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Abstract: Due to the prevalent challenges of inadequate accuracy, unstandardized parameters,
and suboptimal efficiency with regard to icing prediction, this study introduces an innovative
online method for icing prediction based on Robust STL-BTSF and IBWO-LSSVR. Firstly, this study
adopts the Robust Seasonal Decomposition of Time Series and Bilinear Temporal-Spectral Fusion
(Robust STL-BTSF) approach, which is demonstrably effective for short-term and limited sample
data preprocessing. Subsequently, injecting a multi-faceted enhancement approach to the Beluga
Whale Optimization algorithm (BWO), which integrates a nonlinear balancing factor, a population
optimization strategy, a whale fall mechanism, and an ascendant elite learning scheme. Then, using
the Improved BWO (IBWO) above to optimize the key hyperparameters of Least Squares Support
Vector Regression (LSSVR), a superior offline predictive part is constructed based on this approach. In
addition, an Incremental Online Learning algorithm (IOL) is imported. Integrating the two parts, the
advanced online icing prediction model for transmission lines is built. Finally, simulations based on
actual icing data unequivocally demonstrate that the proposed method markedly enhances both the
accuracy and speed of predictions, thereby presenting a sophisticated solution for the icing prediction
on the transmission lines.

Keywords: transmission line; online icing prediction; LSSVR; IBWO; data preprocessing

1. Introduction

Transmission lines encased in ice present multifaceted threats such as insulator
flashover, conductor galloping, circuit tripping, power outages, and disruption of communi-
cation systems [1,2]. These phenomena critically undermine productivity dsand livelihoods
while accruing considerable economic losses [3], thereby posing a substantial obstacle to
the secure and consistent operation of power systems [4]. Consequently, the investigation
into icing prediction models is paramount for strategic line planning, efficient allocation
of de-icing operations, and guaranteeing a safe and dependable electricity supply within
the power grid [5]. In recent years, substantial research efforts have been undertaken by
scholars, yielding significant advancements in the field of icing prediction on transmission
lines. Present studies suggest that prediction models for icing on transmission lines can be
broadly categorized into three distinct types, as delineated in Table 1 [6,7].

In recent years, the profound integration of machine learning into fault diagnosis
and power load forecasting has spurred its extension into the realm of transmission line
icing prediction, where it has demonstrated notable success [8]. Chen et al. advanced
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the field by proposing an online transmission line icing prediction model underpinned
by data-driven methodologies. The findings reveal that this model surpasses traditional
prediction models in both predictive accuracy and generalizability [9]. Manninen et al.
introduced a novel machine-learning-based approach for predicting the health index of
overhead transmission lines, specifically focusing on high-voltage overhead lines. The
proposed method’s elevated accuracy and applicability were corroborated through a com-
parative analysis of the model’s predicted values against empirical data [10]. Nevertheless,
most of the aforementioned studies neglected the optimization of hyperparameters in their
machine-learning models, leading to unstable prediction accuracies and significant random
fluctuations. Consequently, enhancing the model’s predictive efficacy necessitates the inte-
gration of advanced artificial intelligence optimization techniques with machine-learning
models for hyperparameter optimization, thereby constructing a sophisticated model for
icing prediction [11]. Tang et al. employed the classical Particle Swarm Algorithm (PSO)
as an intelligent optimization tool to iteratively refine the primary parameters of the SVR.
The extensive training of the model with a substantial dataset substantiated the proposed
model’s remarkable enhancements in both effectiveness and accuracy. Nevertheless, this
model exhibits limited efficacy in extracting feature dimensions from chaotic time series,
and its complexity escalates substantially with increased embedding dimensions [12]. Sun
et al. innovated with a hybrid icing prediction model, amalgamating wavelet transform
(WT) and bat algorithm—-enhanced extreme learning machine (BA-ELM). In this model, WT
is utilized for denoising meteorological data, while the BA optimizes input weights and
bias thresholds, culminating in a robust icing prediction framework. However, this offline
model does not enhance the standard ELM, resulting in constrained generalizability [13].

Table 1. Transmission line icing prediction model.

