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Abstract: Digital transformations in manufacturing systems confer advantages for enhancing com-
petitiveness and ensuring the survival of companies by reducing operating costs, improving quality,
and fostering innovation, falling within the overarching umbrella of Industry 4.0. This study aims
to provide a framework for the integration of smart statistical digital systems into existing manu-
facturing control systems, exemplified with guidelines to transform an existent statistical process
control into a smart statistical process control. Employing the design science research method, the
research techniques include a literature review and interviews with experts who critically evalu-
ated the proposed framework. The primary contribution lies in a set of general-purpose guidelines
tailored to assist practitioners in manufacturing systems with the implementation of digital, smart
technologies aligned with the principles of Industry 4.0. The resulting guidelines specifically target
existing manufacturing plants seeking to adopt new technologies to maintain competitiveness. The
main implication of the study is that practitioners can utilize the guidelines as a roadmap for the
ongoing development and implementation of project management. Furthermore, the study paves the
way for open innovation initiatives by breaking down the project into defined steps and encouraging
individual or collective open contributions, which consolidates the practice of open innovation in
manufacturing systems.

Keywords: Industry 4.0; smart statistical process control; smart manufacturing; open innovation;
digital transformation

1. Introduction

Recent market requirements, emerging technologies, and process autonomy have
influenced the technological landscape of the manufacturing industry [1] and the business
environment [2]. The ongoing digital transformation in the industry necessitates strategic
guidelines for implementation, particularly when the goal is to simultaneously reduce
costs, enhance quality, and promote innovation [3]. Such a type of transformation calls for
new information technologies (IT) architectures capable of handling large data volumes [4].
Common barriers to implementation include, but are not limited to, a lack of knowledge,
inability and uncertainty to quantify the return on investment, and a shortage of a skilled
workforce [1].

The term Industry 4.0 was coined in 2011 at the Hannover Fair and is commonly asso-
ciated with digital manufacturing systems [5]. Diverse perspectives exist regarding specific
requirements [6] and specific roadmaps for Industry 4.0 implementation, encompassing
equipment, products, new competencies, and smart systems [7]. Due to recent advances
and disruptions, Industry 4.0 implementation remains an ongoing concern for scholars
and practitioners, necessitating further studies, particularly on how to integrate digital
transformation into existing processes [5].
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Previous studies pinpoint challenges within Industry 4.0 implementations. One chal-
lenge involves integrating the workforce with technology [8]. A smart factory, constituting
an integrated manufacturing system, necessitates skilled personnel for equipment mainte-
nance and process optimization [9]. Another challenge is vertically integrating strategic
systems, like manufacturing execution systems (MES), with shop-floor necessities, includ-
ing automation, data collection, processing, and supervisory systems [4]. No generic
roadmap exists for guiding Industry 4.0 implementations: a roadmap should be crafted
for each company and problem type, considering competencies, motivations, capacities,
intentions, objectives, priorities, and available budgets [5]. The author suggests adapting
general implementation models to guide diverse businesses or industries. Nonetheless, the
recent literature shows some attempts to try to generalize and standardize the adoption of
Industry 4.0-based tools. For instance, Ref. [10] proposed a general-purpose and Industry
4.0-based architecture to enable smart factories, with a focus on the smart operator. Fur-
thermore, some other attempts, such as [11,12], offer interesting perspectives in providing
guidelines to future implementations.

This study aims to address this research gap by proposing a general roadmap adapt-
able to specific Industry 4.0 implementation cases. The research question is, “How can
a manufacturing company implement smart, digital control systems in an existing, op-
erational manufacturing system?” The research method is design science research. An
example to illustrate the method includes a roadmap to transition to a smart statistical
process control (SSPC), departing from a conventional statistical process control (SPC) as
usually observed in manufacturing systems.

There are some key differences between traditional SPCs and SSPCs. In SPCs, oper-
ators manually collect and analyze data at intervals, using statistical methods to control
the process. On the other hand, SSPCs use real-time, automated data collection and analy-
ses [13]. SPCs may have limited integration with other systems, whereas SSPCs can be a part
of a larger Industrial Internet of Things (IIoT) ecosystem. In SPCs, any changes may require
manual adjustments, but in SSPCs, machine-learning algorithms and artificial intelligence
can dynamically adjust control parameters based on changing process conditions [14].
Finally, SPCs primarily focus on monitoring and controlling the current state of the process
based on historical data, while SSPCs include predictive and forecasting capabilities.

This study seeks to provide guidelines for implementing smart digital systems in a
current manufacturing setup, particularly SSPCs, building on a previous model [15]. Such
guidelines for implementation of smart digital systems, and, in particular, SSPCs, are the
main novelty of the article. It assumes that the benefits of transitioning to Industry 4.0 not
only outweigh digitization costs but also are essential to support manufacturers’ strategic
priorities like flexibility and dependability. This study posits that the transition plan
should not solely focus on technology investment [5] but encompass strategic benefits like
production flexibility, innovative product initiatives, and differentiation based on quality.

