a large number of variables. Once the
most important variables have been identified and it has been verified that reducing the
number of predictor variables does not significantly affect accuracy, it is possible to use
other methods without incurring such a high computational cost.

4. Materials and Methods
4.1. Analysis of Available Data

The available database is a structured historical database given by means of an ex-
tended star or snow-like model. It contains data from 2016 to 2022, with a total of two
million services carried out in the Principality of Asturias, Spain (Table 2). The variables
provided by the entity include:

• Date and time of service: In one column, date in the format “d/m/Y” and, in another
column, time in the format “HH:MM” at which the service starts.

• Classification as urgent or scheduled: A column indicating YES when corresponding
to urgent services and NO when corresponding to scheduled services.

• Origin of the call: Which entity the call is made from.
• Origin and destination of the service provided at different levels: the health area,

council, type of premises/building, and address. There are 8 columns corresponding
to the origins (Starting) and destinations (Arrival) at the four levels indicated above.
(For example, starting area, arrival area, starting council, arrival council, etc.)

• Stretcher requirement: A column with YES if there is a need for a stretcher and NO if
not needed.

• Stretcher bearer requirement: A column with YES if there is a need for a stretcher
bearer and NO if not needed.

• Nurse requirement: A column with YES if there is a need for a nurse and NO if
not needed.

• Companion requirement: A column with YES if there is a need for a companion and
NO if not needed.
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Table 2. Number of services available for analysis. The table shows the available data, disaggregated
by health area (from 1 to 8), and whether the services are emergency (E) or scheduled (S). A total of
1,350,971 scheduled services and 605,251 emergency services were provided.

Health Area 1 2 3 4 5 6 7 8

2016
E 3525 1659 12,406 23,130 21,981 4756 6271 6238

S 10,707 12,347 27,195 48,274 38,947 9770 14,524 20,411

2017
E 3281 1699 13,045 23,939 23,016 4682 6194 6397

S 10,050 10,557 30,008 52,057 39,305 14,113 15,465 22,136

2018
E 3385 1709 13,341 24,750 24,515 5072 6327 6615

S 10,908 11,751 29,396 53,521 41,307 12,454 17,016 23,120

2019
E 3675 1632 13,644 26,765 25,830 4907 6147 6607

S 1106 10,911 28,931 56,794 43,615 12,025 15,896 17,862

2020
E 3556 1669 13,627 26,545 26,114 4402 6277 6520

S 8312 9140 24,456 53,850 35,991 10,132 14,931 16,762

2021
E 3835 1732 13,909 27,529 25,559 5136 6894 6244

S 10,665 11,546 31,271 60,386 42,087 11,963 17,847 17,706

2022
E 3846 1782 13,750 26,182 25,484 5137 6222 6160

S 10,850 10,589 29,667 63,872 43,832 11,921 15,357 17,404

The Principality of Asturias is an autonomous community of Spain located on the
north coast of the Iberian Peninsula, bordered by the Cantabrian Sea on the north. It has
a population of approximately 1 million inhabitants, according to data available as of
September 2023. Asturias has a territorial extension of about 10,604 square kilometers and
is organized by zones, divided administratively into 78 councils that are responsible for the
management of resources and services at a municipal level. It is divided into eight health
areas (Figure 2), which in turn contain 68 basic zones and 16 special health zones. The
health areas are responsible for managing both primary care services and hospitals and
other health centers in the corresponding region. The number of councils in each health
area varies according to population density, administrative organization, geographical
distribution, and primary care needs.

Figure 2. Division of health areas of Asturias. The map shows the 78 councils into which the
Principality of Asturias is divided and, colored in different colors, the different regions that belong
to each of the eight health areas. Image extracted from https://tematico8.asturias.es/repositorio/
sanidad-ambiental/articulos/articulo_1372503041940.html, accessed on 12 December 2023.

https://tematico8.asturias.es/repositorio/sanidad-ambiental/articulos/articulo_1372503041940.html
https://tematico8.asturias.es/repositorio/sanidad-ambiental/articulos/articulo_1372503041940.html
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We started by performing an exploratory analysis of the data, in which we checked the
temporal evolution of the number of daily services for each year and council, differentiating
between whether these services correspond to emergency or scheduled.