Prediction Model Principle Advantages Drawbacks
A mathematical model based on Closer to the actual state of ice Challenges in parameter acquisition;
Physical Model the physical process of water cover formation, offering high limited generalizability and
transitioning from liquid to solid. theoretical reliability. practical utility.
Processing h1§torlcal data. through Exhibits strong reproducible fit to .
- mathematical and statistical .2, Highly data-dependent;
Statistical Model R . . historical data; s o
techniques to identify key factors hish prediction accurac computationally difficult.
and model the thickness of icing. ghp ¥
Integrates machine learning for Minimal-data requirements; rapid ~ The selection of model parameters can
Machine Learning Model predictive analysis, bypassing the predictive capabilities; be subjective, impacting the
physical processes of icing. high accuracy. prediction outcomes.

The icing prediction for transmission lines is inherently uncertain and nonlinear, at-
tributed to its vulnerability to climatic variables like temperature, humidity, and wind
speed. Owing to their simplicity and adaptability, meta-heuristic algorithms, renowned
for their efficacy in addressing nonlinear and multimodal challenges, have gained traction
among scholars for parameter optimization in machine learning models. Nonetheless,
meta-heuristic algorithms are commonly critiqued for their slow convergence rates and
propensity to fall into local optimal solutions, necessitating further refinement. Enhancing
and optimizing meta-heuristic algorithms is imperative to augment the predictive accuracy
of conventional machine learning models. Additionally, it is essential to refine and optimize
the standard machine-learning model to bolster its predictive precision [14]. Consequently,
to further elevate the predictive performance, both the algorithms and models necessitate
enhancements and advancements. Ma et al. amalgamated the traditional fireworks algo-
rithm with the quantum optimization algorithm, significantly enhancing the efficacy of
the optimization search. This methodology was employed in conjunction with a Support
Vector Machine (SVM) to construct an advanced prediction model. Analytical verification
has confirmed that this method markedly enhances both accuracy and solution speed [15].
Xia et al. introduced a novel similarity-based weighted SVR model. Parameters were opti-
mized based on varying sample weights using a hybrid swarm intelligence optimization
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algorithm, combining PSO and the ant colony algorithm, thereby enhancing the model’s
generalization capacity, as evidenced by experimental results [16]. The incorporation of
Bayesian optimization into SVR facilitates automatic parameter adjustment, taking into
full account the inter-related [17,18]. In the practical deployment of prediction models
hinged on icing mechanisms, the accuracy is invariably contingent upon the judicious
selection of parameters. Nevertheless, the icing process is characterizable as a chaotic time
series, exhibiting considerable complexity and non-linearity alongside inherent inertia.
Consequently, employing LSSVR to delineate the relationship between icing thickness and
environmental factors not only maximizes the extraction of pertinent information from
these factors but also minimizes data redundancy concerning ice cover thickness, thereby
enhancing both the accuracy and efficiency of the prediction model.

In the realm of meteorological data preprocessing, Zhou et al. proffered an innova-
tive method designed for the handling of extended temporal sequences. This pioneering
approach stratifies the dataset into two distinct categories: the harmoniously evolving
smooth series and the oscillatory counterparts, serving as a predictive tool, thus imbuing
the dataset with heightened resilience and interpretative clarity [19]. In pursuit of ascertain-
ing the quintessential configuration for a hybrid wave wind farm, Haces and co-authors
introduced a pioneering wave wake preprocessing modality. This innovative paradigm
orchestrates the seamless alignment of every geographic coordinate with a preconceived
wave wake through a judicious amalgamation of recursive optimization and genetic algo-
rithms, subsequently culminating in the comprehensive imputation of any missing data
facets [20]. In 2023, Altunkaynak et al. first introduced the Additive Seasonal Algorithm as
an alternative data preprocessing algorithm for processing datasets with different meteoro-
logical characteristics, which decomposes the raw data into trend period, seasonality, and
error components to facilitate the subsequent operations [21]. While the aforementioned
meteorological data preprocessing techniques have yielded commendable outcomes, it is
important to recognize that their methodologies predominantly cater to the exigencies of
tumultuous, protracted temporal datasets. The meteorological data under scrutiny in this
study, focusing on icing phenomena, is inherently punctuated by pronounced periodicity
and abbreviated temporal extents. Hence, it is incumbent upon us to judiciously discern
and adopt data preprocessing strategies that are attuned to the distinctive attributes of
this dataset.

