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Abstract: This article examines the performance of the proposed complex-order, conventional and
fractional-order controllers for process automation and control in process plants. The controllers
are compared regarding disturbance rejection and set-point tracking, considering variables such as
response time, robustness to uncertainty, and steady-state error. The study shows that a complex PI-
PD controller has better accuracy, faster response time, and better noise rejection. Still, implementation
is challenging due to increased complexity and processing requirements. In contrast, a standard PI-PD
controller is a known solution but may have problems with accuracy and robustness. Fractional-order
controllers based on fractional computations have the potential to improve control accuracy and
robustness of non-linear and time-varying systems. Experimental insights and real-world case studies
are used to highlight the strengths and weaknesses of each controller. The findings provide valuable
insights into the strengths and weaknesses of complex-order and fractional-order controllers and
help to select the appropriate controller for specific process plant requirements. Future perspectives
on controller design and performance optimization are detailed, identifying the potential benefits of
using complex and fractional-order controllers in process plants.

Keywords: PID; PI-PD; process control; real-time processes; fractional and complex orders; curve
fitting approximation

1. Introduction

Pressure and level process plants are widely utilized in various industrial appli-
cations, including chemical, petrochemical, and food processing [1,2]. Process plants
commonly experience dynamic set point changes and disturbances significantly affecting
control performance [3]. Commonly, PID (proportional–integral–derivative) controllers
are used to control these processes in an efficient operation of these factories, which is
critical to maintaining product quality and reducing operating costs. Traditional PID con-
trollers sometimes respond promptly and effectively, resulting in slow response times,
overshoots, and poor noise rejection [4]. Further, systems that exhibit non-minimal phase
responses, high-order dynamics, and extensive transmission delays often limit the PID
controllers’ performance [5]. The complex-order controller is a fractional order designed
to overcome the limitations of regular PID controllers. Complex-order PI (proportional–
integral)-PD (proportional–derivative) controllers have fractional derivative and integral
terms, allowing the controller to operate with high dynamics and longer transit delays [6].

A PID controller is a standard feedback control system seen in industrial environments,
which is essential for the controlling system output depending on the input. The system
performance varies with a proportional component proportional to the deviation between
target performance and actual performance [5]. The integral component continuously
corrects for steady-state errors by integrating accumulated errors over time. Abrupt fluctua-
tions in the error rate are predicted and compensated for by the derivative component. PID
controllers are widely used in most industries, such as temperature control, motor speed
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control, pump flow control, satellite communications [7], and aircraft altitude control [8].
Recently, PID has been used in robotics, robotic systems, and computer numerical control
systems due to its advantages, including simple tuning, maintaining system stability, and
minimizing overshoot [9]. It offers greater accuracy than manual adjustment methods
and the flexibility to adjust the system output to various operating conditions [10]. PID
controllers can be implemented in digital or analogue systems. Still, digital PID controllers
are generally more accurate and more accessible to implement, quickly responding to input
changes and adjusting system outputs accordingly [11].

In the literature, an algorithmic optimization technique based on the flower pollination
algorithm [12] tunes a PI-PD cascade controller. It evaluated its performance based on
settling time, overshoot, and undershoot. Similarly, researchers in [13] achieved the settling
time, overshoot, and phase margin using their cascaded fractional-order PI-PD approach for
the inverted pendulum. In [14], the researchers used arithmetic and trigonometric operators
to obtain the fractional-order predictive PI controller parameters using the integer absolute
time error (ITAE) as the objective function to achieve effective set-point tracking and
disturbance rejection performance. In another study, hybrid probabilistic fractal search and
pattern search techniques were used to tune a cascaded PI-PD controller and evaluated its
performance based on the settling time, integer squared error (ISE), integer time squared
error (ITSE), integer absolute error (IAE), and ITAE [15].

In [16], Shanthini et al. used particle swarm optimization (PSO) and genetic algorithms
to tune PID, I-PD, and fractional order PI-PD controllers in a DC-DC converter, where
the performance criteria are the settling time and overshoot. In addition, modified PI-PD
controllers are tuned using an automated tuning method, and their performance has been
assessed based on the settling time, overshoot, and IAE, with comparisons made against
conventional PID and modified PID controllers [17]. The Ziegler–Nichols tuning method
to design PI-PD controllers and performance has been evaluated based on the settling time,
overshoot, and integral absolute error (IAE) [18]. Several studies were conducted using
vector tuning, and trial-and-error approaches tuned fractional-order PI-PD controllers
for a DC motor in the frequency frame and assessed performance based on steady-state
errors [19].

Roong et al., in [20], used the PSO algorithm to tune a fractional-order PI-PD controller
for position control in a magnetic levitation system, evaluating overshooting and settling
time performance. In another study [21], the Ziegler–Nichols method is used to design
a PI-PD controller for voltage regulation of building-integrated photovoltaic and wind
turbine systems, with the performance based on voltage. Similarly, in [22], the authors
used the Ziegler–Nichols method to tune their PI-PD and I-PD controllers for speed control
of DC motors and evaluated their performance based on the ISE and settling time. The
study conducted in [23] used the Ziegler–Nichols method to tune a PI-PD controller for
unstable control systems using sampled data and compared its performance in terms of
ISE, overshoot, and settling time with that of the PID controller.

Recent studies emphasize the importance of a rigorous performance assessment to
evaluate the efficacy of PI-PD controllers due to their potential for better performance
and stability. Researchers used specific performance measures tailored to the system’s
characteristics to quantify the PI-PD controller’s performance and compare it with other
controller types [1,2,12,24]. Some performance measures used in the reviewed studies
include settling time, overshoot, rise time, peak time, load disturbance, absolute error,
phase and gain margins, ISE, ITSE, IAE, ITAE, and time response. These measurements
evaluated different aspects of controller performance, including stability, speed of response,
accuracy, ability to reject interference, and robustness. The choice of tuning method has
been crucial in optimizing the PI-PD controller’s performance. The results of the reviewed
studies highlighting the versatility of PI-PD controllers in controlling different types of
systems and processes are summarized and given in Table 1.
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Table 1. Summary of the works related to complex-order PID controllers.

