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Abstract: Caffeine is a chemical compound found in various products such as coffee, tea, and energy
drinks; therefore, it is common in wastewater and surface water. The present study investigated
caffeine adsorption on a thermally modified bentonite-type clay. The effects of the heat treatment
of the adsorbent over the temperature range of 60–500 ◦C, as well as the initial pH of the solution,
stirring speed, and contact time, on the removal of caffeine were analyzed. The adsorbent was
characterized by XRF, XRD, FT–IR, thermal analysis (TGA–DSC), and N2 physisorption at 77 K. The
response surface methodology (RSM) based on a central composite design (CCD) was used to evaluate
and optimize the adsorption of caffeine in aqueous solution. The maximum adsorption capacity
of caffeine obtained with the Langmuir model was 80.3 ± 2.1 mg/g (0.41 ± 0.01 mmol/g) at 25 ◦C
under equilibrium conditions (initial pH = 8.0, stirring speed = 400 rpm, contact time = 120 min). A
kinetic study showed that the pseudo-second-order and Elovich models adequately describe the
adsorption process. Bentonite thermally modified at 400 ◦C can be considered a low-cost adsorbent
with potential application for removing caffeine in aqueous media.

Keywords: adsorption; caffeine; bentonite; thermal treatment; experimental design; kinetic

1. Introduction

Caffeine is a chemical compound present in domestic wastewater due to the release of
liquid residues from coffee, tea, drinks, and even unused drugs into sewers, along with
urine, which contains 1–2% of the ingested caffeine dose [1–3]. Caffeine is considered a
lifestyle compound, given its extensive use and an indicator of anthropogenic pollution [4].

The increasing concern about caffeine contamination in water bodies has increased
the interest in treatments for its removal from water, including biodegradation, ozonation,
photo-Fenton processes, and electrochemical oxidation [5–7]. However, these technologies
do not achieve complete degradation, are expensive, and require high power consump-
tion [8]. In contrast, adsorption is widely used to remove contaminants from water, es-
pecially those not biodegradable, such as heavy metals and organic pollutants, including
caffeine [9,10]. Different adsorbent materials have been used to remove caffeine, includ-
ing activated carbon, agricultural biomass waste, polymeric resins, soil and sediments,
composites, and clay minerals [11].

Smectite is one of the main groups within the category of clay minerals. Smectite min-
erals include montmorillonite, beidellite, nontronite, and saponite [12,13]. Montmorillonite
is used in a wide range of applications, including as an adsorbent in water purification, a
binder in foundry sands, a component in drilling muds, and as a catalyst support in some
chemical processes [14]. Montmorillonites are considered low-cost adsorbent materials
and have proven to be efficient for the removal of contaminants present in water [15,16].
Bentonite is a term often used to describe clay minerals that are rich in montmorillonite, a
mineral with a high specific surface area, swelling capacity, and affinity for water [17,18].
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As a result of the excellent adsorbent properties of montmorillonite, it has been used as a
pharmaceutical excipient in drug delivery systems [17]. Different modifications of bentonite
with aluminum and iron polymeric precursors intercalated in the interlayer space [17],
acid treatments [18], and pillaring with aluminum oxide and Al-lanthanum/cerium mixed
oxides [19] have been implemented for the adsorption of As(V), the anionic dye methyl
orange, and 239Pu, respectively, demonstrating the applicability of these materials for
contaminant removal.

Bentonite heat treatment can affect swelling, cation exchange capacity, pore structure,
surface acidity, and adsorption capacity [20,21]. Studies on the adsorption of caffeine on
montmorillonite have established that caffeine can adsorb in the interlayer space and on
the surface of the clay [20,22]. The heating temperature used in the thermal treatment
of clays must be evaluated for the particular case of clay since, depending on the clay
structure, such treatment can lead to changes that benefit the adsorption processes for a
specific solute [21,23,24]. For example, Yamamoto et al. (2016) studied the adsorption of
caffeine on heat-treated montmorillonite between 100 and 600 ◦C, finding that the maxi-
mum adsorption occurs with the material treated at 200 and 300 ◦C (0.51 mmol/g), while
montmorillonite calcined at 600 ◦C removed approximately 20% of caffeine compared
to montmorillonite treated at 100 ◦C [21]. For the analysis and modeling of adsorption
processes with applications in water and wastewater treatment, response surface method-
ology (RSM) has been successfully used [25,26]. The statistical design of experiments and
the RSM are helpful tools to analyze the effects of different factors or variables and their
interactions on a process response within a given range and with a minimum number of
tests [27].

Although the adsorption of caffeine on calcined montmorillonite has been studied
under fixed conditions of adsorbent mass and solution volume (adding 10 g/L of adsor-
bent) [21], no research is available on the adsorption process of this pollutant on thermally
modified bentonite, where experimental design, equilibrium, and kinetics are analyzed
simultaneously. Knowledge of the optimal adsorption conditions, combined with the study
of equilibrium and kinetics, helps to understand the interaction mechanisms between
organic compounds such as caffeine and clay minerals (thermally modified) and provides
information to design adsorption systems in water treatment.

