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Abstract: Outlier detection plays a critical role in building operation optimization and data quality
maintenance. However, existing methods often struggle with the complexity and variability of
building energy data, leading to poorly generalized and explainable results. To address the gap,
this study introduces a novel Vision-based Outlier Detection (VOD) approach, leveraging computer
vision models to spot outliers in the building energy records. The models are trained to identify
outliers by analyzing the load shapes in 2D time series plots derived from the energy data. The
VOD approach is tested on four years of workday time-series electricity consumption data from
290 commercial buildings in the United States. Two distinct models are developed for different usage
purposes, namely a classification model for broad-level outlier detection and an object detection
model for the demands of precise pinpointing of outliers. The classification model is also interpreted
via Grad-CAM to enhance its usage reliability. The classification model achieves an F1 score of 0.88,
and the object detection model achieves an Average Precision (AP) of 0.84. VOD is a very efficient
path to identifying energy consumption outliers in building operations, paving the way for the
enhancement of building energy data quality, operation efficiency, and energy savings.

Keywords: AI-driven; deep learning; outlier detection; load shape; building energy

1. Introduction

Building energy consumption accounts for 30% of total energy use in the world and
almost 30% of total carbon emissions according to IEA 2022 [1]. To comply with the
2050 Paris goal of net zero emissions, it is essential to reduce building energy use while
maintaining normal building operations [2]. To improve building equipment effectiveness
while reducing energy consumption, rapidly detecting energy consumption outliers be-
comes essential. Energy use abnormalities often manifest in an irregular pattern, such as
point outliers, contextual outliers, and collective outliers, representing an ineffectiveness
or failure in equipment operation or sensors. Failing to identify these failures can lead to
a failure to deliver critical building services, as well as higher energy waste and carbon
emissions [3]. Outliers occur when sensors in the buildings become faulty or the building
operation requires optimization or commissioning [4–7]. Outliers should be identified
and removed before data analysis, as they may adversely impact the data quality, leading
to degraded analysis results or performance [8,9]. With advances in machine learning
and the increased use of smart meters and building automation systems in commercial
buildings, unwanted energy consumption detection has become more feasible and effec-
tive. Energy consumption is logged per set time interval, usually from one minute to an
hour. A database containing energy consumption against time is recorded as “time-series”
data, the core of abnormal energy use detection. Many outlier detection methods utilize
machine learning to spot issues in energy consumption data. However, the following three
challenges remain:
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First, the lack of labeled, high-quality data limits researchers’ options. Himeur et al. [10]
stated that there are very few data that are labeled, and the amount of outliers in the existing
dataset is very limited. The lack of annotated data is caused by the difficulties in finding them,
and it is very expensive and labor-intensive to label these outliers. Even if a dataset is properly
labeled, such an unbalanced dataset makes it not suitable to train an outlier detection model.
In the end, the amount of normal data has greatly surpassed the amount of outliers, leading to
a biased model that cannot accurately identify faults. To combat this, it is important to broadly
label and balance the normal data and outliers and generate more sets of outliers for research.

Second, there is a significant variation in outliers in real-world data. While outliers can
be theoretically defined and categorized, real-world data present a more complex picture.
Outliers can emerge due to a variety of reasons, including meter connection issues and
various abnormal consumption behaviors [10]. Consequently, these outliers display a wide
range of characteristics in terms of magnitude, duration, frequency of occurrence, and
patterns. Such diversity poses a considerable challenge to conventional machine learning
methods. This diversity in outlier attributes necessitates a more generalized approach
in outlier detection methodologies, which can adapt to the wide range of variations and
accurately identify anomalies regardless of their distinct features.

Third, many outlier detection methods favor using deep learning algorithms with
“black-box” models due to their superior prediction performance. Using “black-box” mod-
els poses difficulties in explaining the reason for the output. The opaqueness in model
functionality presents challenges in elucidating the rationale behind their outputs, leading
to a trust issue among users without specialized knowledge in this domain. For example,
Copiaco et al. [11] proposed image-based outlier detection using deep learning. Despite
achieving high performance, the model is a “black box”, meaning the output cannot be
explained, and its decision-making processes are uninterpretable. Therefore, a clear ex-
planation of the model is required to bridge the gap between model performance and
user trust.

2. Literature Review
2.1. Conventional Outlier Detection Methods

The “Interquartile Range” (IQR) method is commonly used to detect outliers for its
simplicity. The method calculates outliers by setting boundaries at the 25th percentile
minus 1.5 times the IQR and the 75th percentile plus 1.5 times the IQR. Theoretically, it is
effective for identifying extreme outliers and cleaning the data. However, in the real world,
the boundaries are not optimal, as illustrated in Figure 1, which is a one-year weekly plot
of the electricity consumption data in one building; the upper boundary defined by the
IQR method detects the normal electricity consumption data as outliers, while the lower
boundary is too low to detect the abnormal pattern in the morning and evening.