Ref. Controller Tuning Technique No. of Parameters System Comparing Controllers Performance Measure

[2] PI-PD Auto tuning 4 First and second-order unstable
system with time delay PID Peak time, IAE, Settling time,

Overshoot, Rise time

[12] PI-PD Ziegler–Nichols 4 First-order plus dead time (stable
and unstable system) I, PI, and PID

Settling time, Peak overshoot, Peak
undershoot (-ve), IAE, ISE, ITAE,

ITSE

[24] PI-PD Particle Swarm
Optimization (PSO) 4 Antilock braking system Feedback linearization

Friction coefficient (µ), Settling time,
Rise time, Stopping distance (m),

Range of torque (N.m)

[25] PI-PD Trial and error 4
First and second-order system,

higher-order unstable dead time
system

PI and PID Steady state error, Settling time,
Peak overshoot

[26] PI-PD Ziegler–Nichols 4 Second-order system, temperature
control for oil-cooling machines PID and modified PID Disturbance rejection

[20] PI-PD Trial and error 4 Magnetic levitation system Feedforward PI-PD Settling time, Overshoot

[21] PI-PD Trial and error 4 Photovoltaic and wind turbine
system IPI, FOPI Voltage

[27] PI-PD Polynomial curve fitting
techniques 4 First and second-order system with

time delay PID Settling time, Overshoot, Jmin

[28] Fractional-order PI-PD Ziegler–Nichols 6 Pressure process PID, FOPID, PI-PD, and FOPI-PD Rise time, Settling time, IAE Peak
overshoot, ISE

[29] Fractional-order PI-PD Trial and error 5 Second-order dead time and
oscillatory system PI-PD Rise time, IAE, Settling time, Peak

overshoot

[16] Fractional-order PI-PD PSO and Genetic
algorithm 4 DC-DC converter PID, I-PD, and FOPI-PD Settling time, Overshoot

[30] Fractional-order PI-PD Bode’s integrals 6 pH control, distillation column and
liquid level plant FOPI and FOPD Overshoot, settling time and ITAE

[31] Fractional-order PI-PD
Stability boundary locus

and the weighted
geometrical centre

6 pH control and multiple dead time
process models Different PI-PD control designs Statistical analysis
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Table 1. Cont.

Ref. Controller Tuning Technique No. of Parameters System Comparing Controllers Performance Measure

[15] Cascade PI-PD
Stochastic fractal search

and Pattern search
algorithm

4 Plug-in Electric Vehicles PI and PID Settling time, IAE, ISE, ITAE, ITSE

[13] Fractional-order cascaded
PI-PD Graphical method 6

Cart-Inverted Pendulum, second
and third-order linear

time-invariant unstable system
PIλ-PDµ, [PI]λ-[PD]µ, PIλDµ

Settling time, Overshoot, Phase
margin (deg), Bandwidth (rad/s),

Delay margin (τd)

[17] Modified PI-PD Auto tuning 7 DC motor, automatic voltage
regulator

PID, modified PID, and modified
PI-PD Settling time, Overshoot, IAE

[18] Modified PI-PD Ziegler–Nichols 7 Aircraft pitch angle and disc
position control PID Settling time, Overshoot, IAE, Gain

and Phase margin
[32] Improved PI-PD Trial and error 6 FOPTD DC motor model - Steady state error

[21] Modified PI-PD Smith
predictor Auto tuning 4 Multiple dead time process models Smith predictor PI and Smith

predictor PID Settling time, Overshoot

[22] Optimal PI-PD Cuckoo search algorithm 4 DC motor, third-order system
transfer function I-PD Settling time, ISE
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The reviewed studies demonstrated different tuning methods to determine appro-
priate controller parameters, including automatic optimization [2], the Ziegler–Nichols
method [5,12,33], and PSO algorithms [24,31,34]. Automated optimization techniques aim
to simplify the controller design process for practitioners by automating the parameter
tuning process. On the other hand, the Ziegler–Nichols method and the PSO algorithm
are more sophisticated approaches that allow fine-tuning of the controller parameters to
achieve desired performance characteristics.

The studies demonstrated the effectiveness of complex PID and PI-PD controllers
in controlling unstable processes with dead time [2], stable and unstable processes with
first order plus dead time [12], higher-order dead-time systems [31,35], anti-lock braking
systems [24], real-time pressure used in processes [14], oil chiller temperature control [26],
and other applications [29,36,37]. PI-PD controllers showed better settling time, overshoot,
load disturbance rejection, and response speed than PID controllers and conventional
controllers. Although peer-reviewed studies have provided valuable insights, there is still
room for further research in PI-PD controllers for additional performance measures that
capture other important aspects of control system performance.

Overall, the reviewed studies demonstrated the effectiveness and versatility of PI-PD
controllers in controlling a wide range of systems and processes. Through exhaustive
performance evaluation and the use of proper tuning methods, these controllers have
demonstrated improved performance in terms of settling time, overshoot, noise rejection,
and speed of response.

The study aims to develop a complex-order controller that considers the complex
dynamics, non-minimum phase behaviour, and long transport delays commonly observed
in industrial processes. The results of this research will contribute to the advancement of
control strategies and support the selection and implementation of effective control systems
in industrial applications, thereby optimizing process plant operation and improving
control performance. The research involves the following:

1. Developing a mathematical model that captures the dynamic reaction of a process plant.
2. Designing an appropriate complex-order PI-PD controller.
3. Conducting simulations and experiments to compare its performance with conven-

tional PID controllers.

Furthermore, the study assesses the advantages and disadvantages of the proposed
complex-order PI-PD controllers in dealing with disturbances and set-point changes to en-
hance control accuracy, response time, disturbance rejection, and overall stability. Findings
from these studies contribute to further developing control system design and optimization,
enabling more efficient and effective control of complex processes. Future research activities
will explore additional performance metrics based on these findings, compare them with
other advanced controllers, and develop new tuning methods to improve the performance
of PI-PD controllers in various applications.

2. Development of Proposed Controller

This section provides a detailed discussion of the development of complex and
fractional-order controllers.

2.1. Integer and Fractional-Order PID Controllers

PID is a feedback control algorithm extensively used in automation and engineering
systems. It adjusts the system performance by calculating the difference between the
desired set point and the actual value of the variable’s process. The three parameters of
PID are Kp, Ki, and Kd, which determine its behaviour, and its controller block diagram
is shown in Figure 1. The schematic depiction shows the set point denoted by R(s), the
system’s output response by Y(s), the error by E(s), and the controller signal by U(s). It is
worth noting that all these representations are in the Laplace domain, represented by the
variable “s". The proportional gain (Kp) influences the control action based on the current
error. A higher Kp value results in a more aggressive response, leading the system towards
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the desired set point more quickly. However, setting Kp too high can cause overshoot
and instability, making it crucial to choose an optimal value. The integral gain (Ki) is a
crucial parameter in control systems that helps eliminate steady-state errors and correct
long-term deviations between desired settings and actual performance. On the other hand,
the derivative gain (Kd) is a parameter in control systems that considers the error signal’s
rate of change. Combining these three terms enables a PID controller to achieve stability,
responsiveness, and precision in controlling various systems. The control signal of the PID
controller is given as follows,

U(s) =
(

Kp +
Ki
s
+ Kds

)
E(s). (1)

PID Controller FOPID Controller

Figure 1. Block diagram of integer and fractional PID controllers.