In summary, this study introduces a novel online icing prediction methodology for
transmission lines. The contributions are delineated as follows:

(1) The Robust STL-BTSF has an advanced data preprocessing method. This method or-
chestrates the data across temporal and spectral dimensions, extracting salient information
efficiently, thereby enhancing the alignment and efficacy of feature fusion.

(2) A multi-faceted strategy is employed to address the inherent limitations of conven-
tional BWO. This enhancement markedly accelerates the convergence speed and gains a
substantial boost in optimization precision.

(3) Establishing an LSSVR, employing IBWO to optimize parameters and set up the
offline predictive part. Injecting IOL, and the online icing prediction model for transmission
lines is built.

The chapters of this paper are organized as follows: In Section 2, the preprocessing
method of meteorological data is introduced. Section 3 constructs the topology of the online
prediction model. In Section 4, the workflow of the prediction model is analyzed, and the
corresponding evaluation indexes are introduced. In Section 5, the experimental evaluation
is carried out through the arithmetic example simulation. Finally, the paper is summarized
in Section 6.
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2. Data Preprocessing Method Based on Robust STL-BTSF

For the icing meteorological time series, Y; can be decomposed into a trend term
component T}, a period term component S¢, and a residual term R;, as shown in Equation (1):

Yi=T;+S+R;, t=1,2,...,N )

Robust STL is used to decompose the sequence through two processes: inner loop and
outer loop, as shown in Figure 1.

Internal Circulation
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Figure 1. Robust STL.

The internal circulation effectively fits the temporal trend component and computes
the periodic component within the time series. Simultaneously, the external circulation
fine-tunes the robustness weights. This dual-layered iterative process seamlessly inter-
weaves, yielding a coherent and harmonious alignment while effectively smoothing out the
ice-covered climate data characterized by seasonal cycles. Following the application of the
Robust STL, an innovative iterative BTSF mechanism is introduced. Its role is to explicitly
capture the intricate interdependencies among a profusion of time—frequency pairs. The
iterative refinement of representations unfolds in a sophisticated fusion-and-squeeze fash-
ion, facilitated by Spectrum—to—Time (S2T) and Time—to—Spectrum (T2S) aggregation
modules, as illustrated in Figure 2.
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Figure 2. Robust STL—BTSF.
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Specifically, each augmented time series x; is first transformed to the spectral domain
by a Fast Fourier Transform (FFT), obtaining spectral signal xs. Then x; and x; are delivered
to two encoding networks for feature extraction. The process is shown in Equation (2):

F; = Encoder s (xt; 0;) ()
F; = Encoderg(xs; 0s)

where F; and Fs are temporal and spectral features; 8; and 85 are parameters of the encoding
networks Encodery and Encoderg, respectively. Then, the approach builds an iterative
bilinear fusion channel interaction between features F(i, j) of two domains and integrates
them using BTSF as shown in Equation (3):

Fbilinear:FtTXFs:ZZF(i/j):ZZFt(i)TFS(j) (3)

i=1j=1 i=1j=1

Then it encodes cross-domain affinities to adaptively refine the temporal and spectral
features through an iterative procedure as Equation (4):

S2T: F = BiCasual{Conv(Fyijinear) } )
T2S: F; = Conv{BiCasual (Fyjjipear) }

S2T, T2S, and bilinear fusion jointly form a loop block in a fuse-and-squeeze manner.
The bilinear fusion jointly forms a loop block in a fuse-and-squeeze manner. After several
loops of Equations (3) and (4), the final bilinear feature Fy;j;y;,, is obtained.