To overcome the issue, a Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) method [12] becomes more commonly used in detecting outliers in building
energy data [13–16]. The algorithm clusters the data points into recognizable groups when
they are close to each other. If no group is assigned to a data point, it will be defined as an
outlier. It operates based on the following two key parameters: a measure of distance and a
minimum count of points needed to establish a dense region. However, if the minimum
number of points is not defined correctly, when a substantial group of outliers deviates from
the usual pattern, as shown in Figure 2, the DBSCAN method may struggle to accurately
identify the extreme values. To effectively detect outliers in building energy data, it is
critical to have a comprehensive understanding of the typical energy usage pattern.
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Figure 1. An example to illustrate the problem of the “IQR” method. The red circled parts highlight
the “False Positive” outliers detected by the upper boundary and the “False Negative” outliers not
detected by the lower boundary.

Figure 2. An example to illustrate the problem of the DBSCAN method. The red rectangle part
highlights the “group outliers” which are hard to detect by the DBSCAN method.

2.2. Outlier Detection Based on Load Shape

“Whole-building electric load” represents the total electrical power consumed by a
building at a given moment, which can change based on demand changes in lighting,
HVAC, and plug-load device usage. Analyzing the load shape over time can provide
valuable insights, including energy waste, equipment issues, and HVAC operation prob-
lems [17]. Previous studies have utilized different load shape parameters to extract useful
features from the load shape. Luo et al. [18] used three parameters, namely the peak-based
load ratio, workday/non-workday load ratio, and one-hour duration, to interpret the
load shape. Liu et al. [19] divided the daily profiles into four segmentations representing
off-time, rise time, daytime, and evening based on the regular occupancy schedule of office
buildings and added the daily peak-to-valley difference to the clustering analysis. However,
these methods often require manual threshold settings, which can introduce bias, limiting
their ability to fully represent the dataset.

To overcome these limitations, researchers have turned to deep learning, given its
capability as a universal function approximator. Fan et al. [20] employed an auto-encoder
to learn the normal energy usage patterns of buildings and detect outliers. Zheng et al. [21]
converted 1D time-series electricity consumption into a 2D array by aligning the consump-
tion data of several weeks together. However, each of these methods struggles to capture
the temporal and spatial correlations of the time-series data due to the representational
limitation of the 1D time-series data. To address these issues, Fahim et al. [22] and Copiaco
et al. [11] innovated by converting building energy data into 2D plots, and Fahim et al. [22]
transformed the energy data into a 2D Markov transition field, while Copiaco et al. [11]
combined energy data with occupancy data and other features extracted from the energy



Mach. Learn. Knowl. Extr. 2024, 6 968

data to create a 2D array. Then, they converted the 2D array to a 2D color map image
and used pre-trained Convolutional Neural Network (CNN) models to detect the outliers.
However, all these methods can only classify whether outliers occur in a detected window
and are unable to localize the occurrence of outliers precisely.

2.3. Supervised Outlier Detection

Current deep learning models for outlier detection techniques are mainly unsuper-
vised models. Unlike unsupervised models, supervised models can provide a clearer metric
for performance evaluation, since they use labeled data, allowing for precise measurement
of accuracy [23]. Recently, studies have also shown high efficiency for supervised outlier
detection, such as the studies by Bawono and Bachtiar [24], Paulheim and Meusel [25], and
Aggarwal and Aggarwal [26]. The differences and comparisons between unsupervised
and supervised models regarding building science data outlier detection methods were
discussed by [27]. Compared to unsupervised learning models, supervised learning models
are not that widely applied to building science.