In this research, the adsorption of caffeine in aqueous solution using a heat-treated
bentonite between 60 and 500 ◦C was studied. Changes in the structure and texture of
thermally modified bentonite were analyzed using various characterization techniques
such as XRF, XRD, FT–IR, thermal analysis (TGA–DSC), and N2 physisorption at 77 K.
First, the effect of the bentonite’s heat treatment temperature on caffeine’s adsorption
capacity was analyzed under specific contact time, pH, and stirring speed conditions.
Then, the optimal adsorption conditions were established using a central composite design
(CCD) and RSM. Finally, studies of the adsorption isotherm, reuse of the adsorbent material,
adsorption kinetics, and a possible mechanism of caffeine adsorption on thermally modified
bentonite were performed. Understanding how thermal modification affects the adsorption
properties of bentonite can lead to an understanding of the influence of temperature on the
surface chemistry and adsorption capacity of this material.

2. Materials and Methods
2.1. Materials and Reagents

The raw clay for the adsorbent preparation was collected in an Armero-Guayabal
(Colombia) mine, which Gea Minerales SAS exploited. The mineralogical and chemical
composition of this bentonite has been reported previously [28].

The adsorbate used in this study was caffeine anhydrous (99%, LobaChemie Pvt.
Ltd., Mumbai, India), whose structure and some properties are shown in Figure 1. NaOH
and HCl were supplied by Merck KGaA (Darmstadt, Germany). The caffeine stock so-
lution was prepared by accurately dissolving a weighed amount of this compound in
distilled/deionized water.
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2.2. Clay Modification and Characterization

The raw clay was dried at 60 ◦C for 36 h, ground in a mill, and passed through a
100-mesh sieve (149 µm). Purified clay was obtained by gravitational sedimentation,
dispersing raw clay in deionized water (5 g/L) and collecting the supernatant dispersion of
particles with a size of ≤50 µm. Although conventionally, the separation of the clay fraction
is performed for particles with a size of ≤2 µm; in a study on the effect of aggregate size in
Colombian bentonites, it was found that the size distribution measured by laser diffraction
is similar for particle fractions with a size of ≤2 and 50 µm, finding particle sizes between
0.6 and 1.9 µm [31]. The clay fraction was subject to ionic exchange three times with
1.0 M NaCl solution, washed with distilled water to remove chloride ions (negative test
with AgNO3), dried at 60 ◦C, and ground and passed through a 100-mesh sieve (149 µm).
This material was designated Na–Bent–60 and was characterized by X-ray fluorescence
(XRF), X-ray diffraction (XRD), thermal analysis (TGA–DSC), N2 adsorption–desorption,
and point of zero charge (pHPZC).

The Na–Bent–60 material was thermally modified at 200, 300, 400, and 500 ◦C temper-
atures, with a heating ramp of 1 ◦C/min and 2 h at the set temperature. The adsorbents
obtained were named Na–Bent–200, Na–Bent–300, Na–Bent–400, and Na–Bent–500, respec-
tively. The adsorbents were characterized by XRD, FT–IR, N2 adsorption–desorption, and
point of zero charge (pHPZC).

XRF analysis was performed with a Philips Magix Pro PW2440. XRD patterns were ac-
quired on a LabX Shimadzu XRD-6000 diffractometer with Cu Kα radiation (λ = 1.5406 Å),
step 0.02◦, and step time 1 s. The textural characterization of the materials was carried
out by a N2 adsorption–desorption isotherm at 77 K (Micromeritics 3 Flex Sorptometer,
Micromeritics Instrument Corp., Norcross, GA, USA) on samples previously degassed.
Specific surface area (SBET) was determined using the multipoint Brunauer–Emmett–Teller
model [32,33]. The external surface areas (SExt), micropore volumes (Vµp), and micropore
surface area (Sµp) were calculated from the t-plot model [34]. Total pore volume (V0.99)
was estimated for nitrogen uptake at a relative pressure of 0.99, along with the Gurvitch
method [35]. The simultaneous thermal analyses (TGA/DSC) of the sodium bentonite (Na–
Bent–60) were recorded in an SDT Q600 TA Instruments equipment, and the measurements
were made at a heating rate of 10 ◦C/min under a flow of 20 cm3/min of nitrogen gas from
room temperature to 1000 ◦C. The addition solid method was used to determine the pHPZC
of samples [36,37].

2.3. Experimental Conditions for Adsorption

Batch adsorption experiments were conducted at ambient conditions (25 ◦C and
atmospheric pressure of 77 kPa). For this purpose, 50 mL of caffeine solution of known
concentration (20 mg/L) was placed into 100 mL Erlenmeyer flasks, and the initial pH
was adjusted with 0.1 M HCl and 0.1 M NaOH solutions. Then, the thermally modified
bentonite adsorbent (100 mg) was added to the aqueous caffeine solution. The suspension
was magnetically stirred at a constant speed (rpm) using a 5-position digital magnetic
stirrer (RT 5, IKA, Staufen, Germany). The caffeine concentration was determined from
aliquots (0.75 mL of sample filtered on 0.45 µm, millipore membrane), quantified from a
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previous calibration curve, obtained by UV–Vis spectrophotometry (Genesys 150, Thermo
Scientific, Madison, WI, USA) at a wavelength (λ) of 273 nm. The removal efficiency was
calculated from Equation (1):

Removal ((%)) =
C0 − Ct

C0
× 100 (1)

where C0 and Ct represent the concentrations of caffeine in mg/L, at the initial of adsorption
(t = 0) and at time t.