Fractional-order PID (FOPID) controllers are advanced versions of traditional PID
controllers that utilize fractional-order computations to improve the control performance
of complex systems [38]. In contrast to standard PID controllers that have three parameters
(proportional, integral, and derivative gains), FOPID controllers incorporate two additional
parameters (λ and µ) to achieve a better control performance. The FOPID controller’s λ
parameter modulates the integral gain over time, representing a time-varying factor that
can be adjusted based on system dynamics. This allows the controller to adjust the integral
gain to meet changing system behaviour and control needs. The µ parameter of the FOPID
controller scales the integral gain, fine-tuning the magnitude of the integral response to
system characteristics and control goals. Adjusting µ accordingly, the FOPID controller can
adapt the integral response to meet specific control requirements. The FOPID controller’s
block diagram is shown in Figure 1. The control signal of the FOPID controller is given
as follows:

U(s) =
(

Kp +
Ki

sλ
+ Kdsµ

)
E(s), 0 < λ, µ < 1. (2)

Achieving optimal control performance in FOPID controllers requires careful Kp, Ki,
Kd, λ, and µ tuning to balance responsiveness, stability, and robustness. Various opti-
mization, heuristic, or model-based approaches can be employed to obtain appropriate
parameter values for a specific control application. Integrating λ and µ parameters and
the standard gain elevates FOPID controllers’ performance by enhancing control accu-
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racy, noise rejection, and adaptability to nonlinear and time-varying dynamics. These
controllers are becoming increasingly popular in fields such as process control, robotics,
and power electronics, where precise and robust control is crucial for handling complex
system behaviour.

2.2. PI-PD Controller

A PI-PD controller is a widely used feedback system in industrial settings. It merges
proportional–integral (PI) and proportional–derivative (PD) control to regulate the system
output by measuring the difference between the desired set point and the measured process
variable, known as the error signal [5]. The PI parameters of the controller include two
control processes: Proportional control (P) adjusts the output relative to the current error
signal, providing an immediate corrective response. Integral control (I) integrates the error
signal over time, adding corrective action to remove the steady-state error. It continually
adjusts the output based on historically accumulated errors to ensure long-term accuracy
and stability. The PI control components are highly effective at tracking set points and
minimizing steady-state errors. They are an invaluable tool for industrial processes that
require precision control and monitoring. The PI-PD controller’s block diagram is shown
in Figure 2, and the control signal is given as follows:

U(s) =
(

Kp +
Ki
s

)
E(s) +

(
1 + Kds

)
Y(s). (3)

PI-PD Controller FOPI-PD Controller COPI-PD Controller

COPI-PD ControllerPI-PD Controller FOPI-PD Controller

Figure 2. Block diagram of a PI-PD, FOPI-PD, and COPI-PD controllers.

The PD parameter is a combination of proportional control and derivative control
operations. The proportional control (P) responds to instantaneous error, while the deriva-
tive control (D) responds to the rate of change of error. This allows for a damping effect
that reduces overshoot and improves the system response to error signal changes. By
predicting future trends and adjusting the output accordingly, the PD controller component
is instrumental in systems where a fast response to error signal changes is desired or damp-
ing is critical to prevent oscillations and instability. When the PI and PD parameters are
combined, PI-PD controllers offer a balanced approach to control systems. PI parameters
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provide long-term accuracy and steady-state performance, while PD parameters improve
transient response and damping characteristics. PI-PD controllers are widely used in var-
ious applications, such as process control, robotics, and motion control systems, as they
provide flexible and robust control solutions.

2.3. Fractional-Order PI-PD Controller

Fractional-order PI-PD (FOPI-PD) controllers are advanced versions of traditional con-
trollers that use fractional-order computation. These controllers employ λ and µ parameters
to enhance the control performance of systems with complex dynamics. The λ parameter
of a FOPI controller represents the fractional order of the integral action, which enables
the controller to perform non-integer orders of integration to capture long-term memory
effects and improve control performance. By adapting λ, the FOPID controller can adjust
the integral action to the specific dynamics of the controlled system. Tuning λ enables the
FOPI controller to handle systems with non-linearity, time delays, and memory effects,
depending on system complexity, desired control goal, and error signal characteristics.
The FOPI-PD controller’s block diagram is shown in Figure 2. The control signal of the
FOPI-PD controller is given as follows:

U(s) =
(

Kp +
Ki

sλ

)
E(s) +

(
1 + Kdsµ

)
Y(s), 0 < λ, µ < 1. (4)

The µ parameter of the FOPD controller represents the fractional order of the derivative
and controls the rate of change of the fractional-order error signal. The µ-th order fractional
derivative captures the system dynamics with memory effects and allows FOPD controllers
to respond to complex behaviours not well captured by integer-th-order derivatives. The
choice of µ depends on the dynamics and control requirements of the particular system. By
adequately tuning µ, FOPD controllers can effectively control systems with nonlinear and
time-varying behaviour, improving control accuracy and stability. In the FOPI controller,
the λ introduces additional degrees of freedom and µ parameters, making it more flexible
and adaptable than the traditional PI-PD controller. By customizing the fractional order of
the integral and derivative actions, these controllers can better capture the complex system’s
complex behaviour and improve control performance. Various tuning, optimization, or
model-based approaches can be used to determine appropriate parameter values for a
particular control application. Stability, responsiveness, and robust control gains should be
tuned to the system’s specific characteristics to achieve the desired control performance.

2.4. Proposed Complex-Order PI-PD Controller

Complex-order PI-PD (COPI-PD) control is an advanced version of PID control that
incorporates the principles of fractional and complex arithmetic. It employs complex orders
λ + jβ in the integral and µ + jγ in the derivative terms to deliver more precise control
responses, particularly in complex systems. The complex orders enables engineers to
fine-tune the integral and derivative terms, enhancing control performance for systems
with nonlinear dynamics. By adjusting Kp, Ki, Kd, and orders, engineers can customize
COPI-PD controllers to meet the specific requirements of a system and achieve superior
control performance. The parameters that requires tuning are λ + jβ and µ + jγ, which
can be achieved using a trial-and-error method to meet the set point and minimize process
disturbances. The COPI-PD controller’s block diagram is shown in Figure 2, followed by
its controller, which is given as

U(s) =
(

Kp +
Ki

sλ+jβ

)
E(s) +

(
1 + Kdsµ+jγ

)
Y(s), 0 < λ, β, µ, γ < 1. (5)
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2.5. Approximation Technique

Let us consider the differentiator having complex-order α + jβ where α ∈ (0, 1) and
β ∈ R [5,39].

T(s) = sα+jβ. (6)

Substitute s with jω in the above equation to obtain a new equation.