The rest of the article is structured in five sections. Section 2 shows a review regarding
smart systems in manufacturing. Section 3 brings the methodology. Section 4 shows the
results of the study. Section 5 brings an application example. Finally, Section 6 embraces
the conclusion of the study.

2. Review: Smart Systems in Manufacturing

The fourth industrial revolution initially focused on the implementation of specific dig-
ital technologies in manufacturing [3]. Digital technologies aim to perform integrated tasks,
including real-time collection, processing, analysis, and storage of a substantial amount
of data. The ultimate objective is the optimization of manufacturing processes through
real-time execution of algorithms and heuristics, enhancing efficiency in achieving strategic
priorities of manufacturing systems [16]. Industry 4.0 involves process automation and
online, real-time data interchange [1], enabling a key feature of Industry 4.0 systems—the
ability of products to control systems. This capability disrupts the traditional approach
where manufacturing systems control the flow of products [6].
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Industry 4.0 systemic skills encompass the ability to derive, evaluate, and store knowl-
edge from field-retrieved information. Smart production systems can autonomously man-
age interconnected production, warehousing, and distribution facilities in smart factories.
Skilled smart factories can adapt, mostly in real time, to changing production requirements
due to uncertain or rapidly evolving customer demands [2]. Industry 4.0 includes various
disruptive technologies and concepts that imbue intelligence into manufacturing process
management. For a manufacturing company, understanding how to use technology to con-
nect processes is crucial in the transition to Industry 4.0 [17]. Key technologies encompass
the industrial Internet of Things (IoT), cyber-physical systems (CPSs), big data analytics
(BDA), artificial intelligence (AI), and machine learning (ML) [16].

British executive Kevin Ashton coined the term Internet of Things (IoT) in 1999 [18].
The term evolved to IIoT, reflecting applications of the underlying IoT concept to connect
processes and products in manufacturing supply chains [1]. IIoT denotes a network of
physical objects in the industry, including digital representations of products, processes,
equipment, and manufacturing infrastructure. It enhances visibility into operations and
equipment situations. IIoT operates on the premise that smart machines surpass humans
in accurately and consistently capturing and communicating data [5]. Benefits of IIoT in
the manufacturing sector include cost savings, shorter time to market, mass customization,
and improved security [1], among others.

CPSs are technologies managing interconnected systems with physical assets and
computational resources that facilitate real-time connections. Algorithms and heuristics
fully integrate with users (objects, humans, and machines) through an internet connection.
A system integrating computing resources, physical processes, and human operators
qualifies as a CPS, playing a central role in Industry 4.0 implementations [19].

BDA involves analyzing extensive datasets [1] using new-generation technologies
to identify scenarios and assess probabilities of alternative strategy success [5]. BDA
commonly relies on AI and ML-based procedures [20] to aid decision-making processes
and systematic pattern recognition [1]. In summary, BDA is a crucial element in an IIoT
environment, particularly contributing to real-time decision-making processes.

AI, a cognitive branch of computer science, comprises critical elements encapsulated by
the acronym ABCDE: analytics technology, big data, cloud computing, domain knowledge,
and evidence. Typical AI-based procedures involve understanding the problem, available
data, physical meanings of parameters, characteristics of a manufacturing process, and
uncertainty associated with parameters. Real-world pattern feedback enhances the accuracy
of AI models [20].

ML refers to machines’ ability to comprehend and learn about a physical system
similarly to humans. ML relies on exploration methods like artificial neural networks
(ANNs) and expert systems (ESs). In manufacturing systems, ML enables machines to
autonomously learn about working and environmental conditions based on real-world
evidence [18].

Numerous studies have delved into the development of intelligent systems. However,
research has revealed that only a limited number of revolutionary applications of SSPCs
have been documented in the literature. Most applications have been incremental in nature,
building on existing systems, or concentrating on areas such as healthcare management,
which is beyond the scope of our study. Our study serves as a link between the existing
literature and our own research, providing a specific strategy for implementing a compre-
hensive industrial application. This strategy can help bridge the gap in the limited number
of successful industrial applications currently available.

Ref. [21] has made use of convolution neural networks and transfer learning to identify
control chart patterns in the printed circuit board industry, with promising outcomes.
Ref. [22] has employed artificial intelligence to determine optimal parameters for plastic
production, resulting in positive results. Furthermore, [23] has applied digital twins to
uphold quality standards in the petrochemical industry.
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To the best of the search, the earliest study on imbuing artificial intelligence into
manufacturing management systems was documented by [24]. The authors enhanced the
SPC of an extruder machine using artificial neural networks (ANNs) and expert systems
(ESs). Additionally, the study introduced condition-based maintenance (CBM) strategies
based on online, real-time, monitored quality data. Ref. [25] presented IntelliSPC, which
identifies quality issues from online monitored data and associates them with plausible
causes using pattern recognition derived from shop-floor variables. Ref. [26] introduced
knowledge-based systems designed to identify process variations based on fault diagnosis
from sensors automatically.