The temperature for the thermal treatment of Na–Bent was established from caffeine
adsorption tests, where the effects of contact time and initial pH on the contaminant
removal efficiency were analyzed. Once the adsorbent was selected, the effect of stirring
speed was examined, as illustrated in Table 1.

Table 1. Experimental conditions for caffeine adsorption—preliminary tests.

Contact Time
(min) pH Thermal Treatment

(◦C)
Stirring Speed

(rpm)

2–120 7.0 60–500 400
t selected 4.0–10.0 60–500 400
t selected pH selected T selected 400
t selected pH selected T selected 60–800

t selected pH selected T selected Stirring speed
selected

2.4. Experimental Design

From the adsorption tests described in Table 1, the thermal treatment temperature of
the adsorbent was selected, as well as the initial pH of the caffeine solution and the contact
time and stirring speed that guarantee equilibrium conditions in the process. The RSM
based on a central composite design (CCD) was proposed for the experimental design,
considering adsorbent mass (X1) and initial caffeine concentration (X2) as variables. Design
Expert 8.0 software (StatEase, Inc., Minneapolis, MN, USA) was used to design and analyze
the experiments, where the response variable was caffeine removal efficiency (Equation
(1)). The independent variables and their ranges are shown in Table 2.

Table 2. Experimental range and levels of the variables studied in the experimental design.

Variables

Coded and Non-Coded Levels

−α

−1.1892 −1 0 +1 +α
+1.1892

Adsorbent mass (mg), X1 20.5 30 80 130 139.5
Initial caffeine concentration

(mg/L), X2
8.1 10 20 30 31.9

Terms CCD

Replicas axial points 2
Replicas central points 2

Total tests 14

2.5. Adsorption Isotherm and Reuse Tests

Caffeine adsorption isotherm with the selected adsorbent was obtained at 25 ◦C,
using initial caffeine concentrations ranging between 5 and 250 mg/L. The equilibrium
adsorption capacity of caffeine was calculated using the following Equation (2):

qe ((mg/g)) =
V × (C0 − Ce)

mads
× 100 (2)
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where C0 and Ce are the initial and equilibrium concentrations of the caffeine in aqueous
solution (mg/L), V is the volume of the solution (L), and mads is the mass of the adsorbent
(g). The experimental data of the caffeine adsorption isotherm were fitted to the Langmuir,
Freundlich, and Redlich–Peterson models [38–41].

The reusability of the selected adsorbent was studied by repeating the adsorption/
desorption for several cycles. The adsorbent was regenerated by contact with an aqueous
solution at pH = 12.0, subsequently washed with distilled–deionized water, and dried at
60 ◦C for 24 h.

2.6. Adsorption Kinetics and Mechanism

The adsorption kinetics for caffeine at three different concentrations and 25 ◦C were
studied using the selected adsorbent. For the kinetic studies, the experimental data (adsorp-
tion capacity at time t in mg/g) were fitted to pseudo-first-order (PFO), pseudo-second-
order (PSO), Elovich, and intraparticle diffusion (IPD) models [42], whose equations are
shown in Table 3.

Table 3. Kinetic adsorption models [42].

Model Equation Units

PFO q(t) = qe

(
1 − e−k1t

) k1 (1/min)
qe (mg/g)

PSO q(t) = qe
[(

k2qet
)
/
(
1 + k2qet

)] k2 (g/mg min)
qe (mg/g)

Elovich q(t) = (1/β)ln(1 + αβt)
β (g/mg)

α (mg/g min)

IPD q(t) = ki
√

t + I
ki (mg/g min0.5)

I (mg/g)

3. Results and Discussion
3.1. Adsorbent Characterization

The chemical compositions of raw clay, purified bentonite, and thermally modified
bentonite at 400 ◦C are shown in Table 4. According to the diagram proposed by Sivrikaya
et al. (2017), based on the composition of SiO2 and Al2O3 + Fe2O3 for the classification
of clay minerals [43], raw clay, Na–Bent–60, and Na–Bent–400 are in the montmorillonite
zone. The chemical composition of the principal oxides in the analyzed samples is within
the range established for the montmorillonites, except for Fe2O3. A particularity of the
smectite deposits in the Armero-Guayabal (Colombia) is the reddish coloration due to the
high Fe2O3 content [28].

Table 4. Chemical composition of raw clay and purified bentonite.