In carrying out this exploratory analysis, the peaks were identified manually for each
of the 78 councils and years of available data. Then, a search was carried out in the media
and virtual newspaper libraries on the events and/or occurrences that took place in that
space and time.

The identification of events or occurrences associated with the peaks observed in the
time evolution (Figure 3) gives an idea of the external databases that are related to the
future peaks to be predicted. On the other hand, the identification of the reason why a peak
appears is necessary for subsequent steps to identify seasonality in the data when ignoring
punctual events.
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Figure 3. Example of the temporal evolution of the number of services during 2017 in the council
of Oviedo. In red, the number of scheduled daily services is shown, and in blue, the number of
emergency services. In the scheduled services, the difference between weekdays and weekends can
be seen. A slight increase in the number of emergency services during the winter months is observed.

The identification of these peaks has led to different conclusions. On the one hand,
emergency services are usually related to traffic or occupational accidents. Asturias is
a mining province, so accidents in mines stand out, accompanied by assaults, suicide
attempts, and drowning. Natural disasters, such as fires, storms, floods, flash floods, and
landslides, usually require emergency services as well. On the other hand, parties and
festivals, although they usually have scheduled services, sometimes coincide with peaks in
emergencies. Other events that have scheduled ambulance services are sporting events,
such as rallies, cycling, trail events, popular races, or soccer tournaments.

Other conclusions obtained in the exploratory analysis are the fluctuations from March
2020 to the end of 2021 due to COVID-19. The number of scheduled services linked both to
sporting events and to rehabilitations and transfers decreased, increasing the number of
transfers due to infection and/or symptoms of the virus.

4.2. External Databases Related to the Demand for Care
4.2.1. National and Local Holidays

Regardless of the size of the council analyzed, local and national holidays, as well as
weekends, are associated with a decrease in the number of scheduled services. However,
there is no significant variation in the number of emergency services, except for holidays
associated with a celebration.
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4.2.2. Sporting Events

Sporting events accompanied by a large influx of population take place in more
densely populated municipalities, which is associated, as will be shown later, with a greater
number of daily services and on holidays or weekends, so that an increase in the number
of services due to a sporting event is hidden within this decrease. During the analysis
of the data, it was found that there is a direct relationship between events held in less
populated municipalities, such as rallies or trail races. However, it is not possible to draw
clear conclusions about the events held in more populated localities. The sports events
analyzed are:

• Rallies: The annual calendar of the FAPA (Federación de Automovilismo del Princi-
pado de Asturias) is divided into different categories. The data provided by these
calendars from 2017 to 2022 is used. The contrast of the database with the available
data concludes that on the days when there is a rally race, there is a pronounced peak,
being higher in the councils with a lower population. In other categories, such as
Rallysprint or historic rallies, the correlations are less appreciable, and in others, such
as autocross or mountain and slalom, there are no peaks.

• Races: Races that congregate a larger number of people, such as popular races, take place
in more populated areas, so no correlation with peaks is observed. However, mountain
races such as trail races correspond to significant peaks in less populated areas.

• Soccer: An analysis is made of the matches of both third division and higher cat-
egories that have taken place during the years for which data are available. As in
previous cases, soccer matches take place in the most populated areas and coincide
with holidays or weekends, so there is no direct correlation between the matches and
the number of services.

4.2.3. Demographic and Socioeconomic Data

An analysis of the literature indicates the existence of a correlation between the
demand for emergency ambulance services and demographic or socioeconomic variables.
In this case, the following variables are considered:

• Population: Number of people residing in the health area. It represents the number
of people living in relation to the geographic extension of the area and is typically
expressed as the number of inhabitants per unit area, such as people per square
kilometer.

• Youth index: A measure that indicates the ratio between the number of people under
20 years of age and the number of people over 60 years of age.

• Overall dependency ratio: Demographic indicator that establishes the ratio between
the number of dependent persons, who are under 16 years of age or over 64 years of
age, and the number of persons of working age, who are between 15 and 64 years
of age.