T(jω) = jαωαe−β π
2 (cos(β ln ω) + j sin(β ln ω)). (7)

The MATLAB function provided below facilitates the derivation of the theoretical
response of Equation (7) for the frequency range of ω ∈ (ωmin, ωmax).

function [M, P] = fdc(alpha,beta,wmin,wmax)
w = logspace(log10(wmin),log10(wmax));
R = exp(-beta*pi/2)*(1i^alpha).*(w.^alpha)...
.*(cos(beta*log(w))+1i*sin(beta*log(w)));
M = 20*log10(abs(R));
P = angle(R)*180/pi;
end

The proposed approach aims to achieve a rational integer-order approximation of
complex fractional-order dynamical systems mentioned in Equation (6) by approximating
their frequency-domain behaviour. The technique utilizes a log-Chebyshev magnitude
design, which can be implemented using the built-in command fitmagfrd in MATLAB. To
obtain an approximation, the frd command is used to fetch frequency-response magnitude
data within the range of ωmin and ωmax for an order of N. The steps to acquire an approx-
imation are illustrated in the following procedure to provide a clearer understanding of
the technique.

• Choose the range of (ωmin, ωmax) and the order N.
• Using MATLAB built-in command frd, compute the frequency response magnitude

data of T(iω) for the chosen range as stated in Equation (7).
• Perform a fit of the frequency response magnitude data for the selected order using

the MATLAB built-in command fitmagfrd obtained in the previous step.
• Convert the state-space model obtained in the previous step to a transfer func-

tion model.

The following MATLAB function will help in obtaining the proposed approximation
of Equation (6) for ω ∈ (ωmin, ωmax) and the order N.

function T = fdctf(alpha,beta,wmin,wmax,N)
w = logspace(log10(wmin),log10(wmax));
R = exp(-beta*pi/2)*(1i^alpha).*(w.^alpha)...
.*(cos(beta*log(w))+1i*sin(beta*log(w)));
D=frd(R,w);
Gfit=fitmagfrd(D,N);
T=tf(Gfit);
end

The function mentioned above can be used to obtain a stable and minimum-phase
rational approximation for a fractional-order dynamical system with complex orders while
maintaining its integer-order properties. This is particularly useful in complex engineering
systems where precise modelling is necessary.

3. Results and Discussions

The study analysed controller parameters from the previous literature applied to
a proposed complex-order controller [5]. The research included various processes with
different transfer functions and behaviours. The transient response characteristics of the
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complex-order controller, such as overshoot (%OS), rise time (tr), and settling time (ts),
were quantified and compared to other controllers, including PID, PI-PD, FOPID, FOPI-PD,
and COPI-PD. Set-point tracking is used to evaluate the performance of the controller’s
tracking and flexibility abilities. In most of the following simulations and experimentations,
initially, the set point is set to 1; after 300 s, it changes to 0.5 and then to 2 after 700 s.
Similarly, a disturbance of 0.5 to 2 magnitude is injected into the controller structure to
study the disturbance rejection abilities. Unlike the other controllers, the complex-order
controller used complex parameters obtained through MATLAB commands. The controller
parameters and gain were constant across all controllers except for the complex-order
variant. This study sheds light on the efficacy of the complex-order controller in handling
diverse processes with distinct transfer functions and behaviours, providing valuable
insights into its performance compared to traditional and fractional-order controllers.

3.1. Simulation Study

This subsection presents the performance and discussion of the simulation results on
various benchmark process models.

3.1.1. First-Order Process Model

This subsection employs a MATLAB-based simulation to analyse a first-order system
using the process model given in Equation (8). The simulation provides valuable insight
into dynamic behaviour by inputting relevant system parameters and utilizing MATLAB
tools. The transient response parameters are obtained using MATLAB commands. The
outcomes of this study contribute significantly to the field and may interest those seeking
to enhance their understanding of the topic. Table 2 provides a specific time interval
for set-point changes, which helps numerically evaluate the controller’s performance.
Figure 3 shows the step response of all the controllers followed by each controller structure
successfully controlling its output to match the variable set-point changes in Figure 4, and
the disturbance-rejection performance is given in Figure 5. The transfer function of the
first-order system is given as follows:

G(s) =
1

5s + 1
. (8)

The comparison of the performance of PID and PI-PD controllers through first-order
simulations reveals significant differences. Specifically, the PID controller exhibits an
overshoot of 0.7406%, with a settling time of 98.3306 s and a rise time of 66.4899 s. In
contrast, the PI-PD controller has a higher overshoot of 3.7814%, with a shorter settling
time of 117.7727 s and a shorter rise time of 32.3616 s, and while PID controllers exhibit
less overshoot and longer settling times, they compensate for this with relatively long rise
times. On the other hand, PI-PD controllers prioritize faster rise times at the expense of
higher overshoot and longer settling times. The most appropriate selection between these
controllers depends on the specific application requirements. It necessitates consideration
of the trade-offs between overshoot, settling time, and rise time to achieve the desired
system performance.



Appl. Syst. Innov. 2024, 7, 33 11 of 25

Table 2. Controller parameters and transient response for first-order system.

Controllers Kp Ki Kd λ µ β γ OS (%) Settling Time (ts,
Seconds)

Rise Time (tr ,
Seconds)

PID 17.5 4.12 9.46 - - - - 0.7406 98.3306 66.4899
PI-PD 17.5 4.12 9.46 - - - - 3.7814 117.7727 32.3616
FOPID 17.5 4.12 9.46 0.98 0.02 - - 0 86.9470 30.8176

FOPI-FOPD 17.5 4.12 9.46 0.98 0.02 - - 0 138.7361 68.7531
COPI-PD 17.5 4.12 9.46 0.98 - 0.01 - 3.7814 117.7864 32.3687
PI-COPD 17.5 4.12 9.46 - 0.02 - 0.01 3.7642 117.6919 31.7754

COPI-FOPD 17.5 4.12 9.46 0.98 0.02 0.01 - 0.0318 139.1953 69.9659
FOPI-COPD 17.5 4.12 9.46 0.98 0.02 - 0.01 0 138.5352 68.5506
COPI-COPD 17.5 4.12 9.46 0.98 0.02 0.01 0.01 0.0014 138.9981 69.7455

Figure 3. First-order process model’s step response with compared controllers.

For fractional controllers, FOPID and FOPI-FOPD controllers exhibit different perfor-
mance characteristics. The FOPID controller demonstrates a relatively short settling time
of 86.9470 s, a fast rise time of 30.8176 s, and an impressive zero overshoot. On the other
hand, the FOPI-FOPD controller also boasts zero overshoot but has a long settling time
of 138.7361 s and a slow rise time of 68.7531 s. This comparison highlights the trade-offs
between the two controllers. The FOPI-FOPD had a slower and steady rise time, which led
to zero overshoot, which in turn produced a more stable result (non-oscillatory output). The
optimal selection of these sub-regulators depends on the specific application requirements,
and it is essential to consider the desired balance between overshoot, settling time, and
rise time to achieve optimal system performance. In evaluating complex ordering, each
variant has different performance characteristics. The COPI-PD and PI-COPD controllers
have overshoot values of 3.7814% and 3.7642%, settling times of 117.7864 s and 117.6919 s,
and rise times of 32.3687 s and 31.7754 s, respectively.