Ref. [27] applied a hybrid AI technique to establish a real-time SPC system supported
by ANNs and ESs. The system communicates the process status (under or out of control),
estimates probabilities for plausible causes of loss of control, and suggests actionable steps
to regain control. Ref. [28] utilized ANNs in conjunction with fuzzy adaptive resonance
theory (ART) to automatically identify significant changes in key parameters of manufac-
turing processes. Ref. [29] proposed a genetic algorithm to optimize the parameters of a
support vector machine (SVM). Ref. [30] integrated SPC and engineering process control
(EPC) to address product quality and process control simultaneously. Ref. [31] developed
smart models for data analysis and real-time supervision, integrating cyber-physical sys-
tems (CPSs) and cloud computing, as well as machine learning (ML) to support predictive
maintenance and quality control decision-making. The system consistently minimizes
the impact of disruptive events on manufacturing plants. Refs [32,33] emphasize the sig-
nificance of using field data obtained by SPC to extend monitoring and decision-making
support in CBM strategies. Ref. [34] showcases the Shanghai Volkswagen Powertrain case
as a successful application of an automated and adaptive SPC system Ref. [35] reported
a comprehensive smart production control, encompassing quality control and efficiency
control, applied to a cement manufacturing plant based on case-based reasoning (CBR) and
fuzzy logic techniques. Ref. [13] introduced intelligence into an SPC using deep learning
techniques. Ref. [36] proposed a method for automatically designing a control chart using
algorithmic approaches, representing an initial step toward a Smart SPC.

3. Methodology: Generalist Guidelines

The research methodology leans on the design science research (DSR) method, ad-
hering to procedures that culminate in an artifact—an accomplishment stemming from
a scientific inquiry. This artifact is not inherently present but arises from investigative
processes under researchers’ control. The study adheres to the twelve steps previously
utilized by [15] and illustrated in Figure 1.

The DSR process includes (i) identifying the problem, (ii) being aware of the problem,
(iii) reviewing the literature, (iv) identifying possible artifacts, (v) configuring, (vi) de-
signing, (vii) developing, and (viii) evaluating the artifact, (ix) learning from the artifact,
(x) concluding, (xi) generalizing, and (xii) communicating about the artifact. The method is
a generalist, standard application of DSR and is fully detailed in [15].



Appl. Syst. Innov. 2024, 7, 24 5 of 17
Appl. Syst. Innov. 2024, 7, x FOR PEER REVIEW  5  of  18 
 

 

 
Figure 1. The twelve steps of the DSR method [15]. 

The DSR process includes (i) identifying the problem, (ii) being aware of the problem, 

(iii) reviewing the literature, (iv) identifying possible artifacts, (v) configuring, (vi) design-

ing, (vii) developing, and (viii) evaluating the artifact, (ix) learning from the artifact, (x) 

concluding, (xi) generalizing, and (xii) communicating about the artifact. The method is a 

generalist, standard application of DSR and is fully detailed in [15]. 

4. Results 

Steps  (i)  to  (ii) have already been addressed and are encapsulated  in  the  research 

question that this study seeks to address. Similarly, steps (iv) to (viii) have been executed, 

resulting in the creation of the flowchart depicted in Figure 2. In this visualization, dashed 

blocks signify managerial actions or outputs, while solid blocks denote significant mile-

stones achieved during the study. 

Figure 1. The twelve steps of the DSR method [15].

4. Results

Steps (i) to (ii) have already been addressed and are encapsulated in the research
question that this study seeks to address. Similarly, steps (iv) to (viii) have been exe-
cuted, resulting in the creation of the flowchart depicted in Figure 2. In this visualization,
dashed blocks signify managerial actions or outputs, while solid blocks denote significant
milestones achieved during the study.

Before embarking on Industry 4.0 implementation, the company must acknowledge
the need to enhance and modernize its facilities, primarily in response to market demands.
Typically, sustained declines in sales and profitability occur due to low production flexibility
or insufficient product quality. Recognizing that the existing manufacturing system falls
short of meeting market demands, the most viable solution is the adoption of Industry 4.0
technology. Once this realization is clear, the company should designate a team responsible
for the digital transformation, with the primary anticipated outcome being a digitalization
assessment [37].

Subsequently, the company should define the project scope, identifying the systems
and equipment slated for migration to intelligent alternatives. Simultaneously, it is required
to specify which functions of the manufacturing system the transition should encompass,
such as production control, quality control, and maintenance strategy. The transition must
align with the company’s manufacturing priorities, be it cost reduction, dependability,
flexibility, or quality improvement. Smart systems should offer solutions for efficiency,
minimizing unexpected stoppages, facilitating rapid setups, and managing variability.
Following the identification of strengths and weaknesses, manufacturing companies may
establish collaboration agreements with technology providers [35] or even with other
manufacturing entities or competitors to gain scale in certain expensive technologies [38].
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The anticipated outcomes at this stage include strategic definitions and the identification of
key necessary technologies.
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The subsequent step involves assessing the expected performance of the new digiti-
zation process, encompassing strategic manufacturing indicators [7] such as quality level,
lead time, inventory, productivity, and efficiency. Additionally, strategic maintenance
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indicators [1], like mean time to failure (MTBF) and mean time to repair (MTTR), should be
measured. The anticipated outcomes of this step include the establishment of technological
infrastructure and key process requirements to align with the manufacturing strategy.