Oxide (wt.%) Raw Clay Na–Bent–60 Na–Bent–400 Montmorillonite *

SiO2 62.09 61.13 61.98 48.24–65.07
Al2O3 17.73 17.23 17.89 14.73–24.54
Fe2O3 9.57 8.93 8.98 0.07–6.87
CaO 3.67 1.80 1.99 0.06–3.74
MgO 2.99 2.44 2.48 1.64–7.38
K2O 1.78 1.69 1.85 0.03–3.33

Na2O 0.25 2.35 2.34 0.00–3.87
MnO 0.19 0.21 0.23 0.93–2.15

* Range of 40 montmorillonite samples [43].

The chemical compositions of Na–Bent–60 and Na–Bent–400 are similar, as also re-
ported by Vieira et al. (2010), who found that the chemical composition of bentonite from
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Brazil did not change after calcination, the main elements being preserved, such as silicon
and aluminum, as well as the exchangeable cations [44].

The X-ray diffractograms for the raw clay and sodium bentonite subjected to the
different thermal treatments are shown in Figure 2. According to the previous mineralogical
characterization of this raw clay, the main component is montmorillonite accompanied
by impurities of quartz, plagioclase feldspar, sillimanite, and cristobalite [28]. The d001
reflection in the raw clay and Na–Bent–60 corresponds to a basal spacing of 15.4 Å, and
during the thermal treatment, a change in this reflection is observed. The 001 reflection
of bentonite decreases in intensity after heating from 60 to 200 ◦C, and the d001 value
reduces from 15.4 to 14.9 Å due to the loss of adsorbed water on the external surfaces
of the clay. After heating from 200 to 300 ◦C, the basal spacing decreases from 14.9 to
10.1 Å due to complete dehydration of the clay. The position of the 001 reflection does
not change considerably between 300 and 500 ◦C, but the signal intensity becomes more
pronounced with thermal treatment, suggesting greater structural organization in the
clay. The dehydrated and partially dehydroxylated montmorillonite is referred to as meta-
montmorillonite (Mt*), which shows a high crystalline degree based on the diffraction
pattern [45]. The above XRD patterns are similar to those reported for bentonite (Ankara,
Turkey) subjected to thermal treatment [46].
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Figure 2. XRD patterns of sodium bentonite subjected to thermal treatment. Mt = Montmorillonite,
Q = Quarz, Mt* = Meta-montmorillonite.

The FT–IR spectra of the heat-treated sodium bentonite are shown in Figure 3. The
broad band centered near 3397 cm−1 is due to –OH stretching for interlayer water [47]. The
intensity of this signal decreases in bentonite with increasing treatment temperature. High-
iron montmorillonites show a typical stretching of the –OH band for Al–OH at 3628 cm−1,
while those with low-iron content show a band at 3622 cm−1 [28,48]. The absorption
peaks in the region of 1638 cm−1 are assigned to the –OH–bending mode of adsorbed
water [48], the intensity of which decreases with increasing treatment temperature. The
peak at 1048 cm−1 in the spectrum for raw clay is attributed to the layered silicates Si–O
(in-plane) stretching vibration [49]. The vibrations between 993 and 916 cm−1 correspond
to Si–O and Al–Al–OH stretching and deformation, respectively [28].

Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) of Na–
Bent–60 show that typical regions are associated with water loss and dehydroxylation
(Figure 4a) [32]. The shape of the weight line suggests external surface water loss between
60 and 110 ◦C and hydration water loss between 110 and 160 ◦C, with endothermic peaks
at 60 and 132 ◦C, respectively. Dehydroxylation occurs between 410–713 ◦C, with an
endothermic peak at 620 ◦C. From DSC analysis (Figure 4b), the endothermic peaks for
dehydration and dehydroxylation are observed at 74 and 633 ◦C, followed by a small
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exothermic peak at 902 ◦C due to the structural modification [33,45]. The total mass losses
due to dehydration and dehydroxylation were 10.6% and 3.7%, respectively.
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300, the dehydrated cations present in the interlayer space could be rearranged because 
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drate. According to Heller-Kallai (2006), upon heating, all clay minerals pass through a 
temperature range in which they dehydrate to varying degrees. In the upper region of this 
temperature range, dehydration and the onset of dehydroxylation may overlap [50]. The 
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300 samples, with minimal variation in the TGA analysis.  
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TGA analysis of sodium bentonite between 200 and 300 ◦C shows a mass loss of
0.18%. However, the XRD patterns of Na–Bent–200 and Na–Bent–300 are very different
because bentonite treated at 200 ◦C can quickly rehydrate with moisture in the air. For
Na–Bent–300, the dehydrated cations present in the interlayer space could be rearranged
because the acidity of the clay surface changes with heat treatment, and this material cannot
rehydrate. According to Heller-Kallai (2006), upon heating, all clay minerals pass through
a temperature range in which they dehydrate to varying degrees. In the upper region of
this temperature range, dehydration and the onset of dehydroxylation may overlap [50].
The above could explain the differences in the XRD patterns of the Na–Bent–200 and
Na–Bent-300 samples, with minimal variation in the TGA analysis.