The PID controller has less overshoot than the PI-PD controller but has a longer settling
time, compromising the overshoot and response time. FOPID controllers prioritize fast
response without overshoot, while FOPI-FOPD controllers emphasize stability with more
extended settling and rise times. Several violations can be observed in controllers with
complex orders. COPI-FOPD minimizes the overshoot, FOPI-COPD emphasizes stability
without overshoot, and COPI-COPD achieves minimal overshoot. In contrast, COPI-FOPD
has a significantly lower overshoot of 0.0318%, coupled with a longer settling time of
139.1953 s and a rise time of 69.9659 s. FOPI-COPD features zero overshoot, a settling
time of 138.5352 s, and a rise time of 68.5506 s, emphasizing stability and a fast response.
COPI-COPD achieves a minimum overshoot of 0.0014% with settling and rise times of
138.9981 s and 69.7455 s, respectively.
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Figure 4. First-order process model’s tracking response with compared controllers.

The set-point changes ensure that the step response reaches its steady-state value.
These set-point variations include positive and negative changes, and they assess the
controller’s performance effectively. Notably, the proposed COPI-COPD controller outper-
forms the other controllers, making it more suitable for varying set-point processes.

Figure 5. First-order process model’s disturbance response with compared controllers.

The study involves deliberate exploration of disturbance rejection by injecting a dis-
turbance of 0.5 magnitude into the controller structure for 100 s. This replicates real-life
scenarios where external disturbances affect the entire process plant. Figure 5 provides a
graphical representation of the adeptness of each controller structure in effectively quelling
the disturbance and enabling precise control of the output back to the set point, as depicted
in Figure 4’s step response. The empirical validation reveals that the COPI-COPD controller
outperforms its competitors, exhibiting better overall performance and emphasizing its
robustness and resilience in real-world operational contexts. Complex sequential con-
trollers, particularly the FOPI-COPD, are sturdy tools in set-point tracking, improving
control dynamics and higher performance depending on dynamic operating requirements.
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3.1.2. Second-Order Process Model

In this section, a simulation based on MATLAB analyses a second-order system. The
process model specified in Equation (9) enables systematically exploring the system’s be-
haviour and dynamics. Table 3 provides the numerically evaluating performance of various
controllers at a specific time interval for including set-point changes. Figure 6 shows the
step response of all the controllers followed by each controller structure successfully con-
trolling its output to match the variable set-point changes in Figure 7, and the disturbance
rejection performance is given in Figure 8. The transfer function of the second-order system
is given as follows.

G(s) =
2s + 1

s2 + 3s + 1
. (9)

Table 3. Controller parameters and transient response for second-order system.

Controllers Kp Ki Kd λ µ β γ OS (%) Settling Time (ts,
Seconds)

Rise Time (tr ,
Seconds)

PID 17.5 4.12 9.46 - - - - 3.663 × 10−7 116.8035 14.1159
PI-PD 17.5 4.12 9.46 - - - - 0.9225 105.4154 34.6860
FOPID 17.5 4.12 9.46 0.98 0.02 - - 0 113.8499 30.5718

FOPI-FOPD 17.5 4.12 9.46 0.98 0.02 - - 0.0547 146.5290 93.6863
COPI-PD 17.5 4.12 9.46 0.98 - 0.01 - 0.9242 105.4284 34.6943
PI-COPD 17.5 4.12 9.46 - 0.02 - 0.01 0.8785 105.2664 33.0961

COPI-FOPD 17.5 4.12 9.46 0.98 0.02 0.01 - 0.1751 147.0024 94.8372
FOPI-COPD 17.5 4.12 9.46 0.98 0.02 - 0.01 0 148.1435 95.0625
COPI-COPD 17.5 4.12 9.46 0.98 0.02 0.01 0.01 0.0076 148.6575 96.3397

In the comparison between PID controllers and PI-PD controllers, PID controllers are
known for having a very low overshoot value of 3.663 × 10−7%, which indicates precise and
stable control. These controllers have a settling time of 116.8035 s and a rise time of 14.1159 s.
In contrast, the overshoot value of PI-PD controllers can be as high as 0.9225%, indicating
a trade-off between the overshoot and response time. The choice of which controller to
use depends on the application’s specific requirements. PID controllers prioritize minimal
overshoot and a fast response, while PI-PD controllers offer a faster settling time at the
expense of higher overshoot and longer rise time. Fractional-order controllers, particularly
FOPID, feature zero overshoot and have a settling time of 113.8499 s and a rise time of
30.5718 s, highlighting their precise and stable control.

It is essential to consider the unique properties of each variant when evaluating
complex-order controllers. When it comes to FOPI-FOPD, it has a minimum overshoot
value of 0.0547%, a slightly longer settling time of 146.5290 s, and a slightly longer rise
time of 93.6863 s, which indicates a trade-off between stability and response time with
the proposed COPI-COPD. The choice of these controls is determined by the balance of
overshoot, settling time, and rise time required to achieve optimal system performance.
Meanwhile, COPI-PD and PI-COPD controllers have similar overshoot values, settling
times, and rise times. COPI-FOPD has a low overshoot value of 0.1751%, a long settling
time of 147.0024 s, and a long rise time of 94.8372 s. FOPI-COPD shows stability without
overshoot, with settling and rise times of 148.1435 s and 95.0625 s. The minimum overshoot
value of COPI-COPD is 0.0076%, and the settling time and rise time are 148.6575 s and
96.3397 s, respectively. A comprehensive comparison highlights the multiple trade-offs
between these complex-order controllers and emphasizes the need to balance specific
application requirements for optimal system performance.
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Figure 6. Second-order process model’s step response with compared controllers.

Figure 7. Second-order process model’s tracking response with compared controllers.

PID controllers are generally more effective in reducing overshoot and providing fast,
stable responses. On the other hand, PI-PD controllers tend to have higher overshoot and
longer rise times, but they offer faster settling times. FOPID is known for its precise control
among fractional controllers, while FOPI-FOPD is renowned for prioritizing stability with
minimal compromise in settling and rise times. In the case of complex sequential controllers,
each variant has its own characteristics, making it difficult to choose a controller that caters
to specific application requirements.

In set-point tracking, the comprehensive evaluation of the figures and table shows
that the proposed complex-order controller consistently outperforms its counterpart and
performs well. This advantage is not limited to individual cases but extends across target
value tracking scenarios. The controller’s subtle adjustments and dynamic responsiveness
in complex sequences provide the best overall performance and exceed the capabilities of
its controller counterpart. This empirical validation highlights the inherent effectiveness of
complex sequential controllers in accurately handling various set-point changes, making
them ideal for applications where accuracy and adaptability to varying conditions are im-
portant performance criteria. Complex-order controllers have proven to be a transformative
force in set-point tracking, promising improved control dynamics and greater adaptability
in the face of evolving operational needs.
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Figure 8. Second-order process model’s disturbance response with compared controllers.