Idea generation entails organizing available alternatives of new technologies that
address and fulfill the previously identified process requirements. These generated ideas
should adhere to technological constraints, align with the company’s economic capacity
for investment, overcome risk analysis, and enable viable partnerships with technological
suppliers [38]. To fully understand the potential of new technologies, it is important to
conduct a thorough review of the existing literature, both theoretically and practically. This
involves examining successful real-world cases where these technologies have been par-
tially applied. By doing so, we can identify the various possibilities that these technologies
can offer and determine how they can be best utilized to achieve our goals.

Given a reasonable and consistent set of possibilities for new technology choices,
the next step involves evaluating these options. One approach is to construct a tree-like
structure for each evaluation, consisting of a top term defining the addressed technology
and supporting dimensions that qualify it, such as delivery time, reliability, risk, price,
installed base, and support services. Each dimension may further require sub-dimensions
for a comprehensive explanation, like understanding reliability through aspects such as low
failure rate, low repair time, or redundancy capacity. This hierarchical structure facilitates
a thorough comparison of alternatives. To compare options, assign relative weights to
dimensions, summing up to 100%, and evaluate each dimension of each alternative on
a scale from 0 to 100%. This weighting leads to a quantitative ranking and qualitative
segregation, distinguishing alternatives that surpass a minimum mark from those that do
not. Complementing this evaluation is a qualitative phase where other qualifiers, such as
benchmarking, conducted in existing facilities and choices made by leading companies, are
chosen to support or corroborate the choice. The primary outcomes of this step include the
amount and type of value creation for the manufacturing system and the workforce skills
required for implementation.

Once the choices are defined, a process is designed to optimize results based on field
learning. In this phase, the main goal is to update critical manufacturing and sampling
processes, such as eventual bottlenecks or sources of variability that may be identified in
the evaluation phase. Experiments, prototypes, and partial implementations are conducted
to verify the feasibility of equipment updating, which may include retrofitting of critical
machines [39]. The results of parameter optimizations are recorded to develop, improve,
and establish the new manufacturing process. A portfolio selection is organized to identify
the process design most suited to the manufacturing system’s characteristics, considering
economic, risk, and technological feasibility factors. The expected outcomes at this stage
include process projects and portfolio selection.

In the development phase, suppliers provide a prototype system capable of emulat-
ing the real system. A random number generator facilitates numerous runs to simulate
various possibilities and expected parameter variations. Suitable performance measure-
ments help compare the emulated performance with real-time data. Simulated execution
opens the door for further development, particularly in complex, intricate, or closed-loop
relationships challenging to model without an empirical basis. Ideally, both the current
and prototype systems operate simultaneously, with the current system responsible for
real-time control and the under-development system activated but not directly connected to
the shop floor. Adjustments are made until the output is optimized, allowing for command
switching. A crucial metric for this phase is the percentage of time online, indicating how
consistently the output of the under-development system aligns with the current system.
When this metric surpasses a given target, like 80%, a definitive connection of the new
system can be considered. Multiple executions may be necessary to validate development
and to achieve perfect integration with other systems and the shop floor. Pilot testing re-
duces the expected failure rate and the risk of initial system collapse. The pilot installation
involves a broad range of inputs to ensure consistent performance under expected process
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conditions. Any non-satisfactory executions prompt the identification and removal of root
causes for failures. The failure rate, indicating failures per unit of time under nominal
process conditions, is a suitable metric for this phase. When the failure rate exhibits a
random pattern around a fixed average value, usually, the early failure phase concludes,
and validation is no longer required.

The next step is scheduling, which involves creating a timeline for the ultimate start-up
and follow-up phases. The timeline must consider the current manufacturing strategy
and existing deliveries since the implementation phase typically requires production in-
terruptions to replace obsolete equipment and install new ones. Following an established
schedule, in the implementation phase, final tests are conducted, and the results are com-
pared with the project’s nominal specifications. Contractual warranties are observed, and
any differences in performance may lead to further negotiations. The pilot test transitions
to a real scale, becoming a permanent implementation with control plans to monitor activi-
ties. After successfully implementing the new process, data are collected and compared
with the results defined in the earlier phase to ensure the expected outcome. Operating
procedures are documented and standardized, with a training plan to fine-tune the new,
smart process quickly.