Bawono and Bachtiar [24] addressed the challenges of using supervised learning
for outlier detection, particularly the issue of imbalanced data classification due to the
typically small proportion of outliers in datasets. The authors showed a promising result to
resolve the current issues of supervised learning-based outlier detection. Araya et al. [28]
proposed a new framework based on collective contextual anomaly detection using a
sliding window (CCAD-SW) to identify unusual energy use in smart buildings, which
was further enhanced by the Ensemble Anomaly Detection (EAD) framework combining
various classifiers. Using real-world data, the EAD was shown to increase the sensitivity
of CCAD-SW by 3.6% and decrease false alarms by 2.7%, proving effective in energy
monitoring. Shoemaker and Hall [29] conducted a study using an ensemble voting method
in supervised learning for anomaly detection. Their approach combined random forests
with distance-based outlier partitioning. The research found that this method yielded
accuracy results comparable to those of the same techniques without the partitioning
element. This demonstrated the ensemble voting method’s effectiveness in maintaining
accuracy while incorporating additional outlier partitioning strategies. Miyata et al. [30]
mentioned that supervised model outlier detection is designed to classify unseen data as
either normal or an outlier. Beyond just detecting outliers, it can also determine the specific
type of outlier. This feature is particularly valuable in applications like HVAC system Fault
Detection and Diagnostics (FDD), where understanding the cause of the outlier is crucial
for effective problem-solving and maintenance. Xu and Chen [31] proposed an anomaly
detection method for Ground Source Heat Pump (GSHP) systems using long short-term
memory (LSTM) and Grubbs’ test. It predicts energy consumption, identifies three types
of operational anomalies, and validates them through field checks and expert opinions,
enhancing GSHP system efficiency and operation.

The current outlier detection by supervised learning models has some advantages over
unsupervised learning models, including parameter selection, potential accuracy, and the
capacity to control. However, most of the current supervised outlier detection methods for
building smart meter datasets focus on numeric datasets, creating potential interpretation
issues for building owners and managers. These existing supervised learning approaches
are not adequate for building energy load shape outlier detection.

2.4. Model’s Explainability

AI-driven outlier detection techniques and unsupervised or supervised learning al-
gorithms include three categories, which are “white-box”, “gray-box”, and “black-box”
models. Their advantages and disadvantages have been discussed regarding the concept
of “explainability” for transparency to the users [2,32,33]. White-box models, known for
their interpretability, allow for a clear understanding of how input data lead to specific
conclusions, making them advantageous in contexts where transparency and explainability
are critical, such as linear, polynomial, and ridge regressions. However, they often struggle
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to achieve the same level of accuracy as black-box models, especially with complex data.
On the other hand, black-box models are typically more accurate and can handle complex
and high-dimensional data effectively, i.e., neural network-based deep learning models.
The downside is their lack of interpretability, as the internal workings are not easily under-
stood, making them less suitable for situations where understanding the decision-making
process is important [34]. Gray-box models, such as tree-boosting models, have better
interpretation but still include many aspects that cannot be explained [35]. Additionally,
compared to the black-box models, especially when dealing with time-series data types,
“gray-box” models underperform [36].

Multiple studies explored different practices to overcome the explainability of deep
learning models for building science and other study areas. Machlev et al. [37] discussed
the challenge of understanding “black-box” models, especially in the power systems field,
where accountability is crucial. They introduced Explainable Artificial Intelligence (XAI)
techniques as a solution to improve the explainability of these models, aiming to make
their outputs more comprehensible. They reviewed common challenges, recent works, and
ongoing trends in XAI for power system applications, aiming to inspire further research
and discussions on this emerging topic. Somu et al. [38] introduced a CNN-LSTM deep
learning framework for the prediction of building energy consumption, combining k-means
clustering, convolutional neural networks (CNNs), and LSTM networks. Tested on real
data from a building in IIT-Bombay, India, CNN-LSTM showed superior performance
in forecasting by effectively capturing spatiotemporal patterns in energy data compared
to state-of-the-art models. The results also showed energy prediction comparisons as
graphical illustrations. Li et al. [39] presented a deep learning approach for the prediction
of building energy consumption, combining stacked autoencoders (SAEs) with an extreme
learning machine (ELM) to enhance accuracy. SAEs extracted features, while the ELM
predicted energy use. The study also plotted energy prediction results to better visualize
model performance. Similarly, Fan et al. [40] proposed deep learning-based methods for
building cooling load prediction. The study also found that the feature engineering process
of an unsupervised learning model can improve prediction performance.

While current studies extend their interest to deep learning visualization and explain-
ability, most of studies focus on the visualization of the results or comparisons instead
of the model itself [10]. This leaves a gap for decision-makers to understand the analysis
mechanism inside of the model.

3. VOD Outlier Detection Methodology
3.1. Overview

Figure 3 illustrates the VOD outlier detection methodology. The process starts with
the collection and transformation of the building energy consumption data into daily
profile time-series plots. Subsequently, the following two distinct models are developed
to meet different usage purposes: a classification model for broad-level outlier detection,
which identifies the presence of outliers in the building energy consumption, and an object
detection model that precisely pinpoints the timing of these outliers. Additionally, as the
classification model does not provide the location information of the outliers, Grad-CAM is
applied to visually interpret the outputs of the model.
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Figure 3. Flowchart of the VOD outlier detection approach. A demo of the object detection model
can be found VOD Object Detection Demo (accessed on 22 April 2024).