3.1.3. Third-Order Process Model

In analysing third-order systems, transfer function models are crucial for simulating
and comparing controllers, and their transfer function model is given in Equation (10).
Table 4 provides the numerically evaluated performance of various controllers at a specific
time interval, including set-point changes and disturbance rejection analysis. Figure 9
shows the step response of all the controllers followed by each controller structure success-
fully controlling its output to match the variable set-point changes in Figure 10, and the
disturbance rejection performance is given in Figure 11. By focusing on the controller’s
transient response characteristics, transfer function models can provide insight into the
controller’s performance under varying conditions. This approach allows for a nuanced
study of the controller’s behaviour and provides a systematic means of recognizing the
controller’s effectiveness in tuning the system response. Therefore, transfer function models
represent a methodologically rigorous path that allows for a comprehensive investigation
and evaluation of controller performance within the dynamic landscape of third-order
systems. The transfer function of the third-order system is given as follows.

G(s) =
400

s3 + 30s2 + 200s
. (10)

Table 4. Controller parameters and transient response for third-order system.

Controllers Kp Ki Kd λ µ β γ OS (%) Settling Time (ts,
Seconds)

Rise Time (tr ,
Seconds)

PID 2.4532 4.8789 0.3314 - - - - 22.1842 97.8430 17.0763
PI-PD 2.4532 4.8789 0.3314 - - - - 6.7384 88.5320 15.3694
FOPID 2.4532 4.8789 0.3314 0.98 0.02 - - 54.8152 93.8416 11.3073

FOPI-FOPD 2.4532 4.8789 0.3314 0.98 0.02 - - 15.8640 94.9228 12.0943
COPI-PD 2.4532 4.8789 0.3314 0.98 - 0.01 - 6.6980 88.5421 15.3753
PI-COPD 2.4532 4.8789 0.3314 - 0.02 - 0.01 7.3362 88.0580 15.3340

COPI-FOPD 2.4532 4.8789 0.3314 0.98 0.02 0.01 - 16.5639 94.7933 12.0374
FOPI-COPD 2.4532 4.8789 0.3314 0.98 0.02 - 0.01 15.8146 94.8964 12.0969
COPI-COPD 2.4532 4.8789 0.3314 0.98 0.02 0.01 0.01 16.5141 94.7665 12.04

PID controllers are known for their fast response time but have a significant overshoot
of 22.1842%, allowing large deviations from the set point. The PI-PD controller, on the other
hand, achieves slightly longer settling and rise times but reaches a lower overshoot value of
6.7384%, resulting in improved control accuracy. This trade-off between faster response and
higher overshoot for PID controllers versus precise control of PI-PD controllers with slightly
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longer settling and rise times is noteworthy. Regarding fractional-order regulators, FOPID
controllers can provide potentially faster response times but have a high overshoot value
of 54.8152%. The FOPI-FOPD controller, with an overshoot value of 15.8640% and a slight
compromise in rise time, is a better option for those seeking the balance between overshoot
and the response time. COPI-PD and PI-COPD controllers have similar overshoot values
but different settling and rise times for complex-order controllers. COPI-FOPD increases
settling time to minimize the overshoot to 16.5639%, while FOPI-COPD emphasizes stability
with a slightly reduced overshoot value of 15.8146%. COPI-COPD, on the other hand,
minimizes the overshoot to 16.5639%.

Figure 9. Third-order process model’s step response with compared controllers.

Set-point tracking involves adjusting input values at various intervals to evaluate
the controller’s robustness under different conditions. Strategic analysis is carried out by
changing the initial set points, starting at 1 at time 0, moving to 0.5 at 20 s, and progressing
to 2 at 40 s while keeping track of positive and negative changes. This test bench provides
a comprehensive analysis of the controller’s functionality. This step response cleverly
adjusts its output to match the specified set-point change, highlighting the superior overall
performance of the proposed complex slave controller.

The complex slave controller consistently outperforms comparable controllers with its
high adaptability and accuracy, making it ideal for applications where control and adapt-
ability to varying conditions are key performance indicators. Complex-order controllers
have proven indispensable partners in set-point tracking, providing improved control
dynamics and higher performance standards in the face of dynamic operating require-
ments. The comprehensive evaluation of disturbance rejection involved the construction of
a deliberate and pertinent scenario. In this scenario, an intentional disturbance value of 2
was injected into the controller structure after 8 s.

These simulation results accurately mimic real-life situations where disturbances can
permeate the entirety of a process plant. The intricate dynamics of this scenario are depicted
in Figure 11, where each control structure adeptly navigates the challenges posed by distur-
bances and dynamically adjusts the output back to the set point. This observed response
aligns seamlessly with the step response illustrated in Figure 9. The proposed complex-
order controller consistently emerges as the front-runner in this evaluation, outperforming
its competitors with a demonstrable superiority in effectively managing and suppressing
disturbances. The nuanced and resilient performance of the complex-order controller
underscores its efficacy in maintaining overall system control amidst external disruptions.
This empirical evidence not only highlights the specific prowess of the complex-order
controller in disturbance rejection but also positions it as the optimal choice for applications
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where superior disturbance management and sustained system control are paramount
performance criteria. The complex-order controller is a robust solution, offering enhanced
control dynamics and a heightened ability to contend with real-world disturbances within
dynamic operational environments.

Figure 10. Third-order process model’s tracking response with compared controllers.

Figure 11. Third-order process model’s disturbance response with compared controllers.

3.2. Experimental Study

This section provides a detailed discussion of real-time flow and pressure process plant
results, including their schematics and operating characteristics. It is worth noting that
a delay by a first-order transfer function characterizes both plants. However, an obstacle
arises when attempting to derive the transient response using MATLAB commands, as
discussed in the previous section. The resulting transfer functions exhibit irregularities
that make them non-causal and unstable. The solution to this challenge is achieved by
applying the Pade approximation, where the problem is effectively reduced as the order of
the numerator is now equal to or exceeds the order of the denominator. This adjustment
ensures the stability and causality of the system, overcoming the limitations associated with
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non-causal systems, which are considered physically infeasible due to their dependence on
inputs from future temporary cases.

3.2.1. Flow Process Model

The experimental setup and piping and instrument diagram (P&ID) of the real-time
flow process plant are illustrated in Ref. [40]. Within this system, the process tank, VE 420,
has a capacity of 100 litres and receives liquid from tank VE 410 with the assistance of a
centrifugal pump P412. The liquid level within VE 420 is effectively controlled by a hand
valve HV 420, while the process control valve FCV 413 ensures a consistent flow at the
designated level. A pressure transmitter FT 413 measures and regulates the flow, providing
digital voltage signals within the range of 0 to 5 V.