After overcoming initial transitory performance challenges and reaching a self-sustained
level, a performance evaluation routine is established. Periodic reviews inspect and criticize
the performance evaluation system. Indicators with minimal changes can be removed,
while those requiring a substantial quantity of information should remain. New indicators
addressing unexplored strategic aspects can be added. Periodic reviews also set new targets
for key variables following process evolutions. Changing targets involves feedback loops
to previous steps [7].

It is worth noting that the guidelines allow for some flexibility. Given the continuous
emergence of new technologies and methodologies, it is imperative to formulate guidelines
that facilitate adaptation to evolving processes, encompassing alterations in raw materials,
equipment, and operational conditions. To achieve this adaptability, consideration can be
given to the implementation of a system that automatically triggers a review and potential
adjustment of control limits in response to significant changes [14]. Alternatively, a system-
atic approach involves regular updates and refinements to the fundamental algorithms,
aiming to enhance precision and relevance [40]. It is important that these flexible guidelines
align rigorously with pertinent industry standards and regulations. Such alignment is
not only pivotal for the maintenance of quality but also for the preservation of regulatory
compliance [14].

Finally, regarding data security concerns in the integration of SPC with Industry 4.0,
attention must be given to the gathering and sharing of sensitive production data. Sensitive
data can raise concerns about privacy, data security, and the possibility of unauthorized
access [41]. A strategic response to these concerns involves implementing cybersecurity
measures such as access control [42], encryption [43], data masking, and anonymization [44]
using secure data transmission protocols [45]. Additionally, it is crucial to adhere to
established security regulations when implementing such types of measures [41].

5. Application Example: Guidelines for an SSPC

SPC is an essential tool for manufacturing, enabling real-time monitoring and control
of production processes to identify and rectify issues before they impact product quality.
Traditional SPC relies on control charts and statistical tools to visualize process variations
and detect anomalies. However, implementing and managing traditional SPC can be
challenging, particularly in complex manufacturing environments [46]. SSPCs offer a
modern alternative, leveraging artificial intelligence (AI) and machine learning (ML) to
automate tasks and provide deeper insights into production processes [47]. It boasts several
advantages over traditional SPCs, including (i) enhanced efficiency, as SSPC automates
tedious tasks like data collection and analysis, freeing up personnel for higher-value
activities [48]; (ii) improved accuracy, as AI and ML identify problems with superior
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precision [49]; and (iii) boosted visibility, as SSPC offers deeper insights into production
processes, enabling more informed decision-making [50].

SSPC signifies the integration of cutting-edge technologies, such as artificial intel-
ligence (AI), natural language processing (NLP), and machine learning (ML), into con-
ventional SPC frameworks. This transformative approach not only facilitates real-time
monitoring and analysis of production processes but also endows the system with predic-
tive capabilities and adaptive control, thereby contributing to overall operational excellence
in advanced manufacturing [41]. The importance of incorporating advanced technologies is
particularly pronounced in advanced manufacturing systems, ensuring heightened quality,
minimized defects, and enhanced overall efficiency [14].

The utilization of AI, NLP, and ML assumes a pivotal role in enhancing the interpre-
tative capacities of data. These technologies play a significant role in proactive decision-
making and continuous improvement within manufacturing operations, aiding in the
identification of patterns and anomalies [51]. Notably, NLP facilitates improved commu-
nication with existing SPC systems, allowing users to interact through natural language
commands, thereby enhancing user-friendliness and accessibility for individuals without
extensive technical expertise [52]. Consequently, the collaborative integration of tradi-
tional SPC methodologies with smart technologies establishes a dynamic framework that
ensures the integrity of production processes and cultivates a responsive and adaptive
manufacturing environment [28].

An SSPC encompasses a real-time monitoring function [27], wherein AI algorithms
analyze data from the process, enabling immediate detection of variations or anomalies [53].
Additionally, SSPC incorporates predictive analytics skills provided by ML procedures, an-
ticipating potential issues before they manifest and thereby saving time, preserving profits,
and ensuring better overall performance [54]. Another distinguishing feature of SSPC is its
proficiency in pattern recognition within production data, foreseeing unexpected trends
and identifying erratic or compromising behavior [55]. Moreover, SSPC embraces adaptive
control abilities, dynamically adjusting process parameters based on real-time data analysis.
Lastly, SSPC often integrates advanced data visualization techniques, presenting graphical
representations that are instrumental in comprehending complex patterns and trends.

5.1. Guidelines for the Implementation

As an illustration of the idea, a framework with general guidelines for transitioning
from conventional SPC to Smart SPC has been developed. The transition process adheres
to a sequence of steps and activities, progressively automating, enhancing flexibility, and
incorporating smart features into the production system at each step [6]. To initial advances
in digitization technologies, exploring low-level steps is essential, ensuring that each step
is carefully navigated for the company to assimilate the transition fully. Ref. [2] stresses
the importance of understanding production processes, evaluating current management
practices, continually monitoring and analyzing the process, and ensuring the integration
of production management data. The model is built upon two fundamental components:
enterprise resource planning (ERP) and cyber-physical system (CPS). Figure 3 depicts an
adapted representation of the proposed model.