3. IBWO-LSSVR Online Model
3.1. LSSVR

To address the challenge of hyperplane parameter selection, which often results in
an unwarranted expansion of the solution space within SVR, the Least Squares Method
is harnessed for optimization. The optimization criterion centers around the quadratic
term of the error factor, thereby transforming inequality constraints into an equivalent set
of equation constraints. Notably, the resolution of the optimization problem is reformu-
lated as the solution to a system of linear equations, a transformation facilitated by the
Karush-Kuhn-Tucker (KKT) condition. This adaptation renders the method particularly
suitable for the precise fitting of limited sample data. The optimization objective function
is expressed in Equation (5).

minj(«,£) = Jjwl’ +c L 7

= (5)
styi=w' () +b+¢

where: x; is the sample vector; ¢ is the penalty factor; x is the slack variable; w is the normal
vector; b is the bias vector. By introducing the Lagrange multiplier method, the transformed
optimization problem is shown in Equation (6):

L(w,b,e,a) = J(w,b,e) + iai (yi - (wT(xi) + b)) (6)

where « is the Lagrange operator; e and 7t are irrational numbers.

The optimal solution is obtained through the KKT condition, and the regression
function of LSSVR can be obtained by solving using the least squares method as shown in
Equation (7):

m
flx) =Y x(xi,xj); +b (7)

i=1
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where k (x, x;) is the kernel function. In this paper, we choose the radial basis kernel function
(RBF), which has good generalization ability and significant advantage when dealing with
nonlinear problems, as shown in Equation (8):

2
Cxi =l
202

x(xi, x;) = exp( ) ®)
where 02 is the width parameter of the RBF. The selection of ¢ and ¢ directly affects the
performance of LSSVR. Therefore, to improve the performance of SVR, the optimal solution
search for the values of ¢ and c is required. Meta-heuristic algorithms are widely used for
selecting optimal solutions for parameter optimization due to their superior ability to find
optimal solutions.

3.2. BWO

BWO is a new meta-heuristic algorithm proposed by Zhong in 2022 [22]. The behaviors
of beluga whales inspire BWO. Balance factor By determines the transition from exploration
to the exploitation phase, as expressed in Equation (9).

Bf = Bo(1 — T/2Tnax) )

where T is the current iteration, T'max is the maximum iteration, and By randomly changes
between (0, 1). The processes are explained below.

3.2.1. Exploration Phase

The exploration phase involves considering pairs of swimming beluga whales. Their
positions are updated according to Equation (10).

Xg],“ = Xgpj + (X,T,pl - XiT,pj) (1+r)sin(2mtry) j = even

XL = X, 4 (XF,, = X[, ) (14 ) cos(2ra)  j = odd

7,pP1 %

(10)

where Xi,jT” is the new position for the ith beluga whale on the jth dimension. P; is a
random number selected from d-dimension (j=1,2, ..., d). X; p]‘T and X,,plTis the position
of the ith and rth beluga whale. r{ to 17 is a random number between (0, 1).

3.2.2. Exploitation Phase
The preying behavior inspires the exploitation phase, as expressed in Equation (11).

X[ = raXho —raX! +Ci - Le- (X = X]) (1)

where X;T and X,T position for the ith beluga whale and a random beluga whale, X;"*! is
the new position. X! is the best position. Cj is the random jump strength, Ly is the Levy
flight function, as expressed in Equations (12) and (13):

C1 = 2r4(1 — T/ Trmax) (12)

Lr = 0.05x u x o/ |o|"/P (13)

(14 B) x sin(nB/2)
T[(1+p)/2] x p x 2(F~1

1/B
where o = ( 772 ) , # and v are normally distributed random numbers.

3.2.3. Whale Fall

During migration and foraging, a small number of beluga whales did not survive
and fell to the deep seabed. Xitep is the step size of the whale fall model expressed as
Equation (14) to (15).

X = rsX] — 16 X] + 77 Xstep (14)
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Lr =0.05x u x o/ |o|/P (15)

where u;, and [, are the upper and lower boundaries of the variable, C; is the step factor,
and C, = 2Wf x n. Wyis the probability of whale fall, Wr=0.1 — 0.05T/T max-

3.3. Improving Methods of BWO

BWO, as a new type of meta-heuristic algorithm, offers the advantage of high opti-
mization accuracy. However, it still exhibits shortcomings in terms of convergence speed
and stability. Through research on beluga whales and the refinement of fundamental
theories, a multi-strategy approach is proposed, leading to the development of IBWO. This
multi-strategy consists of four parts, as follows:

3.3.1. Nonlinear Balancing Factor with Sigmoid Function

To improve the convergence speed, a nonlinear attenuation using the improved Sig-
moid function is proposed to balance the exploration and exploitation of beluga whales.
The improvement is shown in Equation (16), and the curve is shown in Figure 3:

By =2/(1+¢100/T) (16)

As shown in Figure 3, the balancing factor By will decay nonlinearly. ¢ is the current
iteration, and T is the maximum iteration (set T = 100). This improvement can effectively
exert the effective global optimization ability of beluga whales and further improve the
exploitation capacity and optimization efficiency.