These voltage signals are then directed to the pressure-indicating controller FIC 413,
which transmits the control signal to the host PC through dedicated I/O interface boards.
This integration allows for real-time monitoring and control of the flow process, showcasing
a comprehensive and sophisticated system architecture, from the open-loop response
of the flow process followed by its numerical analysis in Table 5. The mathematical
model derivation for the process plant involves analysing the open-loop step response
characteristics. These characteristics encompass essential information about the behaviour
and dynamics of the process, including parameters such as the process gain (K), process
dead time (Lp), and process time constant (T). In this experimentation, an open-loop
step response is performed for the flow process, yielding the following plant dynamics:
K = 0.072, Lp = 3, and T = 0.126. Utilizing the characteristic equation for a first-order plus
dead-time system, the process model for the flow process plant is established based on the
acquired plant dynamics. The transfer function of the process is given as

G(s) =
K

1 + Ts
e−sLp =

0.072
0.126s + 1

e−3s. (11)

To ensure the system’s stability, the plant is operated by controllers, which employ
the same methodology as the previous system. However, fractional and complex-order
controllers have been added to compare with other controllers. The parameters of these
controllers and the step response and transient response characteristics are presented in
the table and figure below. These figures provide a comprehensive overview of the control
system’s performance. Figures 12–14 show the step, set-point tracking, and disturbance
rejection responses of all the controllers.

Table 5. Controller parameters and transient response for real-time flow process plant.

Controllers Kp Ki Kd λ µ β γ OS (%) Settling Time (ts,
Seconds)

Rise Time (tr ,
Seconds)

PID 1 1 0.1 - - - - 6.1045 × 10−5 237.6946 78.3350
PI-PD 1 1 0.1 - - - - 0 240.7698 80.6822
FOPID 1 1 0.1 0.98 0.02 - - 1.2636 × 10−4 239.3677 79.5915

FOPI-FOPD 1 1 0.1 0.98 0.02 - - 0 241.8704 81.9465
COPI-PD 1 1 0.1 0.98 - 0.01 - 1.2549 × 10−4 239.3861 79.6018
PI-COPD 1 1 0.1 - 0.02 - 0.01 1.2648 × 10−4 239.3679 79.5916

COPI-FOPD 1 1 0.1 0.98 0.02 0.01 - 2.6519 × 10−4 241.5152 82.1655
FOPI-COPD 1 1 0.1 0.98 0.02 - 0.01 0 241.8741 81.9517
COPI-COPD 1 1 0.1 0.98 0.02 0.01 0.01 2.3946 × 10−4 241.5194 82.1699

The comparison of the traditional controller to the experimental analysis reveals that
the PID controller exhibits an overshoot of 6.1045 × 10−5%, which is higher than the PI-
PD controller, which achieves zero overshoot. The PID controllers have smaller rise and
settling time values, but it does not necessarily mean a better performance, as the overshoot
is a crucial factor when evaluating control quality. In the case of fractional controllers,
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the comparison between FOPID and FOPI-FOPD shows that FOPI-FOPD is better than
FOPID as it has zero overshoot. However, it has a lower settling time of 239.3677 s and
a rise time value of 79.5915 s, which is smaller for FOPID. FOPI-FOPD shows excellent
interference rejection performance with no overshoot. The analysis conducted on complex
sequential controllers such as COPI-PD, PI-COPD, COPI-FOPD, FOPI-COPD, and COPI-
COPD revealed that FOPI-COPD showed superior performance compared to the others.
FOPI-COPD achieved a settling time of 241.8741 s with a rise time of only 81.9517 s and
no overshoot, indicating high accuracy and stability. These results set FOPI-COPD apart
from another similar controller that exhibits non-zero overshoot values, emphasizing its
exceptional performance in achieving precise and stable control.

Figure 12. Flow process model’s step response with compared controllers.

Figure 13. Flow process model’s tracking response with compared controllers.

These performance comparisons highlight the importance of considering multiple
performance parameters while assessing controllers and suggest that traditional controllers,
such as PID, may suffer from overshoot. In contrast, fractional controllers like FOPI-FOPD
and FOPI-COPD offer improved overshoot minimization, settling time, and rise time.
These findings suggest that FOPI-COPD is a compelling option for applications where
precise control is paramount. A salient observation concentrates from this comprehensive
study, with the proposed complex-order controller consistently emerging as the epitome of
effectiveness, outperforming its competitors in terms of overall performance. This consis-
tent superiority is a recurring theme throughout the configuration value tracking scenario,
with the nuanced adaptability showcased by the complex-order controller underscoring its
prowess in navigating diverse configuration changes. Therefore, it solidifies its status as



Appl. Syst. Innov. 2024, 7, 33 20 of 25

the optimal choice for applications where precise control and adaptability to varied config-
urations are pivotal performance benchmarks. The complex-order controller establishes
itself as a stalwart in configuration value tracking, promising enhanced control dynamics
and an elevated performance standard in the face of evolving operational requirements.

Figure 14. Flow process model’s disturbance response with compared controllers.

In the context of disturbance rejection, a real-world analysis is presented where a
deliberate disturbance value of 6 is introduced into the controller structure after 150 s. This
mirrors the dynamic nature of external disturbances in a process plant. Figure 14 illustrates
the intricacies of this scenario, providing a clear visual representation of the proficiency
of each controller structure in mitigating the effects of disturbances. These controllers
demonstrate their adeptness through dynamic adjustments to the output, aligning it with
the set point, as shown in the step response diagram captured in Figure 12. Notably, the
proposed complex-order controller consistently outperforms competitors in interference
suppression, showcasing superior overall performance. All of the above consistently
better performances over other controllers underscore the robustness of the proposed
complex-order controllers in dealing with disturbances, positioning them as the optimal
choice for applications where disturbance rejection is a critical performance criterion.
The empirical evidence from this evaluation highlights the potential of complex-order
controllers in providing resilient and effective solutions for managing external disturbances,
further solidifying their candidacy for applications where precision and adaptability to
disturbances are paramount considerations.

3.2.2. Pressure Process Model

The schematic diagram and piping and instrument diagram of the real-time pressure
process plant illustrated in Refs. [40–42], provide a comprehensive overview of the system’s
operational dynamics. The pressure system is centred around the VL 202 buffer tank,
specially designed to withstand the high pressure of up to 10 bar supplied by the centralized
air compression system. The HV 202 manual valve enables precise control over the pressure.
In contrast, the PCV 202 process control valve ensures that the pressure is constantly
maintained at the desired level, allowing for a smooth and efficient operation. The PT 202
pressure transmitter facilitates accurate pressure monitoring by converting pressure values
into digital voltage signals ranging from 0 to 5 V.