The ERP system assumes a supportive role in decision-making within manufactur-
ing operations, focusing on identifying part failures or machine wear. Decision-making
relies on algorithms and a structure built on data from the production process, where the
information is analyzed to formulate concepts for specific scenarios. AI and ML techniques
contribute to improving the efficiency and automation of decision-making models derived
from intelligent data [9]. The operator’s interaction with digital interfaces is a crucial aspect
of this process. Human-specific decisions must be supported by a centralized platform
overseeing decentralized and autonomous assets. This structure enables controlled inter-
ventions that smart assets cannot independently execute [19]. Decisions are organized
into tree-like structures that model and predict system behavior, establishing connections
between causes and effects. This structure provides context instructions and supports the
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development of routine operational activities through continuous information sharing [8].
In the realm of business intelligence, data are systematically collected to measure key per-
formance indicators and generate accessible dashboard views for operators and managers.
Neural networks organize these data and report them to the ERP, seamlessly integrating
them into corporate applications. The system effectively communicates results through
spreadsheets and graphics [4].
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The CPS encompasses sensors, machines, and operators. Data collected from sensors
are systematically organized in a data center to fuel artificial intelligence and machine
learning procedures. This step involves the interaction among manufacturing resources
in physical space, the transfer and storage of data from machines and the shop floor in
the cloud, and the physical communication with cybernetics and vice versa. Analytical
technologies transform sensor data from critical components into valuable information
used for equipment health management and process monitoring. Following this, operations
technology introduces a series of decisions and actions based on information derived from
collaborative machine–machine data, contributing to the learning system in three modes:
(1) self-aware, (2) self-predict, (3) self-configure, and (4) self-compare [20].

Datasets are acquired through sensors integrated into the production line, tailored to
the specific type and specifications of the process. Essential for converting these data into
meaningful information is specific algorithms designed for equipment health management
and forecasting applications, facilitating the machine’s self-awareness. In the realm of
Cyberspace, machines need to be interconnected to form a network that allows for self-
comparison. Appropriate infographics are necessary to organize the received data and
transfer acquired knowledge to users effectively. Feedback from Cyberspace should be
shared with the physical aspect, serving as support for supervision and corrective and
preventive decision-making by humans [56].

The integration of the human factor with the CPS demands the establishment of precise
and reliable data acquisition methods. In light of this, operators focus on monitoring to
diagnose, advise, or prevent non-value-added activities. At the cyber level, the system
should assist in decision-making and optimizations based on acquired knowledge, acting as
a supervision system [57]. Developing human capacities for this system requires evaluating
the competencies of the company’s employees. Therefore, employing qualified human
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resources is crucial to ensure the continuity of the new system, providing the company
with multi-skilled employees [58].

Finally, the IT sector plays a crucial role in the transition from conventional SPC to
Smart SPC. Two fundamental activities are necessary. Initially, a well-defined governance
strategy, with employees trained to participate in the development of this concept. Next,
an assessment of the existing infrastructure, such as hardware, software, and IoT, among
others, ensures a secure transition [58]. Thus, the IT department must derive operational
data and coordinate them with the managerial demands of production and with the workers
involved in the process that uses these [4].

Investments can contribute to IT infrastructure (hardware and software), connecting
the factory end to end and favoring autonomous data exchange, horizontal and vertical
integration, and high-speed networks [9]. In addition, systems for Cybersecurity must be
considered to guarantee the integrity and quality of company data that are being shared by
networks connected to the internet and stored in the cloud [59]. This topic remains a data
security challenge when adopting a powerful cloud-computing platform [18].

The findings were consolidated into a final conceptual model supported by the two
original models that outline a general structure, ranging from assessing the company’s
readiness for adopting new technologies to the process of implementing Smart SPC. There-
fore, the insights from this research have contributed to the development of the conceptual
model illustrated in Figure 4.
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The presented model delineates the comprehensive cycle for implementing the Smart
SPC concept. Initially, the absence of Industry 4.0-enabling technologies necessitates the
monitoring of items in the process. Following this, we assess the software requirements for
controlling process quality indicators. This assessment leads to the conceptual evaluation of
the model and the identification of optimization needs. Practical application development
becomes imperative, with validation occurring through tests derived from the implemen-
tation, thereby measuring its performance. These tests are important to prevent eventual
bottlenecks and major source of errors in the process. If the model necessitates revisions
to measurement targets, it reverts to the development phase; otherwise, it progresses to
the “automation” phase, whether maintaining its status quo or requiring minor adjust-
ments. This phase involves instilling intelligence to empower the model to detect process
variations and automatically suggest/execute adjustments using Industry 4.0-enabling
technologies.