• Aging rate: Demographic measure that establishes the ratio between the number of
persons over 64 years of age and the number of persons under 15 years of age.

• Labor force: Total number of persons who are of working age and are employed or
actively seeking employment. This category includes persons who are employed in
paid work, as well as those who are unemployed but actively seeking work.

As can be seen in Figure 4, the number of services per inhabitant in each health area,
in emergency and scheduled services, is plotted, showing that it varies according to the
area. As for the correlation between the number of services and the population, we obtain
a correlation of 0.9956 for emergency services, while for scheduled services, the value is
0.9836, so the relationship in both cases is almost linear.
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Figure 4. Rate of number of services as a function of population for the different health areas.

Youth index and aging rate:
A significant direct correlation was observed between the youth index and the number
of ED services (r = 0.9059) and scheduled services (r = 0.9091). Similarly, when analyzing
the correlation with the aging rate, values of −0.8513 for ED and −0.8437 were found for
scheduled. These results suggest that an increase in the proportion of young people in the
population is related to an increase in both ED and scheduled services.

Overall dependency ratio:
For overall dependency, a negative correlation of −0.7302 was identified for ED services,
and a positive correlation of 0.7615 was identified for scheduled services. Therefore, it is
concluded that an increase in the dependency ratio is associated with a decrease in the
number of ED services but an increase in scheduled services.

Active population:
Finally, when considering the size of the working population, a highly positive correlation
of 0.9934 was found for ED services and 0.9802 for scheduled services. These results indicate
that as the active population increases, there is a greater demand for both emergency and
scheduled services.

4.3. Analysis of Internal Variables

We initially proceeded to visualize and analyze the data provided. A determining
factor in distinguishing between emergency and scheduled services is the origin from
which they are requested. A total of 1598 different origins were identified in the dataset, so
they were grouped into categories considered to be the most relevant:

• Hospital,
• Health center,
• Home,
• Residence,
• Public road,
• Daycare center,
• Outpatient clinic,
• Other.
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The initial analysis shows that some services that are continuous over time, such as
transfers, may belong to both emergency and scheduled services. This analysis is performed
at a council level to identify possible patterns of interest.

It is found that, in most of the councils, the origin of the most frequent service calls
corresponds to homes, exceeding 50% of the total number of calls. In relation to scheduled
services, in municipalities with hospitals, most of the services are scheduled from these
facilities. In the smaller municipalities, the scheduling of services from daycare centers,
residences, and homes stands out.

The next step in the analysis consisted of calculating the mean and standard deviation
of daily services for each council, distinguishing between emergencies and scheduled
services. Since there are differences in population between councils, and this may affect the
variability of the data, the standard deviation is not considered to be a meaningful measure.
Instead, the coefficient of variation, which is defined as the standard deviation divided by
the mean, is used.

It is concluded that the variation in the number of emergency services is inversely pro-
portional to the size of the council’s population. Furthermore, this relationship follows an
exponential function, i.e., the variation decreases exponentially as the population increases.
However, in the case of scheduled services, the councils with the least variation are those
with the reference hospitals for each of the established health areas.

From this point on, taking into account that the objective is to predict at the health
area level, this spatial scope will be considered in the analysis of the data.

4.3.1. Analysis of Transfers between Health Areas

The analysis begins with the visualization of transfers between health areas using heat
maps. It can be seen that the number of transfers within the same area is considerably higher
compared to those between different areas. In order to highlight the latter, a logarithmic
scale is used in the visualization (Figure 5).

A greater number of transfers is observed in Area IV, especially with regard to pro-
grammed services, which is understandable given that this area houses the province’s
central hospital. On the other hand, it is observed that, in the case of emergency services,
transfers between areas hardly occur, except in those health areas that include large cities
(III, IV, and V).

Considering the previous conclusions, where it was indicated that most of the pro-
grammed transfers originated in hospitals, an analysis of the destinations of these transfers
was carried out. However, it was found that the classification of destinations in the recorded
data is indeterminate in most cases, which prevents concrete conclusions from being drawn
from this analysis.