1.0

0.8

0.6

3
q

0.4

0.2

0.0

0 20 40 60 80 100
uT

Figure 3. Nonlinear balancing factor.

3.3.2. Population Optimization Strategy

Currently, the beluga whale algorithm lacks a step for comparing the latest generation
of search agents with the previous one. As a result, the selected individuals may not
necessarily have the maximum fitness value. Therefore, in this paper, we propose a
selection strategy based on a differential evolutionary algorithm to reselect the updated
beluga whales, as shown in Equation (17):

{Xim = fit(x) < fit(XT)

Fit(XTHY = fir(xT+) it(X; ) < fit(X;]

X'Tgl = X} T+ T 17
{fl'lf(X“l)l: fir(xry o SHXTT) 2 fit(X])

where fit (X;) is the fitness value of X;. By comparing the fitness values to select the optimal
position, we ensure that each updated beluga whale benefits the entire population. This
approach aims to increase the iterative period, thereby improving the optimization ability
of beluga whale populations.
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3.3.3. Improvement Whale Fall Mechanism

When the beluga whale has fallen and leaves the population, to ensure the same
number, the next generation of juvenile beluga whales in the population are included in
the optimization team. The specific formula is shown in Equation (18):

Xnew! = XI' x (0.9 x r; +0.2) (18)

The improved whale fall formula perturbs individual beluga whales in a manner
that prevents them from becoming trapped in local optima during the mid-to-late stages.
Additionally, it addresses the issue of poor population diversity in the later stages.

3.3.4. Elite Learning Strategy

After each iteration, a few beluga individuals with the lowest-ranked fitness values
in the population are selected for learning. The objective of this learning process is to
improve upon the optimal beluga leader within the population. The specific formula for
this improvement is shown in Equation (19):

XTI (index(Npop)) = XTI (index(1)) x (0.8 x r; +0.3)

XTI (index(Npop — 1)) = X[ (index(1)) x (0.8 x r, +0.3)

XTI (index(Npop —2)) = X[ (index(1)) x (0.8 x r3 4+ 0.3)
(index( 1)) x

j )
XTI (index(Npop — 3)) = X[ (index(1)) x (0.8 x r4 +0.3)

1

(19)

where Npop is the number of beluga whale populations, X(index(Npop)) is the position of
the beluga whale individual with the Npopth rank in terms of fitness value, and rq, 1, 13,
r4 are all random numbers between (0, 1). The positions of the above individuals after
iteration float randomly within the range of (0.8, 1.1). At the conclusion of each generation
iteration, the four individuals with the poorest positions undergo elite learning to enhance
the optimization performance of the population and address issues such as slow population
convergence and low average fitness.

3.4. IBWO

This section focuses on the optimization process of IBWO, and the pseudo-code of the
Algorithm 1 is shown below. The specific flow is shown in Figure 4.

Step 1: Initiate the parameterization of the IBWO. This involves the population size
n, the maximum number of iterations T}y, and the nonlinear balancing factor Bf. Initial
positions are randomly generated in the search space, and the fitness value is obtained
based on the objective function.

Step 2: Exploration phase. Based on the By, it is decided that each beluga whale
enters the exploration phase or the exploitation phase. If the beluga’s By > 0.5, the up-
date mechanism enters the exploration phase, and the beluga’s position is updated by
Equation (10).

Step 3: Exploitation phase. If B< 0.5, the beluga position is updated using Equation (11).
Then, the fitness value of the new position is calculated and ranked based on the population
optimization strategy of Equation (17). Then, the results are compared with those of the
previous generation to find the best result.