3.2. Dataset

This study utilizes a comprehensive dataset covering 290 buildings during the 2016–
2019 period sourced by the U.S. General Services Administration (GSA), an independent
agency of the United States for the management and support of the basic functioning of
federal agencies. The dataset includes detailed 15-minute-interval records of electricity con-
sumption for each of the 290 buildings, capturing variations in their electricity usage over
time. To refine the focus on outlier detection during regular workdays, data corresponding
to weekends and public holidays were excluded from the analysis (Figure 4).

Figure 4. Map of the Buildings in the dataset. The blue points indicate the locations of the buildings.

3.3. Typical Daily Electricity Consumption Load Shape of Office Buildings on Workdays

The shape of electricity consumption in office buildings during the workday can be
divided into the following five parts: morning near base load, load rise time, high-load
duration, load fall time, and evening near base load (see Figure 5) [18]. It begins with the
morning near base load phase before 6 AM, characterized by minimal energy usage due
to low occupancy and limited operational activities, maintaining only essential systems
such as security and safety lighting. This is followed by the “load rise time”, where
electricity usage gradually increases as the building prepares for the workday—lights
are turned on, HVAC systems ramp up, and office equipment is activated. During this
period, a sudden spike, known as “morning catch-up” may occur due to the HVAC system
turning on to rapidly pre-condition spaces [17]. This time period is followed by a normal
“high-load duration”, which coincides with standard office hours, where sustained energy
consumption is at its maximum due to the full-scale operation of all systems and high
occupancy. After work hours, during the “fall time” load phase, there is a noticeable decline
in consumption as employees leave and lights and equipment are turned off, although

https://universe.roboflow.com/energy-data-outlier-detection/vision-based-building-energy-data-outlier-detection/model/5
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some systems, such as HVAC, remain partially active. Finally, the “evening near base load”
phase posts around 8 PM, where the building returns to a low-energy state, similar to the
early morning, operating under minimal activity until the next day.

Figure 5. Typical daily electricity consumption shape of the office building during a workday.

3.4. Definition of Outliers in Daily Electricity Consumption

Hawkins described an outlier as an observation that “deviates so much from the other
observations as to arouse suspicions that it was generated by a different mechanism” [41].
Based on this definition, outliers can be further classified into the following three categories:
point, contextual, and collective outliers [3,42].

• Point outliers refer to data instances that are significantly different from the majority
of data points in a dataset.

• Contextual outliers, also called conditional outliers, are anomalous instances in a
specific context. They usually have relatively larger or smaller values with respect to
their adjacent values. However, when viewed independently, they will fall within the
normal range expected for the signal.

• Collective outliers, also known as group outliers, are a series of data points that are
anomalous with respect to the entire data set. They usually show an unusual shape
compared with the entire dataset.

In the context of daily electricity consumption during workdays, point outliers are those
instances that significantly deviate from the normal range of records within the workday.
On the other hand, contextual outliers are within the normal electricity consumption range,
but if they are considered with adjacent records, they will deviate from the normal pattern.
As illustrated in Figure 6, a contextual outlier, though within the standard range of energy
consumption, reveals itself as an abrupt variation—a sudden drop or spike—that deviates
from the typical “workday shape” when analyzed with adjacent records. Collective outliers,
meanwhile, represent a series of missing records or records that, together, form an abnormal
pattern within the daily workday profile. They are manifested as gaps or irregular fluctuations,
such as bumps and depressions.
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Figure 6. Three Types of Outliers in Daily Office Electricity Consumption.

3.5. Classification Dataset

To facilitate analysis and classification, the daily energy consumption profiles for
each building were transformed into binary images. The dataset consists of a total of
15,640 images, with each image standardized to a size of 224 pixels by 224 pixels. This
image size was chosen due to its prevalence in image classification tasks.

To mitigate potential biases in the dataset, a shuffling process was performed prior
to image conversion. This approach ensures that a diverse representation of buildings’
electricity consumption patterns is preserved, enhancing the dataset’s capacity to generalize
across different scenarios.

Each binary image was manually labeled based on its corresponding daily electricity
consumption pattern. Two distinct categories were defined, namely “looking good” and
“potential problems”, based on whether any outliers could be observed or not.

After labeling, the dataset was further divided into the following three subsets: a train-
ing set, a validation set, and a test set. The distribution ratio was set at 8:1:1, respectively.
This division ensures that the model is trained on a substantial portion of the dataset while
retaining independent subsets for validation and final performance evaluation (Figure 7).