4.3.2. Relationship between the Number of Daily Emergencies and the Number of
Scheduled Services

As a result of the conclusions obtained, the question arises as to the existence of
a possible relationship between the number of daily emergencies and the number of
scheduled services. To address this question, a correlation analysis was carried out both
in general and for each health area, obtaining values that were always positive, although
not very significant. The correlation coefficients are higher in the health areas that include
more populated cities. Consequently, there is a weak direct correlation between the number
of emergency services and scheduled services. However, the results obtained are not
sufficiently conclusive to draw reliable conclusions.
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Figure 5. Transfers between health areas. The y axis represents the health area of departure, and the x
axis, the health area of arrival.

4.3.3. New Time Variables

Other variables that may be determinant in the target prediction are the time vari-
ables. However, these variables are very precise and do not provide much information by
themselves. Nevertheless, from them, it is possible to derive new variables that continue to
provide relevant information. According to the literature analyzed and as will be verified
later, variables such as the day of the week, the day of the month, and the day of the year
have been identified as important variables in this context. Therefore, an intermediate
processing of the data will be performed to obtain the following variables:

• From the time of service variable, a new variable corresponding to 6 time slots will be
created:

– From 00:00 to 04:00;
– From 04:00 to 08:00;
– From 08:00 to 12:00;
– From 12:00 to 16:00;
– From 16:00 to 20:00;
– From 20:00 to 00:00.

• From the date of service variable, new variables will be created that may be more
significant, such as:

– Day of the week;
– Day of the month;
– Week of the year;
– Month of the year;



Mach. Learn. Knowl. Extr. 2024, 6 91

– Year.

With the new variables, we proceeded to visualize the data and obtain new conclusions.
Some of them can be seen in Figures 6 and 7. It can be concluded that, in the case of
emergency services, the distribution over the days of the week is more or less uniform,
although a slight increase is observed on Mondays and a decrease on weekends. However,
in the case of scheduled services, there is a marked difference between Saturdays and
Sundays compared to the rest of the days.

Figure 6. Distribution of frequencies in the number of services according to the day of the week.
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Figure 7. Distribution of frequencies in the number of services according to time slot.

In terms of time slots, for both emergency and scheduled services, a higher concentra-
tion of services is observed between 08:00 and 16:00, followed by the afternoon hours. For
scheduled services, there is a notable decrease after 20:00, while in the case of emergency
services, this decrease does not occur until 00:00.

5. Results

After the exploratory analysis of the data, the data mining techniques explained in
Section 3 were applied. For this, a transactional database is required. Before applying
the algorithm, it is necessary to prepare the database by eliminating single or irrelevant
variables. In this case, the following considerations are taken into account:

• The service time is divided into 6 time slots.
• The date variable is eliminated, but new variables related to the day of the week, day

of the month, week of the year, month of the year, and year are created.

Taking into account the amount of data available, a support value of 0.1 was selected,
avoiding discarding transactions with a lower frequency that could be relevant. In addition,
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a confidence value of 0.5 was set to ensure that the rules generated have an acceptable level
of accuracy.

With the selection of these parameters, different combinations of variables such as
no escort, stretcher bearer, nurse and/or stretcher were identified, but their presence in
the association rules is due to the fact that in more than 84% of the transactions, none of
these services are required. Therefore, it is considered that these variables do not provide
significant information due to the imbalance in the data, and it is suggested that they
should not be taken into account in future analyses.

It can be seen that the origin “Home” is the main one in the scheduled services,
something already mentioned above. In addition, there is an evident association between
the area and the referral hospital in the area. Another origin, denoted as “collective
support”, is always related to scheduled services and is required from home.

Regarding discharges, it is concluded that they are almost always scheduled, also
obtaining an association between “Emergencies” and 112 (European Union emergency
assistance telephone number) and SAMU (Emergency Medical Care Service—a specialized
system that is part of “112” and is specifically dedicated to emergency medical care) calls.
Scheduled services tend to be concentrated mainly between 08:00 and 14:00 hours, and a
greater number of these are performed from home on Mondays, Wednesdays, and Fridays.