Step 4: Whale fall phase. Some beluga whales die and descend into the deep sea, and
the probability of whale fall is Wy. The location is updated by the improved whale fall
strategy of Equation (18).

Step 5: Elite learning phase. The post-foraging beluga population is updated again
using the elite learning strategy according to Equation (19), and elite learning is performed
on the N individual beluga whales with the worst position after the update.

Step 6: Termination condition check. If the current number of iterations is greater than
the maximum number of iterations, the IBWO algorithm stops. Otherwise, repeat step 2.
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Algorithm 1: IBWO algorithm pseudocode

Inputs: algorithm parameters (Nyop, Tinax)
Output: Optimal solution

1:

16:
17:
18:
19:
20:
21:

22:
23:
24:
25:
26:
27:
28:
29:

Initialize the population and evaluate the adaptation values to obtain the best solution
While T < Ty, Do
Calculate the whale fall probability Wy; Equation (16) Obtain the nonlinear balancing factor By based
on the Sigmoid function.
For X; Do
If By (i) > 0.5
/ / Exploration phase
Generate pj randomly from dimension (j=1, 2, ..., d)
Randomly select a beluga whale X,
Use Equation (10) to update the new position of the ith beluga whale
Else If By (i) < 0.5
/ / Exploitation phase
Updating the random jump strength C; and computing the Levy flight function
Use Equation (11) to update the new position of the ith beluga whale
End If
Check the boundary, calculate and rank the fitness values, compare and select with the previous
generation according to Equation (17)
End For
For X; Do
// Whale fall phase
If By (i) < Wy
Update the new position of the ith beluga whale using Equation (18)
Check the boundary, calculate and rank the fitness values, compare with the previous generation
according to Equation (17) and select the optimal.
End If
End For
Elite learning for beluga whales with the lowest fitness values according to Equation (19)
Check the boundary, calculate and rank the fitness values
Find the current optimal solution
T=T+1
End While
Output optimal solution

» Calculate Wyand Byaccording to Eq. (16) }:

Initialize Parameters n,7,,,

Population Initialization Exploration Phase Exploitation Phase
Calculate Fitness Eq. (10) Eq.(11)
v [ ]

Find the Optimal Position Based on -
Calculate Boundaries

Fitness Values .
Fitness Values

A4

= B;<05? =
Main L
ain Loop IY
Whale Fall Phase

v Eq. (14)
N I
|~ I<T. 9 ~ -

== Lmax? Improving Whale Fall Mechanism Eq. (18)

A *

Calculate Fitness Values

Compare and Select the Optimal Individual

v

Output Optimized Results Elite learning Eq. (19)

Calculate Boundaries, Fitness Values, Sort

v : 1

e I
B ) T=T+1 }4—

Find the current optimal solution

Figure 4. IBWO optimization flow chart.
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3.5. IOL Model

The traditional offline batch learning method can obtain a faster learning rate but can-
not dynamically update the regression model as new samples are added. The incremental
learning algorithm adds a new sample during each iteration, which can fully utilize the
results of the previous iteration and improve the prediction accuracy of the model.

The kernel function matrix Q = K (x, x;), Q is the square matrix of f x t, as shown in
Equation (20):

K(xl,x1) K(xz,xl) s K(xt,xl)
0, — K(xlz,xz) K(XZ:, xX2) - K(xt:, x2) 20)
K(xl,xt) K(XZ, xt) cee K(xt, xt)

Let H(t) = Q; + C~! I, then the above can be rewritten as Equation (21):

0 st b 0
¢ awlla]-10] e
At time f + 1, new samples (x;,1, y;+1) are added to the sample set. H(t + 1) can

be obtained from the KKT condition with the kernel function matrix Q1 as shown in
Equation (22):

K(xy,x) +C71 - K(xt, x1) K(xt41,x1)
H(t+1) = Q1 +C 1 = : : 5 (22)
K(xl,xt) K(Xt,Xt)+C71 K(-xt+1/xt)
K(xi,xe41) -+ K(gxga)  K(xga,xeg) +C71
The chunking matrix can be written as Equation (23):
H(t L(t+1
H(t+1) = (®) (t+1) (23)