Figure 7. Examples of the classification dataset. The left panel adheres to the typical daily electricity
consumption pattern during workdays as previously defined; therefore, it is labeled as “looking
good”. In contrast, the right panel contains three spikes (the left spike is a contextual outlier, and the
remaining two are point outliers) in the daily electricity consumption records. Due to these outliers,
it is labeled as “potential problems”.

3.6. Object Detection Dataset

To delve deeper into identifying potential problems within the “potential problems”
category, a subset of 2160 images was randomly selected. This subset is intended to focus
on instances where potential outliers in electricity consumption occur. In order to facilitate
object detection, bounding boxes were manually placed around the areas of interest within
these images. These bounding boxes indicate regions where consumption patterns deviate
from the typical daily electricity consumption shape.

The object detection dataset was then shuffled to ensure a representative mix of images
during the training, validation, and testing phases. This shuffling process contributes to
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reducing any inherent bias that may be present in the dataset, thus promoting the model’s
capacity to generalize effectively.

Similar to the classification dataset, the dataset was divided into training, validation,
and test sets with a ratio of 8:1:1. To facilitate compatibility with the object detection
model, all images within the dataset were resized to uniform dimensions of 320 pixels
by 320 pixels. This standardization ensures that the input dimensions conform to the
expectations of the model architecture, allowing for the integration of the dataset into the
object detection pipeline (Figure 8).

Figure 8. Examples of the object detection dataset. The coordinates of the top-left and bottom-right
corners are recorded in the labeled dataset to define the bounding boxes (the red boxes in the figure)
of the outliers.

3.7. Model Development
3.7.1. Classification Model

By converting the daily electricity consumption data into 2D image representations,
powerful and well-established deep learning models from the field of computer vision can
be leveraged for outlier detection. Convolutional neural networks (CNNs) have become
one of the most widely deployed network architectures across numerous computer vision
tasks [43]. Taking advantage of their capabilities, this paper applies CNNs to the electricity
consumption images to identify outliers.

A residual network (ResNet) [44] is a classic CNN architecture that has significantly
impacted the field of computer vision and deep learning [45]. The key innovation behind
ResNet is the introduction of residual connections, also known as skip connections or
shortcut connections. These connections allow for the training of very deep neural networks
without suffering from the vanishing gradient problem. As a result, ResNet excels at
learning hierarchical abstractions and nuanced patterns in data through their exceptionally
deep representations.

This paper deploys ResNet-18, which is a specific variant of the ResNet family. An
overview of workday daily electricity classification is shown in Figure 9. Feature extraction
analyzes the 2D electricity images and extracts meaningful patterns from them using
residual convolutional blocks. Then, a fixed linear layer is applied to predict whether the
electricity profile looks good or has potential problems.

Figure 9. Flowchart of workday daily electricity outlier classification.
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3.7.2. Classification Model Visual Explanation via Grad-CAM

Grad-CAM is an important method to address the “black-box” nature of deep learning
models and improve their interpretability [46]. As people understand the model more
deeply, users will have more trust and confidence in deploying these models.

The foundational idea behind Grad-CAM is to highlight the areas of input that are
more crucial for the model’s decision-making. As shown in Figure 10, the input daily energy
consumption image passes through the CNN, and the network returns the prediction of
“potential problems,” indicating an outlier in the given daily electricity consumption data.

The last convolutional layer of the CNN model is often chosen for Grad-CAM because
it provides the most informative combination of high-level feature representation and spa-
tial context, which is essential for creating meaningful and interpretable visual explanations
of the model’s decision-making process. To highlight the area that contributes most to
the outlier, the gradients of the feature maps related to the output of “potential problems”
are calculated and averaged as the weight for each feature map in the last convolutional
layer. After that, the aggregated weighted feature map is passed through the ReLU active
function to remove the non-positive weights, which contribute to the “looking good” class
instead of the outlier. Finally, the feature map is converted into a heatmap and resized to
the same size as the input image to highlight the area of the most informative part for the
class of “potential problems” within the input daily electricity consumption plot.

Figure 10. Flowchart of the classification model visual explanation via Grad-CAM [46]. (Rectified
convolutional feature map: the convolution layer after the ReLU active function).

3.7.3. Object Detection Model

YOLOv5 [47] is the most popular one-stage object detector and is renowned for its
widespread application across various fields [48–50]. YOLOv5 has four different models;
in this study, YOLOv5s (small) is used. This choice is driven by the relative simplicity of
the task because only one class—“outlier”—needs to be detected. As shown in Figure 11,
the model consists of the following three primary components: the backbone, which is
used to extract the feature representation of the input images; the neck, which is used to
combine the image features in different layers in the backbone for further prediction; and
the head, which is responsible for generating the final detection, including bounding boxes,
confidence scores, and class predictions. Moreover, YOLOv5 uses a Path Aggregation
Network (PANet) in the neck part to help the network extract and aggregate features better,
leading to improved performance in object detection tasks [51].
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Figure 11. Flowchart of YOLOv5 [52].