We continued with the Dickey–Fuller test on the objective variable, the number of
services, differentiating by health area and whether they are urgent or scheduled services.
A significance level of α = 0.05 was used. The results indicate that most of the health areas
show non-stationarity in scheduled services, except for IV (Oviedo, the capital) and VIII.
As for emergency services, non-stationarity cannot be affirmed in most cases, and those
that are not stationary have p-values higher than those of the scheduled services.

For those cases in which the Dickey–Fuller test has rejected the null hypothesis and
the non-stationarity of the series has been determined, the ACF and PACF were calculated,
taking into account up to a difference of 400 days to detect annual, monthly, and weekly
stationarity, etc.

In the scheduled services, a weekly seasonality is observed (as shown by the significant
autocorrelation at lag 7, 14, and 28 in Figure 8). This is logical since scheduled services tend
to decrease during weekends, which generates a weekly periodicity.
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Figure 8. Autocorrelation and partial autocorrelation function for scheduled services in Area I.

In the health areas where the Dickey–Fuller test identified seasonal patterns, obser-
vations in emergency services indicate prominent periods occurring every 1 or 8 days
(Figure 9). This pattern is attributed to the presence of both weekly seasonality and a
short-term component at lag 1, with the occurrence at lag 8 arising from the interaction of
these factors.
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Figure 9. Autocorrelation and partial autocorrelation function for the emergency services of Area VIII.

In this case, only variables that can be useful for prediction are considered, so variables
such as destination health areas and the need for stretcher-bearers are not taken into
account. The variables taken into account are divided into two groups: on the one hand,
those obtained directly from the table provided as the starting health area, and on the other
hand, those obtained after processing the time of service and date of service variables: day
of the week, week of the year, the distinction between emergency and scheduled, day of
the month, day of the year, time slot and month of the year.

To compare the effect of taking the stated variables of greatest importance and to be
able to make future comparisons, we first started with a predictive model. For this, we
used, as a training data set, those services performed between 2016 and 2021 and, as a test
sample, the first six months of 2022 since the following ones had incomplete data.

The objective is to evaluate how the use of different predictor variables affects the
accuracy of a model according to their correlation with the target variable. As mentioned in
Section 3, the XGB algorithm is used because it allows working with qualitative variables
in Python without requiring additional transformations. After the algorithm was fitted
with the available data, depending on the indicated metric (weight, gain, or cover), the
provided variables were directly displayed and sorted according to their importance.

Taking into account any of the three metrics, the four most important variables,
although the order changes depending on the metric, are the same:

• Starting health area,
• Time zone,
• Distinction between urgent and scheduled,
• Day of the week.

It was decided to use the gain metric, which indicates how much the loss function is
reduced when dividing a data set according to a specific characteristic.

In situations such as this, where there is a large number of data and variables (even
if some have been discarded), determining the importance of predictor variables and
observing how models using fewer variables can be equally accurate can significantly
reduce the computational cost. The complete order of the variables used is as follows:

1. Time slot,
2. Starting health area,
3. Day of the week,
4. Distinction between emergency and scheduled,
5. Month of the year,
6. Day of the year,
7. Day of the month,
8. Week of the year.

In the first instance, the model only considers the time slot, and subsequently, the
other variables are added in new models until reaching one that includes all of them. For
each model, four metrics are calculated:
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• Mean squared error (MSE): It is a measure of the average squared difference between
the actual and predicted values in a regression model. It quantifies the overall model
performance, with lower MSE values indicating a better fit of the model to the data.

• Root mean squared error (RMSE): It is the square root of the MSE and represents the
standard deviation of the residuals (prediction errors). RMSE is commonly used to
interpret the error magnitude in the same units as the target variable.

• Coefficient of determination (R-squared, R2): It is a statistical metric that represents
the proportion of the variance in the dependent variable (target) that is predictable
from the independent variables (features) in a regression model. It ranges from 0 to 1,
with higher values indicating a better fit of the model.