L(t+1)" n(t+1)
where L(t + 1) = [K(x1, x¢41), - - ., K(xp, x20)]T 5 n(t + 1) = K(xp41, xe41) + C L

4. Online Icing Prediction Model Based on Robust STL-BTSF and IBWO-SVR
4.1. Forecasting Process

The foundational concept underpinning the modeling approach involves the projection
of meteorological datasets, encompassing variables such as ambient temperature, relative
humidity, and wind speed, into an expansive, high-dimensional feature space. This is
achieved through the establishment of a nonlinear mapping. Subsequently, linear regression
analyses are conducted on the icing phenomena within this intricately defined feature space.
Features are extracted from time series data to obtain feature vectors. Then, using kernel
functions, these feature vectors are mapped to a higher dimensional feature space, making
the data easier to fit with linear models. Finally, use the SVR model to train and predict
the mapped data. The procedural methodology of the icing prediction model, based on
the integration of Robust STL-BTSF and IBWO-SVR, is delineated in Figure 5. This figure
provides a visual representation of the sequential steps and analytical processes involved
in the model’s formulation.

Accordingly, the online icing prediction model can be divided into the following
six parts:

Step 1: Meteorological data preprocessing based on Robust STL-BTSF.

Step 2: Establish the LSSVR model. Choose the kernel function, the regularization
constant ¢ kernel function, and the hyperparameter g.

Step 3: Optimize the model parameters. A multi-strategy method is proposed to
improve the BWO and use the IBWO to find the optimal value mentioned in Step 2.
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Step 4: Construct an IOL online model. An incremental learning algorithm is used to
construct an online prediction model for ice cover.

Step 5: Establish and train the IBWO-LSSVR online prediction model. The processed
data is fed into the model, building the icing prediction model of transmission lines.

Step 6: Test and model evaluation. Test the performance and choose evaluation indexes
to evaluate the model and verify the effectiveness of the model.

! |
I bus FFT I Input
I Tl.io st STI,‘ Frequency | meteorological information
ime domain o e ] e e e e e e — —
| decomposition domain | ¢ r 1
decomposition | Initialize Parameters
| v L7 | Data Preprocessing 1, T I
| Robust STL-BTSF | 7 |
Encoder A Encoder B |
| I ¢ I Initialize Population Parameters |
| ¥ Build SVR Model | Calculate Fitness |
| Fusion : kernel function, c, g | N M |
v i | main loop
| o >
Output I IBWO |
| | Optimize LSSVR Parameters Determine Stage I
_________ ¢ I Exploration /Exploitation |
| T=T+1 v |
»| IBWO-LSSVR Offline Part I + Calculate Boundaries
r— Efﬂael_ - C;lir; i | Fitness Values I
= : | v | ¥ |
HISt9r.lcal 011111{16 | | v Determine Stage I
| Training Real-time > IOL Online Part Output Whale fall
Sample Data I -|- cand ¥ I
v v | ¢ | g Calculate fitness value
I LSSVR Increm;ntal Model trainin: Compare and select the I
| Model Learning | ; g | optimal individual |
Initialization Algorithm | Icing Prediction I ¥ |
I I ¢ | Local Optimal Solution I
| Y | IBWO-LSSVR Online - Y Y S ——Y——————__
I Prediction Model
| v v N | ¢
| Model Tsr:r‘;‘;leg | Evaluating Indicator
Training
I Update |
I End

Figure 5. The online prediction model process is based on Robust STL—BTSF & IBWO—LSSVR.

4.2. Evaluation Index

To verify the superiority of the proposed model, four evaluation indexes, namely the
Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE),
and Mean Absolute Percentage Error (MAPE), are used for comparative analysis. The
formula for each evaluation index is shown in Equations (24)-(27):

1,
MSE =~} (J; — i) (24)
i=1

(25)

18
MAE = -} | = yil (26)
i=1
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A

MAPE = =Y |14

Sl Yi
where MSE denotes a measure of the degree of difference between the estimated and the
estimated quantity; RMSE is the square root of the ratio of the square of the deviation of
the predicted value from the true value to the ratio of the number of observations, n; MAE
denotes the mean of the absolute value of the absolute deviation of the values of the various
measurements; and MAPE is the difference between the predicted value and the true value

divided by the true value. The smaller the value of the above assessment indicators, the
better the model is.