3.8. Loss Function and Evaluation Metrics

Different loss functions and evaluation metrics are used in training and evaluating the
two models—classification and object detection. For the classification model, Binary Cross-
Entropy loss (BCELoss) is used for the binary classification task. For the object detection
model, the loss function is a combination of three components, namely the bounding box
loss (lbbox), the object loss (lobj), and the classification loss (lcls). The lbbox is used to ensure
the accuracy of the bounding-box predictions, while the lobj assesses the model’s confidence
in the presence of an object within each bounding box, focusing on the model’s ability
to discern whether a bounding box indeed contains an object accurately. Lastly, the lcls
is designed to ensure the class prediction accuracy by assessing the difference between
predicted class probabilities and the actual class labels.

Regarding the evaluation metrics, the classification model is assessed with precision,
recall, and the F1 score. These metrics provide a holistic view of the model’s performance,
accounting for both the accuracy of positive predictions and the model’s ability to detect
all relevant instances. For the object detection model, the average precision (AP) offers
a nuanced evaluation by considering the precision–recall curve across various thresh-
olds, thereby encapsulating the model’s accuracy and robustness in object detection tasks.
Specifically, this study focuses on AP_0.5, a variant of AP calculated at an Intersection
over Union (IoU) threshold of 0.5. This threshold is a standard metric in many object
detection challenges and benchmarks [53,54]. It ensures that models are not overly penal-
ized for slight inaccuracies in bounding-box predictions while maintaining a reasonable
precision standard.

BCELoss = − 1
N

N

∑
i=1

[yi log(pi) + (1 − yi) log(1 − pi))] (1)

Object Detection Loss = lbbox + lobj + lcls (2)
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Precision =
True Positives

True Positives + False Positives
(3)

Recall =
True Positives

True Positives + False Negatives
(4)

F1 = 2 × Precision × Recall
Precision + Recall

(5)

AP =
n

∑
i=1

(Ri − Ri−1)Pi (6)

N the number of observations;
yi the ground truth of the ith observation, which can be 0 or 1;
pi the predicted probability of the ith observation being of class 1;
lbbox the bounding-box prediction loss;
lobj the object loss;
lcls the classification loss;
Ri the recall at the ith IoU threshold;
Pi the precision at the ith IoU threshold.

4. Outlier Detection Success and Discussion
4.1. Outlier Classification

A confusion matrix summarizing the performance of our outlier classification model
is presented in Figure 12a. ResNet-18 achieves a precision of 85.96% and a recall of
90.13%, resulting in an F1 score of 0.88. These positive results demonstrate the feasibility
and efficacy of utilizing image-based features for the detection of outliers in building
energy consumption data. Furthermore, the impacts of varying hyperparameters and
augmentations are examined. Figure 12b summarizes the overall accuracy with different
batch sizes and augmentations. In this figure, “B” denotes the batch size during training, “F”
indicates that random horizontal flipping is applied to input images, and “A” specifies the
use of affine transformations as an augmentation strategy. It is worth noting that employing
a larger batch size yields superior results. This improvement may be attributed to the fact
that a greater variety of outliers is encountered simultaneously during the training process.
Specifically, when using a flip probability of 0.5 for data augmentation, the accuracy rises
to 89.63%. However, other data augmentation techniques do not further improve accuracy.
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Figure 12. Outlier classification results.

4.2. Adding Grad-CAM to Visualize the Classification Model

The visualization of the Outlier Classification model is achieved using Grad-CAM, as
illustrated in Figure 13. The figure presents ten unique time-series images labeled from a
to j. For each image, the upper portion displays the input daily electricity consumption
plot, while the lower portion shows the Grad-CAM visualization. The heatmap in the
Grad-CAM results highlights the areas critical for the classification model’s predictions.
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Images a to g are classified in the “potential problems” category, whereas images h to j
correspond to the “looking good” category. For images a to g, the Grad-CAM visualization
emphasizes the area with important outlier features learned from the model. Conversely,
for images h to j, the heatmap highlights the areas representing the normal patterns in daily
electricity consumption.

Figure 13. Visualization of the classification model via Grad-CAM. Images (a–g) are classified as
“potential problems”, while images (h–j) are classified as “looking good”. The red regions in the
heatmaps indicate the most informative parts used by the model for making classification decisions.