The coding of the Smart SPC model (or IntelliSPC—ISPC) involves the IT sector
programming the control chart and integrating it with a CPS model from a data center.
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The process of making it “intelligent” for variation assessment, scenario prediction, and
automatic process adjustments based on monitored item analyses is accomplished through
artificial intelligence systems. Simply put, the control chart learns to adapt according to
the monitored scenario. As a result, the analysis and decision-making process follows a
streamlined decision tree model or more robust models composed of CIM, EDSS, and IF-
THEN systems. Following this, the integration of the Smart SPC model into an ERP system
enables managerial action analysis, facilitating data visualization through dashboards that
observe the model’s variations, trends, and actions.

5.2. Expected Results of the Implementation

The smart SPC model underwent validation through an online interview with opera-
tional managers and questionnaires distributed to implementation specialists. The online
interview served as a means to identify needs and clarify managers’ queries regarding the
use of Smart SPC. Managers emphasized the importance of a systematic procedure in the
transition process to Smart SPC. Regarding the questionnaire for specialists, it evaluated
the processes and technologies of Industry 4.0 applied in Smart SPC. Shared via email and
LinkedIn, the questionnaire included key questions to determine the respondent’s experi-
ence in a specific subject. It focused on the impact of Smart SPC on the IT department’s
production process. The questions were:

• How can operators (production and maintenance) interpret data from Smart SPC?
Are they responsible for defining actions, or is this interpretation carried out by the
analysis and diagnosis machine/program?

• What additional tasks can be integrated into the interaction between the physical
(operators) and the digital? How does this activity relate to product quality control?

• How can managers (production and maintenance) analyze data provided by the ERP
System? What is the optimal metric for quantification?

• Can another visualization and integration system (one or more systems connected
with the company’s ERP) of the data be considered?

• Regarding data security, how can a Cloud Security system be incorporated?

This study involved thirteen respondents, with six providing responses for the first
part of the questionnaire (Table 1) and seven for the second part (Table 2). As it is a
qualitative focus group, not a survey, the number of respondents is satisfactory. All
respondents completed higher education in engineering or computer science bachelor. All
the sampled participants are experienced practitioners in production and manufacturing
management, working as managers in largely automated plants located at a metalworking
industrial cluster in Brazil.

Table 1. Clippings of answers from specialists in production processes.

# Summary of Answers

1 Operators should monitor the system-generated data, adhering to algorithmic recommendations to identify anomalies in the
process. However, there are instances where the interpretation of intervention lies with the operator.

2 Develop a comprehensive and integrated end-to-end automation and tracking system to reduce variability, enhance
manufacturing performance, and ensure process effectiveness and stability.

3

Keep data analysis and interpretation systems straightforward. Utilize graphs and dashboards displaying the percentage of
various measurement units, including performance indicators for process stability, productivity, production capacity
adequacy, and non-quality costs. Additionally, indicators for equipment maintenance are necessary to gauge if organizational
performance should be included.

4 Implement Power BI as an alternative data visualization system. Emphasize KPI analysis and centralize data presentation in
a unified system, ensuring compatibility with other data collection systems.

5 Prioritize data security by keeping them within the intranet. If Cloud Computing systems require data sharing, encrypt the
data with complex keys for added protection.
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Table 2. Clippings of responses from experts in programming and Industry 4.0.

# Summary of All Answers
6 Certainly, operators’ insights are invaluable, as they engage in day-to-day production activities.

7 While a decision tree system offers simplicity, if utilized, it needs to be meticulously structured to assess primary issues within
a process effectively. However, employing robust algorithms is advisable to ensure comprehensive anomaly identification.

8 It is crucial to assess each company’s specific needs. In general, expert decision support systems (EDSSs) and AI systems are
resilient decision-making solutions for process anomalies.

9
Multi-criteria decision-making methods can collaborate with developed algorithms, aiding in prioritizing equipment that
requires special attention compared to others. This collaboration can involve tasks such as data cleaning, data classification,
and model training.

10 AI techniques, particularly artificial neural networks, can play a significant role in training algorithms derived from the
control chart.

In the first group of responses, excerpts were extracted regarding suggestions on a
specific issue. Regarding the first item, it emphasizes that the operator should follow
the algorithm-provided data and perform controlled interventions. The second item
stresses that the integration between the system and simulation enhances the quality of CPS
environments. For the third item, the provided data must be related to the characteristics
and performance of the process, ensuring easy interpretation. In the fourth item, the
centralization of information is underscored, meaning that results and actions should be
consolidated in a single program. The fifth item emphasizes utilizing the intranet for
data sharing. However, when shared with other companies, it suggests employing robust
cryptography. The questions were:

• Can operators contribute to coding and programming the control chart by explaining
the process’s functionality?

• Is a decision tree system adequate for analyzing and interpreting process anomalies?
What level of robustness is required for this decision-making system?

• If the system needs to be more robust, the following questions arise: (a) Does “IF-
THEN” logic programming replace the decision tree? (b) Does programming an
expert decision support system (EDSS) using algorithms constitute a more robust
system than the decision tree? (c) Regarding the system’s structure, how can data
be transferred to a graphical user interface (GUI)? How can operators in computer
integrated manufacturing (CIM) analyze the data?