The PIC 202 pressure indicator controller relays this voltage signal to the host PC
via dedicated I/O interface cards, enabling real-time pressure process monitoring and
control. This showcases a complex and comprehensive system architecture. The PT 202
pressure transmitter and PIC 202 pressure indicator controller suit various industries where
precise pressure measurements are critical to operations. This technology ensures accurate
and reliable pressure monitoring, ensuring smooth and efficient operations. Using the
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open-loop response of the pressure process followed by its numerical analysis in Table 6,
the transfer function of the process is given as

G(s) =
0.866

1.365s + 1
e−s. (12)

Figures 15–17 show the step, set-point tracking, and disturbance-rejection responses
of all the controllers in the pressure process plant. Controllers are employed to operate the
plant to assess the system’s stability, which is consistent with past methods and includes
the addition of fractional and complex order controllers for comparison purposes. The
resulting table and figure showcase the parameters, step response, and transient response
characteristics, thoroughly assessing the control system’s performance. The simulation
study results revealed that the PID controller demonstrated a significant overshoot of
6.5841% with a settling time of 163.0095 s and a rise time of 18.5776 s. Conversely, the
PI-PD controller exhibited a considerably lower overshoot of 0.3905%, albeit with a slightly
longer settling time of 175.9587 s and a longer rise time of 38.7020 s. This comparison
demonstrates that the PID controller trades off higher overshoot and faster settling and
rise times. In contrast, the PI-PD controller has slightly longer settling and rise times
but minimal overshoot. The optimal choice of these controllers depends on the specific
application requirements, where it is essential to balance the overshoot and response time
to optimize the system performance.

Table 6. Controller parameters and transient response for real-time pressure process plant.

Controllers Kp Ki Kd λ µ β γ OS (%) Settling Time (ts,
Seconds)

Rise Time (tr ,
Seconds)

PID 0.5 0.5 −0.01 - - - - 6.5841 163.0095 18.5776
PI-PD 0.5 0.5 −0.01 - - - - 0.3905 175.9587 38.7020
FOPID 0.5 0.5 −0.01 0.98 0.02 - - 4.0610 162.1264 25.0510

FOPI-FOPD 0.5 0.5 −0.01 0.98 0.02 - - 0.2565 178.9595 40.4344
COPI-PD 0.5 0.5 −0.01 0.98 - 0.01 - 0.2876 176.0390 38.7466
PI-COPD 0.5 0.5 −0.01 - 0.02 - 0.01 7.5495 × 10−12 177.5542 83.0930

COPI-FOPD 0.5 0.5 −0.01 0.98 0.02 0.01 - 0 180.4267 86.5732
FOPI-COPD 0.5 0.5 −0.01 0.98 0.02 - 0.01 0 180.2877 84.9259
COPI-COPD 0.5 0.5 −0.01 0.98 0.02 0.01 0.01 2.1894 × 10−11 180.4000 86.4863

In the fractional controllers, to evaluate the performance of FOPID and FOPI-FOPD
controllers, the FOPID controller demonstrates a significant overshoot of 4.0610%, ac-
companied by a settling time of 162.1264 s and a rise time of 25.0510 s. In contrast, the
FOPI-FOPD controller presents a considerably reduced overshoot, amounting to 0.2565%,
albeit with a slightly longer settling time of 178.9595 s and a higher rise time of 40.4344 s.
The comparison between the two controllers sheds light on the trade-off between the
FOPID controller’s faster settling time and shorter rise time, yet higher overshoot, and
the FOPI-FOPD controller’s minimized overshoot, prioritizing stability at the expense of
marginally longer settling and rise times. The selection of the fractional controller depends
on the specific application’s needs, which requires careful consideration of the trade-off
between the overshoot and response time for effective control system design.
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Figure 15. Pressure process model’s step response with compared controllers.

In evaluating complex-order controllers, each variant has demonstrated unique per-
formance characteristics. COPI-PD has exhibited a moderate overshoot of 0.2876%, with
a settling time of 176.0390 s and a rise time of 38.7466 s. PI-COPD has shown a nearly
imperceptible overshoot of 7.5495 × 10−12%, achieving a settling time of 177.5542 s and
a rise time of 83.0930 s. COPI-FOPD has excelled in overshoot elimination with a value
of zero percent, coupled with a settling time of 180.4267 s and a rise time of 86.5732 s.
FOPI-COPD has emerged as a standout performer, exhibiting zero percent overshoot, a
settling time of 180.2877 s, and a rise time of 84.9259 s, making it the preferred choice.
Although COPI-COPD has also achieved a negligible overshoot of 2.1894 × 10−11% with
a settling time of 180.4 s and a rise time of 86.4863 s, the comprehensive assessment posi-
tions FOPI-COPD as the superior controller, showcasing optimal performance across the
overshoot, settling time, and rise time among the complex-order controllers evaluated.

Figure 16. Pressure process model’s tracking response with compared controllers.

After a comprehensive examination, a clear trend emerges, indicating that the pro-
posed complex sequential controllers, specifically the FOPI-COPD, consistently surpass
their competitors and demonstrate the pinnacle of overall performance. This recurring
advantage is not a singular event but a recurring theme throughout various set-point
tracking scenarios. The outstanding performance of complex sequencers, particularly the
FOPI-COPD, provides substantial evidence of their adeptness in controlling changes in di-
verse set points. This empirical validation positions these controllers as the foremost choice
for applications prioritizing accuracy, adaptability, and superior overall performance. By
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nature, complex sequential controllers, especially the FOPI-COPD, have proven to be robust
tools in set-point tracking, improving control dynamics and ensuring higher performance
based on dynamic operating requirements.

Figure 17. Pressure process model’s disturbance response with compared controllers.

As per the analysis conducted on the array of control structures, the FOPI-COPD
controller consistently emerges as the best performing controller, showcasing superior
overall performance compared to its counterparts. This recurring trend underscores the
robust interference suppression capabilities inherent in the FOPI-COPD controller. The
empirical evidence from this analysis positions the FOPI-COPD controller as the optimal
choice for applications where minimizing interference effects is a crucial performance
criterion. This observation emphasizes the FOPI-COPD controller’s efficacy in mitigating
disturbances and underscores its suitability for real-world scenarios demanding precise
interference suppression and control.

4. Conclusions

Introducing complex-order PI-PD controllers is a promising approach to enhance
control performance in real-time process plants. This innovative strategy integrates com-
plex orders, utilizes advanced algorithms and techniques, and addresses critical issues
such as transient response, overshoot, stability, and robustness. Moving from traditional
integer order to complex order adds nuance and precision to the control approach, encour-
aging the development of new controllers. Implementing complex-order PI-PD controllers
requires careful hardware selection and seamless integration. This approach effectively
manages industrial environments’ complexity, leading to improved control dynamics and
increased operational efficiency in dynamic industrial processes. This pioneering integra-
tion underscores our dedication to advancing control techniques and marks a positive
step towards achieving optimal operational efficiency. Leveraging complex-order PI-PD
controllers’ advanced features, we lead the way in technological innovation, bringing new
precision and adaptability to dynamic situations in industrial control systems. Optimal
performance in complex order controllers will be achieved by incorporating a thorough
optimization and testing phase in the deployment process, which is the future direction
of this research. Controllers can be subjected to various parameters to identify the most
efficient configuration, which requires careful evaluation of different characteristics.
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