For the results from the “looking good” category, (h–j), the highlighted areas are
the period of “rise time” and ”fall time.” This indicates that the classification model
recognizes the normal daily electricity usage patterns by finding the intervals of electricity
load increase and decrease correlating with the start and end of working hours, respectively.
Moreover, the model also expects the normal daily electricity usage to be relatively low
during the morning and evening base load periods. For example, in image d, the heatmap
from Grad-CAM marks the abnormal patterns observed in the morning. It reveals a group
of “collective outliers” where the morning load surpasses the evening load. This difference
indicates unusual electricity usage since the previous evening, leading to its classification
under “potential problems”. Further examples illustrating the key regions for the “looking
good” category are detailed in Figure A1.

The “potential problems” category exhibits significantly more variability and com-
plexity compared to the “looking good” category. This is due to the diversity in the load
shape; outliers appear sporadically, varying in time, magnitude, and duration. Unlike the
relatively simple “rise and fall” pattern, here, the classification model must identify hidden
features within a broad daily load shape that includes these outliers. Images a to g highlight
the regions crucial for the classification model to predict the “potential problems” category.
While the model is capable of detecting different types of outliers, its decision-making
may be compromised when multiple outliers occur in a day’s energy consumption. This
limitation underscores the need for an object detection model that can more effectively
discern and react to these irregularities. Additional examples are illustrated in Figure A2.
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4.3. Outlier Object Detection

The hyperparameter settings for training of the outlier object detection model are
shown in Table 1. The four initial parameters are fundamental to the training, while the
latter four relate to the probability of data augmentations applied during training. Figure 14
illustrates the training process of the model. After 100 epochs of training, the model
achieves AP_0.5 of 0.84, indicating its effectiveness in identifying and pinpointing outliers
in daily energy consumption data. The lbbox reduces to 0.042 and 0.044 for the training and
validation sets, respectively. Similarly, the lobj decreases to 0.011 for training and 0.005 for
validation. The lcls remains at 0, since there is only one object class, and the model does not
need to classify different classes for the detected objects. The minimal discrepancies between
the training and validation results reflect the model’s robust generalization capabilities and
the absence of overfitting.

Table 1. Hyperparameter Settings of the object detection model.

Hyperparameter Settings

lr 0.01
epochs 100

batch_size 128
warm_up epochs 3

scale 0.5 (probability)
mosaic 1.0 (probability)

translate 0.1 (probability)
horizontal flip 0.5 (probability)

Figure 14. The training process of the outlier object detection model.

Figure 15 illustrates the model’s performance in detecting various types of outliers
in daily energy consumption data. It successfully detects the point outliers in examples
g and h; the contextual outliers in example b; and the collective outliers in a, c, d, e, and
f. In images b, g, and h, the model identifies the point and contextual outliers that occur
regularly in a single day, indicating potential sensor or connection errors with the smart
meters. These errors could lead to significant impacts, such as inaccurate billing and
compromised energy distribution. In images a, c, d, e, and f, the detected collective outliers
highlight the abnormal electricity consumption patterns. The outliers in a, c, and d indicate
significant drops in electricity usage, suggesting the abnormal shutdown of the electricity
devices, which could cause disruptions in the normal operation of the buildings. For the
outliers in a, e, and f, the model pinpoints the abnormal increases in the electricity load,
which may be due to unauthorized consumption or faulty equipment and will lead to
increased energy costs and potential overloading of the power grid. Notably, in examples
a, b, g, and h, the model faces the challenge of multiple outliers occurring simultaneously
within a single day, yet it successfully discerns and localizes each outlier. The results
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underscore the model’s ability to manage and discern between multiple and distinct outlier
patterns effectively. Additional inference results can be seen in Figure A3 in Appendix B.

Figure 15. (a–h) Example outputs of the outlier object detection model. The detected outliers are
marked with red bounding boxes, with the confidence scores displayed above each box.

5. Comparison and Discussion

To facilitate the comparison between the outcomes from the VOD method and those
of the baseline outlier detection methods, a procedure for transforming the results of object
detection bounding boxes into corresponding time periods is proposed. As illustrated
in Figure 16, the process begins with the extraction of bounding boxes from the object
detection model. The X-axis pixel coordinates of these boxes are then mapped onto their
respective timestamps within a daily timeframe. This mapping is based on the correlation
between the pixel coordinates and timestamps on the X-axis. Finally, the temporal intervals
are highlighted to clearly demonstrate the periods identified with outlier occurrences.

Figure 16. The process of transforming bounding boxes into corresponding temporal intervals.