The N2 adsorption–desorption isotherms for sodium bentonite subjected to thermal
treatment are shown in Figure 5, while the calculated textural parameters are summarized
in Table 5. According to the IUPAC classification, all isotherms are of type IV a with H3
hysteresis loops, characteristic of mesoporous materials with a small volume of micropores.
The hysteresis loop of this type results from nonrigid aggregates of plate-like particles [51].
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Table 5. Textural parameters and pHPZC for sodium bentonite subjected to thermal treatment.

Sample SBET
m2/g

SExt
m2/g

Sµp
m2/g

Vµp
cm3/g

V0.99
cm3/g pHPZC

Na–Bent–60 83.1 52.6 30.5 0.0121 0.0101 7.6
Na–Bent–200 77.8 48.3 29.5 0.0111 0.0967 8.3
Na–Bent–300 73.6 46.1 27.5 0.0106 0.0967 8.7
Na–Bent–400 66.7 40.4 26.3 0.0093 0.0886 8.8
Na–Bent–500 57.1 31.1 26.0 0.0071 0.0650 8.9

The heat treatment of bentonite results in a decrease in textural properties, obtaining
materials with a lower specific surface area, microporous area, and micropore volume.
However, the mesoporous character of bentonite is preserved after heating, which is
observable from the hysteresis loop between the adsorption and desorption isotherms [52].
According to the research conducted by Noyan et al. (2006), the heating of bentonite leads
to a decrease in the specific surface area, with small changes observed until the beginning
of dehydroxylation after which the changes become greater [46].

The point of zero charge values for sodium bentonite treated at 60, 200, 300, 400, and
500 ◦C is shown in Table 5. The increase in heating temperature increases the pHPZC value
due to the dehydration and dehydroxylation of the clay. The number of acid sites and the
acid strength of bentonite also change with increasing treatment temperature [46].

3.2. Experimental Conditions for Adsorption

The contact time analysis showed rapid caffeine adsorption on all the adsorbents
studied, reaching equilibrium behavior after 60 min of contact time (Figure 6). For the
adsorbents thermally modified between 200 and 400 ◦C, at 10 min of contact time, caffeine
removals above 76% are obtained. The caffeine removal efficiency varies with the heating
temperature of the sodium bentonite, being higher for bentonite thermally treated at
400 ◦C and lower for that treated at 500 ◦C. The contact time in the following adsorption
tests was 120 min, ensuring equilibrium conditions.

The effect of the initial pH on caffeine removal is shown in Figure 7. The highest
caffeine removal was obtained for Na–Bent–400 at an initial pH of 4.0, while the lowest was
found for Na–Bent–500 at an initial pH of 10.0. Although the initial pH in the adsorption
tests was fixed at a specific value, the monitoring of this variable showed that upon addition
of the adsorbent, the pH changes rapidly and stabilizes after 10 min.
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Figure 7. Effect of initial pH on caffeine removal using sodium bentonite subjected to thermal
treatment. Conditions: C0 = 20 mg/L, stirring speed = 400 rpm, contact time = 120 min, and
mads = 100 mg.

In all caffeine adsorption tests, changes between the initial (caffeine solution,
pHi = 6.8 ± 0.1) and final (caffeine solution + adsorbent) pH were presented as follows:
Na–Bent–60 (7.9–8.3), Na–Bent–200 (7.4–8.1), Na–Bent–300 (7.7–8.1), Na–Bent–400 (7.3–8.0)
and Na–Bent–500 (7.0–7.7). For the adsorbents analyzed in the initial pH range of 4.0 to 10.0,
the final pH was between 7.0 and 8.3. The Na–Bent–400 material showed the minimum
dependence of caffeine removal on initial pH variation, which ranged from 95 to 97% over
the pH range evaluated.

According to the results shown in Figures 6 and 7, the adsorbent with the highest
efficiency in removing caffeine was Na–Bent–400. An initial pH of 8.0 was selected for
the following adsorption tests, and this variable was stabilized at 7.9 ± 0.1 after 10 min of
contact time.

The effect of stirring speed on caffeine removal is shown in Figure 8. Between 60 and
340 rpm, the caffeine removal efficiency increases with stirring speed; however, between
340 and 800 rpm, the caffeine removal efficiency remains constant. Stirring speeds higher
than 340 rpm guarantee complete mixing conditions; therefore, 400 rpm was selected for
the following adsorption tests.
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3.3. Experimental Design for Caffeine Adsorption

From the previously analyzed adsorption conditions, the bentonite treated at
400 ◦C was selected as the adsorbent material (Na–Bent–400) for the experimental design. A
contact time of 120 min and a stirring speed of 400 rpm were used to guarantee equilibrium
conditions. All the tests for the experimental design were carried out at an initial pH of
8.0. Experimental data on caffeine removal (Y) as a function of adsorbent mass (X1) and
initial caffeine concentration (X2) were adjusted to a second-order polynomial equation to
determine the coefficients of the response models as well as their significance [53]. For the
two variables input under consideration, the response model is shown in Equation (3):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX
2
i

k−1

∑
i=1

k

∑
j=2
j>i

βijXiXj (3)

where Y is the predicted response (removal efficiency, %), β0, βi, βii, and βij are the
regression coefficients for the intercept and the linear, quadratic, and interaction coefficients,
respectively; Xi and Xj are the coded levels for independent variables, and k = 2, i.e., the
number of independent variables. Table 6 shows the coded and experimental values for
the runs made in the experimental design together with the observed response.