• Mean absolute error (MAE): It is a metric that measures the average absolute differ-
ence between the actual and predicted values in a regression model. Similarly to MSE,
it is used to assess the model’s accuracy, but it is less sensitive to outliers since it takes
the absolute value of the errors.

Figure 10 shows that using only the four most important variables yields even better
results than considering all variables. Halving the number of predictor variables implies
a significant reduction in the computational cost associated with the predictions. Having
fewer predictor variables to process reduces the complexity of the model and speeds up the
execution time, saving both computational resources and CPU and memory time, which is
especially useful when handling large data sets or when the model is to be used in real-time
applications. Furthermore, with this reduction in variables, the possibility of over-fitting is
reduced, and by focusing only on the most important variables, the interpretability of the
model is improved.
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Figure 10. Variation in the metrics on the test set as a function of the number of variables used. The
figure shows four graphs corresponding to the four metrics used: MSE, RMSE, R2, and MAE.

6. Conclusions

In health transport research, a broad spectrum of data analysis approaches and consid-
erations have been explored. These range from defining clear objectives to selecting the
appropriate methods and models for deriving insightful conclusions. Studies specifically
targeting spatial and temporal prediction of the number of transport services emphasize
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the importance of identifying relevant external variables and determining which are critical
to the predictions.

Although it was not the main objective of the research, a previous analysis of the
correlation and dependence with external variables, as well as the relationship between
internal variables, has led to numerous conclusions that can be used not only in the
definition of future models but also in current planning.

A study of external variables has been carried out, analyzing their correlation with the
number of services. Unique events, such as sports or festive occasions, have been identified
to elevate the demand for medical transport services in both emergency and scheduled
contexts. This surge in demand is especially evident in less populated areas, where a
singular event can amplify the average daily service count by as much as sevenfold. The
combination of internal and external variables, along with future research involving other
factors such as meteorological conditions, adds greater richness to the data and enables the
derivation of new conclusions.

In addition, a strong correlation exists between demographic factors and health trans-
port. In particular, a direct relationship has been found between the overall population
and the active population segment with medical transport requirements across various
health areas. Both these factors show a high correlation with the number of services, both
emergency and scheduled. Interestingly, a significant correlation, close to 0.9, was observed
between medical transport and the youth rate, indicating that areas with a higher propor-
tion of young population tend to demand more medical transport services, a finding that
might be counterintuitive to some. These results may be useful when determining fleet
rates per population since, intuitively, one may think that older people require more health
transport services, but this may be more oriented to scheduled services, while younger
people require more emergency services.

During the examination of internal variables, significant insights emerged that aid in
variable selection. The transfers that occur most frequently between different health areas
were identified, along with the most common origins and destinations. Furthermore, spe-
cific time slots and weekdays were identified where transfers are more prevalent. Notable
seasonality patterns emerged in scheduled services, which were validated through statisti-
cal measures such as the Dickey–Fuller test and the analysis of the ACF (autocorrelation
function) and PACF (partial autocorrelation function).

The main objective of the study was to identify the determining variables in the
prediction of the demand for medical transport. Based on an analysis and review of the
literature, eight relevant variables were identified. However, only four of these proved
essential for achieving comparable predictive results for service numbers. This reduction in
the number of variables not only reduces the computational cost of the prediction models
but also improves the interpretability of the results. The four most important variables in
the prediction are time slot, health area of departure, day of the week, and the distinction
between emergency and scheduled.

In this case, the amount of fleet (which was the most important factor in Figure 1)
was not of interest since it is something that can be determined when the prediction based
on it is known. This research has made it possible, on the one hand, to counter previous
research with a new data set and, on the other hand, to determine that the gradient boosting
algorithm yields similar results to previous ones. In addition, as a novelty, an analysis of
the variation in the metrics has been carried out as the number of variables used increases.

Several promising lines of future research have emerged from this study. Firstly,
exploring different predictive models and their respective hyperparameters is a logical
next step. Using a comparative benchmarking approach, balancing computational expense
with model interpretability, can help identify the best strategies. Additionally, exploring
real-time data integration could further enhance prediction accuracy.
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