Two baseline methods, IQR and DBSCAN, are used to benchmark the performance of
the VOD method. The analysis utilizes data on electricity consumption over eight workdays
to evaluate the outlier detection performance across different scenarios. Figure 17 illustrates
the comparative results between the VOD and IQR methods. For the IQR method, in
scenarios a through f, neither the daily nor the annual boundaries could effectively detect
outliers. However, both boundaries accurately identify the point outlier in scenarios g and
h. This suggests that the IQR method is good at detecting the “extreme” point outlier when
the data record significantly deviates far from the norm, while not good at detecting the
contextual outliers when the aberration is not in the data scale but in the timing of the
values. Conversely, the VOD method demonstrates its efficacy by identifying collective
outliers in scenarios a, b, and d; contextual outliers in scenarios c and f; and point outliers
in scenarios e, f, g, and h.
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Figure 17. (a–h) Comparison between VOD and IQR methods. The black lines are the daily building
electricity energy consumption time-series plots. The areas highlighted in red indicate the temporal
intervals flagged by the VOD method due to the presence of outliers. The red and blue lines are the
“1.5 IQR” boundaries derived from the annual and daily electricity consumption data, respectively.

Figure 18 illustrates the comparative results between the VOD and DBSCAN methods.
To contextualize the DBSCAN detection outcomes, the entire year’s electricity consumption
data are provided in the background, with outliers identified by the DBSCAN method marked
by “x” symbols. The DBSCAN method slightly improves over the IQR method by successfully
identifying outliers in scenarios e and f. Similar to the IQR method, the DBSCAN method
underperforms in scenarios a to d. Different from the simple horizontal thresholds from
the IQR method, DBSCAN ascertains outliers through the spatial proximity between each
data point. However, its limitation becomes apparent in situations where ample historical
data validate the occurrence of outliers—when there is a significant amount of data from a
similar timeframe with similar value scales. The method also treats data points independently,
regardless of whether they occur on the same day, and overlooks the correlation among daily
data points. Consequently, the method cannot fully capture the building energy consumption
“load shape”, thereby compromising its effectiveness in scenarios a to d.

Figure 18. (a–h) Comparison between VOD and DBSCAN methods. The black lines are the daily
building electricity energy consumption time-series plots for the daily testing scenarios. The areas
highlighted in red indicate the temporal intervals flagged by the VOD method due to the presence of
outliers. In the background, gray dots represent the plots of aggregated annual electricity consump-
tion data on a daily basis. Outliers detected by the DBSCAN method from the annual dataset are
marked with blue “x” symbols, while those in the tested daily scenarios are specifically highlighted
with red dots.
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6. Conclusions

This study has successfully developed and demonstrated a vision-based outlier de-
tection (VOD) method for detecting outliers in building energy data by innovatively
transforming time-series energy data into 2D time-series plots. The idea is inspired by the
observation that humans can easily point out outliers by looking at time-series plots. The
expertise in detecting building energy outliers is captured in the labeled datasets, and the
deep learning models are trained with these datasets, effectively transferring the expert
knowledge to the model.

The VOD method is an experiment in learning and emulating human expertise in
pattern and outlier recognition within time-series data plots. This method has significant
potential for application in other time-series data within the building area, such as Indoor
Air Quality (IAQ) and Internet of Things (IoT) data, offering a versatile tool for diverse
building applications. However, the success of this technique is heavily dependent on the
quality and quantity of the labeled data used for training. Therefore, enhancing the process
of data collection and labeling is crucial for the continual improvement of the model’s
accuracy and reliability.

Further research directions include a deeper exploration into the underlying causes of
different outliers, aiming to categorize them into more distinct groups. While the current
study focuses primarily on daily energy consumption data during workdays, forthcoming
research could broaden its scope to encompass data from all days and evenings and extend
the detection window from a daily scale to weekly, monthly, and even yearly intervals.
This expansion would not only refine the outlier detection capability but also yield more
comprehensive insights into building energy usage patterns, aiding in the development of
more efficient and sustainable energy management strategies in buildings.
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Appendix A. Grad-CAM Visualization of the Classification Model

Appendix A.1. Visualization of the “Looking Good" Category

Figure A1. Visualization of important regions for the “looking good” category. The red regions in the
heatmaps indicate the most informative parts used by the model for the prediction of “looking good”.
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Appendix A.2. Visualization of the “ Potential Problems” Category

Figure A2. Visualization of important regions for the “potential problems” category. The red
regions in the heatmaps indicate the most informative parts used by the model for the prediction of
“potential problems”.
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Appendix B. Validation and Test Results of the Outlier Object Detection Model

Figure A3. Validation and test results of the outlier object detection model. Confidence score limit:
0.4; IoU threshold: 0.3.
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