The model fit was evaluated by the coefficients of determination (R2 and adjusted R2)
and analysis of variance (ANOVA),which was applied to estimate the significance (Table 7).
The model showed a p-value < 0.0001, indicating that it was highly significant and could be
used to predict the response function accurately. From the p-values shown in Table 7, the
linear terms X1 and X2 and the quadratic term X1

2 are significant in the model.
The second-order response function representing the relationship between the caffeine

removal efficiency (%) and the independent variables is presented in Equation (4):

R((%)) = 65.96113 + 0.41239X1 + 0.59379X2 − 0.00057X1X2 − 0.0017483 × 10−3X1
2 − 0.011004X2

2 (4)

where the first-order coefficients of the model show positive effects, while the quadratic
coefficient has a negative effect. The R2 and the adjusted R2 for the model show that this
regression is statistically significant and that only 3.55% of the total variations are not
explained by the model.
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Table 6. Coded and experimental values for the runs performed and the results obtained for the
adsorption of caffeine on Na–Bent–400.

Run

Values Result

Coded Experimental Removal (%)

X1 X2 X1 X2 Y

1 −α 0 20.5 20.0 79.99
2 0 0 80.0 20.0 94.79
3 +1 −1 130.0 10.0 95.10
4 0 +α 80.0 31.9 94.38
5 0 +α 80.0 31.9 94.12
6 −1 −1 30.0 10.0 82.98
7 −α 0 20.5 20.0 80.60
8 0 −α 80.0 8.1 89.29
9 0 −α 80.0 8.1 91.70

10 +α 0 139.5 20.0 95.20
11 +1 +1 130.0 30.0 95.28
12 −1 +1 30.0 30.0 84.30
13 0 0 80.0 20.0 94.79
14 +α 0 139.5 20.0 95.20

Table 7. Results of regression analysis for the adsorption of caffeine on Na–Bent–400.

Source Sum of
Squares df a Mean Square F-Value p-Value

Model 449.45 5 89.89 71.66 <0.0001 b

X1 354.99 1 354.99 283.02 <0.0001 b

X2 11.27 1 11.27 8.98 0.0171 b

X1×2 0.32 1 0.32 0.26 0.6245 c

X1
2 76.66 1 76.66 61.11 <0.0001 b

X2
2 4.86 1 4.86 3.87 0.0846 c

Residual 10.03 8 1.25
Lack of fit 6.91 3 2.30 3.69 0.0971 b

Pure Error 459.48 5 0.62

R2 0.9782
Adjusted R2 0.9645

a degree of freedom, b significant at 95% confidence interval, c non-significant at 95% confidence interval.

Figure 9 shows the 3D surface and 2D contour plots for the removal of caffeine as
a function of independent variables. Caffeine removal increases with adsorbent mass
(X1) and caffeine concentration (X2) until a maximum is reached. The maximum caffeine
removal (96.54%) is achieved when X1 = 111.8 mg and X2 = 21.8 mg/L, with a desirability
of 1.000.

The criteria established in the Design Expert® 8.0 software for optimization were to
maximize caffeine removal and the variables X1 and X2 in the range studied. To validate
the results obtained with the mathematical model presented in Equation (4), additional
adsorption tests were performed under the same conditions under which the model was
obtained (Table 8). The maximum difference between the experimental value and the one
calculated with Equation (4) was 4.6%. Therefore, the model obtained can predict the
system response with minimum variations. It is important to note that the RSM is sensitive
to the experimental range within which the input variables are examined, and extrapolation
beyond this range can lead to inaccurate predictions [54].
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Table 8. Caffeine adsorption model validation on Na–Bent–400.

mads
mg

C0
mg/L

Removal (%) Error
%Experimental Predicted

80.0 15.0 91.64 93.51 1.87
100.0 20.0 93.48 96.05 0.42
111.8 21.8 94.77 96.54 1.77
120.0 25.0 91.97 96.53 4.56

3.4. Adsorption Isotherm and Reuse Tests

The adsorption isotherm at 25 ◦C was studied for initial caffeine concentrations
between 5 and 250 mg/L, keeping the adsorbent mass constant at 100 mg. All equi-
librium tests were performed at pH = 8.0, contact equilibrium = 120 min, and stirring
speed = 400 rpm. The experimental data of qe vs. Ce were fitted to the Langmuir, Fre-
undlich, and Redlich–Peterson models (Figure 10), and their parameters (Table 9) were
obtained by nonlinear regression.
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Table 9. Parameters for the adsorption isotherm models for caffeine removal on Na–Bent–400.