• Are there other concepts that can be integrated into any of these data analysis and
decision-making systems? How would the implementation occur?

• Can AI or ML learn the control chart? Or can another learning system be developed?
How would the implementation take place?

In the second group of respondents, the main highlighted topics were extracted.
The sixth item underscores the necessity of operators’ involvement in constructing the
Smart SPC model due to their profound understanding of the production process. The
seventh item acknowledges the sufficiency of decision trees while recommending the
development of more resilient systems. The eighth item underscores the importance of
considering process characteristics. The ninth item aligns with the proposed Smart SPC
model’s concepts. The last item confirms the feasibility of the learning process with AI, ML,
and NN concepts. Thus, based on the results of the questionnaire, the general Smart SPC
model aligns with its concept and practical application guidelines.

Measuring a process’s maturity or its digitization stage lacks a one-size-fits-all ap-
proach. However, for companies venturing into this realm, it is important to assess whether
initial signs are contributing to a more robust implementation or transformation of Industry
4.0 concepts. Certain classifications are indispensable in the evaluation, such as identifying
equipment, technologies, processes, and relationships among key variables of the processes.

Considering such a scenario, a comprehensive understanding of the processes is
imperative. Initiating the definition of the project scope involves describing the existing
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equipment and related technologies, including connections, the level of automation, and
potential interconnections. Evaluating whether the process is modular is essential for
classifying its criticality and direct relationships. It is noteworthy that modular processes
ease pilot applications without significant impacts on final production. However, it is
advisable to digitize certain process-interfering steps simultaneously selectively. A crucial
determination is outlining the objectives intended for improvement through digitization,
which should serve as a guiding principle for all subsequent decisions and applications.

6. Final Remarks, Implications, and Future Research

Examining the historical progression of manufacturing system technology, three fun-
damental measures—quality, productivity, and cost—are commonly employed, intercon-
nected, and integrated. However, the initial industrial revolutions predominantly priori-
tized measuring productivity over the other two parameters [18]. This study offers insights
into assessing the current state, process control, and transitioning to Smart SPC. Building
upon a model proposed by [15], a literature review helped to structure a model and define
guidelines for the transition from SPC to Smart SPC. The presented model evaluates process
quality concerning both product and machinery, encompassing analysis, interpretation,
and decision-making for interventions and quality enhancements. The model’s validation
involved interviews and questionnaires to gather feedback from subject matter experts.

This research makes valuable contributions to the fields of Industry 4.0, quality man-
agement, condition-based maintenance literature, and industrial management. It amalga-
mates quality and maintenance concepts influenced by Industry 4.0 technologies, showcas-
ing the practicality of applying digital technologies to Smart SPC. Consequently, it advances
the concept of smart manufacturing by integrating autonomous and self-adjusting control
into the process. Despite studies on the fourth industrial revolution dating back to 2011,
there still needs to be more potential for further research.

In terms of managerial contributions, this study provides guidelines for managers to
implement the Smart SPC model in the industrial sector. The model’s adaptability to various
contexts and types of production processes, derived from different studies and validated
by specialists from diverse fields, underscores its versatility. However, adjustments are
essential to align the model with the specific realities of each company.

This study has limitations. Firstly, this research primarily focuses on the initial stage of
implementing SSPC. Future studies could delve into the long-term implications, challenges,
and benefits of sustained integration to provide a comprehensive understanding of SSPC’s
effectiveness over time. Additionally, the study exclusively concentrates on manufacturing
activities, neglecting the service sector, where smart systems are increasingly relevant.
Future investigations should explore the applicability and impact of Smart SPC in service-
oriented industries, contributing to a more holistic understanding of its potential across
various domains. Other fields of application of SSPC could be agro-industrial and mining
activities, in which new technologies have rapidly advanced, as explored, respectively,
in [60] and [61]. Moreover, the proposed model, while theoretically robust, flexible, and
adaptable, requires practical validation in real-world applications to ensure its effective-
ness. Subsequent research endeavors should focus on implementing the model in diverse
industrial settings, allowing for the observation of its performance under varied conditions
and unforeseen challenges. Future studies should also explore the model’s applicability
across different manufacturing contexts. It is important to evaluate the alignment of the
proposed Smart SPC model with Quality 4.0 and its contribution to integrating Industry
4.0 and quality management. In accordance with findings of [18], cybersecurity remains
a challenging issue. It calls for exploration of models that address data security in net-
worked environments. While this research provides initial guidelines, further revisions and
applicability analyses should be conducted in future studies. Synthesizing, the primary
limitations of this study include (i) focusing only on the initial stage of the implementation
of an SSPC and (ii) focusing only on manufacturing activities, excluding service, which
is also a relevant realm to implement smart systems. For further research, it would be
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beneficial to develop a real-world application whose feedback could enhance results and
refine the method.
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