Model Equation Parameters

Langmuir qe =
qmaxKLCe
1+KLCe

KL = 0.069 ± 0.005 L/mg
qmax = 80.331 ± 2.110 mg/g
R2 = 0.991

Freundlich qe = KFCe
1/n

KF = 10.469 ± 1.780 (mg/g) (L/mg)1/n

n = 2.299 ± 0.234
R2 = 0.912

Redlich–Peterson qe = KRP
Ce

1+αRPCe
βRP

KRP = 4.356 ± 0.104 L/g
αRP = 0.018 ± 0.002 (L/mg)βRP

βRP = 1.241 ± 0.023
R2 = 0.999

The experimental data for the isotherms adjust to a concave shape, corresponding
to an L-type isotherm according to Giles’ classification. This type of isotherm suggests a
progressive saturation of the solid phase [55]. The three-parameter Redlich–Peterson model
shows the best fit (R2 > 0.998). This equation corrects the inaccuracies of the two-parameter
Langmuir and Freundlich isotherm equations in some adsorption systems, where the
adsorption mechanism is complex and does not follow that of an ideal monolayer. Addi-
tionally, the Redlich–Peterson model represents the adsorption equilibrium over a wide
range of adsorbate concentrations, which is applicable in homogeneous and heterogeneous
systems [56].

The maximum adsorption capacity of caffeine obtained with the Langmuir isotherm
(80.3 mg/g) is similar to that reported for montmorillonite calcined at 200 ◦C [21] and
lower than that obtained with activated carbons [57–59]. However, activated carbon is, on
average, 20 times more expensive than natural clays [60].

The characteristic of the Langmuir isotherm can also be expressed using a dimension-
less constant called separation factor (RL) [40], which is given by the Equation (5):

RL =
1

1 + KL × Ci
(5)

where KL is de Langmuir constant (L/mg), Ci is the initial caffeine concentration in the
solution (mg/L), and the RL value indicates the isotherm type, whether it is unfavorable
(RL > 1), linear (RL = 1), favorable (0 < RL < 1), or irreversible (RL = 0). The RL values at
25 ◦C varied between 0.055 and 0.743, indicating the favorable nature of caffeine adsorption
on Na–Bent–400.

The initial caffeine concentration for the adsorption and reuse tests was 20 mg/L, and
the adsorbent load was 2 g/L. Caffeine desorption was performed by putting the caffeine-
saturated adsorbent in an aqueous solution at pH = 12.0 (obtained by adding 0.1 M NaOH)
and maintaining constant agitation at 400 rpm for 30 min. After four adsorption/desorption
cycles, the removal of caffeine by the regenerated adsorbent went from 95.97% to 74.27%
(Figure 11).

3.5. Adsorption Kinetics and Proposed Mechanism for the Adsorption of Caffeine

The qt data as a function of time (t) at concentrations of 10, 22, and 30 mg/L were
fitted to the PFO, PSO, Elovich, and IPD models (Figure 12). The fit parameters of the
kinetic data to the different models are summarized in Table 10.

The pseudo-second-order and Elovich kinetic models fitted the experimental data well
(Figure 12a), with R2 values between 0.950 and 0.994 for the three concentrations studied.
For a contact time of 30 min, between 96 and 98% of the initial caffeine was adsorbed. The
good fit of the pseudo-second-order model indicates that the adsorption process is initially
fast. As it approaches its final step (slow), the kinetic curve asymptotically approaches
equilibrium, possibly due to diffusion in the smaller pores [61,62]. This study’s pseudo-
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second-order rate constants (k2) depend on the initial concentration (C0), and k2 decreases
from 0.182 to 0.018 g/mg min when C0 is increased from 10 to 30 mg/L, suggesting that
longer times are required to reach equilibrium. The good fit of the kinetic data to the
Elovich model (R2 < 0.950) suggests that the adsorbent surface is heterogeneous and has
different activation energies [42].
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Figure 12. Caffeine adsorption kinetic at 25 ◦C. (a) PFO (pseudo-first-order), PSO (pseudo-second-
order), and Elovich models, (b) Three-region data fit with the IPD (intraparticle diffusion) model.
Conditions: pH = 8.0 and stirring speed = 400 rpm.

According to the ki values obtained with the IPD model for the three linear zones, the
first zone (t < 4 min) associated with the adsorption on the external surface of the clay (film
diffusion) is the step that controls the adsorption of caffeine on Na–Bent–400, followed by
intraparticle diffusion.

Figure 12b shows the model of IPD fitted to the obtained data for the initial concentra-
tions of 10, 22, and 30 mg/L, where three linear zones can be observed. The existence of
three zones suggests that adsorption occurs in different steps and that intraparticle diffu-
sion is present [63–65]. The adsorption capacity of the first linear zone (t < 4 min) increases
rapidly due to instantaneous or external surface adsorption driven by film diffusion. In the
second zone (4 min < t < 26 min), gradual adsorption occurs, where intraparticle diffusion
is the limiting step for the decrease in adsorption. In the third stage (28 min < t < 120 min),
equilibrium is reached as intraparticle diffusion slows due to the reduction of the caffeine
concentration gradient between the solution and bentonite surface.
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Table 10. Parameters for the adsorption kinetic models for caffeine removal on Na–Bent–400.

Model Parameters
C0(mg/L)

10 22 30

PFO
k1 (1/min) 4.01 ± 0.56 0.92 ± 0.1 1.08 ± 0.07
qe (mg/g) 3.68 ± 0.04 8.13 ± 0.12 11.59 ± 0.10

R2 0.851 0.835 0.925

PSO
k2 (g/mg min) 1.86 ± 0.22 0.18 ± 0.02 0.16 ± 0.01

qe (mg/g) 3.76 ± 0.02 8.49 ± 0.08 11.97 ± 0.06
R2 0.942 0.938 0.982

Elovich
α× 105 (mg/g min) 4.13 × 106 ± 1.83 × 106 486.54 ± 150.18 2271.94 ± 1256.11

β (g/mg) 5.33 ± 0.13 1.16 ± 0.04 0.93 ± 0.06
R2 0.995 0.964 0.928

IPD
Linear zone 1

ki (mg/g min−0.5)
I (mg/g)

R2

0.68 ± 0.03 2.27 ± 0.10 4.30 ± 0.40
2.45 ± 0.31 3.81 ± 0.10 3.41 ± 0.42

0.991 0.991 0.958

IPD
Linear zone 2

0.17 ± 0.01 0.47 ± 0.08 0.43 ± 0.03
3.23 ± 0.01 6.53 ± 0.24 9.74 ± 0.11

0.991 0.888 0.957

IPD
Linear zone 3

0.03 ± 0.01 0.071 ± 0,01 0.05 ± 0.01
3.69 ± 0.01 8.15 ± 0.08 11.64 ± 0.04

0.965 0.705 0.997

Several adsorption mechanisms, including π–π, dipole–dipole, hydrogen bonding,
nucleophilic interaction, and electrostatic interactions, have been suggested in removing
caffeine from various adsorbents [29,66,67]. Although partial ionization of caffeine to cation
and anion forms may occur, electrochemical studies have found that the neutral form of
caffeine was predominant in the pH range of 5.5 to 9.0 [68]. After the caffeine adsorption
on Na–Bent–400, an XRD analysis was performed on the adsorbent. No changes were
observed in the d001 reflection of the material suggesting that caffeine was not adsorbed in
the interlayer space of the clay, unlike what has been established for unmodified montmo-
rillonite where a broadening of this reflection has been detected [69]. The adsorption of
caffeine most likely occurs on the Na–Bent–400 surface, specifically on the faces and edges
of the clay layer, by the formation of H–bonds between the hydrogen bond acceptors of
the caffeine molecule and the silanol and aluminol groups of the adsorbent (Figure 13).
Yamamoto et al. (2019) studied the interaction of caffeine with montmorillonite and found
that more than 80% of the ≡ Si–OH groups of the clay were involved in caffeine adsorption.
Furthermore, it was suggested that the N atom of the imidazole ring interacted with the
Si–OH of montmorillonite and the O atoms of siloxane [20].
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4. Conclusions

The heat treatment of bentonite affects the physicochemical properties of the clay.
Increasing the bentonite treatment temperature initially leads to dehydration and partial
dehydroxylation of the clay, which is reflected in decreased basal spacing and specific
surface area.

Sodium bentonite treated at 400 ◦C was an efficient adsorbent for caffeine removal. The
effect of the amount of adsorbent (Na–Bent–400) and the initial concentration of caffeine on
the adsorption of this compound was optimized using the response surface methodology.
The error between the predicted and experimental results for caffeine removal is less than
4.6%, showing that the testing results agree with those predicted from the second-order
polynomial equation. The maximum caffeine removal (96.54%) was achieved with an
adsorbent mass of 111.8 mg for a caffeine concentration of 21.8 mg/L. Under equilibrium
conditions (initial pH = 8.0, stirring speed = 400 rpm, contact time = 120 min), the maximum
adsorption capacity of caffeine obtained with the Langmuir model was 80.3 ± 2.1 mg/g at
25 ◦C.

The existence of three zones in the intraparticle diffusion (IPD) model indicates that
adsorption occurs in different steps: the diffusion of caffeine on the external surface of the
Na–Bent–400, intraparticle diffusion, and an equilibrium stage. According to the ki values
obtained in each stage for the three concentrations studied, in the first zone (t < 4 min)
the caffeine adsorption capacity increases rapidly due to instantaneous or external surface
adsorption driven by film diffusion, and this is the step that controls adsorption, followed
by intraparticle diffusion.

The Na–Bent–400 adsorbent can be easily regenerated and reused for three cycles
of caffeine adsorption. Bentonite heat-treated at 400 ◦C is a potential adsorbent for the
removal of caffeine in an aqueous solution, and adsorption can occur by the formation
of H-bonding between the adsorbate and the silanol (≡Si–OH) and aluminol ((≡Al–OH))
groups formed by partial dehydroxylation of the clay.
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