171

(27)

5. Example Analysis
5.1. Data Sources

Icing data of transmission lines were collected, and 150 sets of icing thicknesses along
with related meteorological data were recorded over a period of 2 months during recent
winters, as depicted in Figure 6. The prediction analysis and calculations for icing on the
lines were carried out using the MATLAB R2018a platform. The processing unit is an Intel
Xeon Gold 6136 x2, while the display computer is equipped with NVIDIA TITAN Xp x 4
graphics cards. Memory consists of a Samsung server DDR4 16G x 12.

100F T T T T T T T

0 20 40 60 80 100 120 140

Ambient temperature (°C)

—
o
T

Relative humidity (/%)
o
(=]

0 20 40 60 80 100 120 140

Time series (/f) Time series (/f)
(a) Ambient Temperature (b) Relative Humidity
18— _
g
3 10 2 15p
2 : Z 1o
= 4 < 5F
= AL A gof
0 20 40 60 8 100 120 140 0 20 40 60 80 100 120 140
Time series (/f) Time series (/f)
(c) Wind Speed (d) Ice Thickness

Figure 6. Meteorological and historical data.

To validate the model proposed in this paper, the sequence in Figure 6 is divided into
a training set and a testing set. For the offline model, the data is split into training and

testing sets using a 7:3 ratio. For the online model, the training and testing sets are allocated
in a 9:1 ratio.

5.2. Optimization Performance Tests of IBWO

To compare the optimization performance of meta-heuristic algorithms, we use CEC
benchmarking functions for comparison. In this paper, three kinds of single-peak, three
kinds of multi-peak, and three kinds of fixed-dimensional multi-peak benchmark test
functions are selected to test the performance and make a comparative analysis of PSO,
Grey Wolf Optimization Algorithm (GWO), Improved GWO (IGWO), BWO, and the
proposed IBWO. The parameter set is shown in Table 2, the benchmark test functions
are shown in Table 3, the curve of results is shown in Figures 7 and 8, respectively; and

the results of the function simulation test and the Wilcoxon rank-sum test are shown in
Tables 4 and 5, respectively.
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Table 2. Parameters of algorithms.

Algorithms Parameters Values
. Population size 30
All Algorithms Toms 500
PSO Vinax 6
C1,C 2
GWO and IGWO a [0, 2]
fe 2
SOA A [0, 2]
BWO and IBWO Wr [0.05,0.1]
c [0.1, 100]
Search Scope
8 [0.01, 1000]

Table 3. Benchmark function.

Benchmark Function Dim Rang fmin
F(x)= Y 2 30 [~100, 100] 0
1
i=1
—1
B(x) =T [100(xi1 — )" + (i —1)? 30 [=30,30] 0
i=1
F(x) = i ix} + random|0,1) 30 [—1.28,1.28] 0
i=1
E =Y —xsin(y/]x]) 30 [—500, 500] —418.98*Dim™
i=1
= ¥ [22 - 10cos(2mx;) + 10] 30 [-512,512] 0
i=1
Fs = —20exp(—0.2, /1 i x?) —exp(L i cos(27mx;)) +20+e 30 [-32,32] 0
i=1 i=1
1 4 1
25 2 [—65, 65] 1

j=1 f+_21 (xi—a;)®
i

_u 5 (B +bix) | 4 [-5,5] 0.1484
Fs(x) = 1§1|: i~ b2 +by X3+,
2
Fy(x) = {xz—%x%+%x1—6} +10{1—8in}cosx1+10 2 [=5,5] 03

As illustrated in Table 4, it can be clearly seen that IBWO achieves the optimal value of
the minimum among the nine test functions of F; to Fg in comparison with other algorithms.
Regarding the average and STD, it can be observed that IBWO consistently identifies the
minimum value of the function, demonstrating the stable optimization search performance
of the proposed benchmark functions convincingly.

Meanwhile, as shown in Figure 8 and Table 4, the IBWO can not only find the op-
timal fitness value but also exhibits a faster convergence speed than the remaining four
algorithms. Specifically, the convergence curves, such as Fy, F3, F4, etc., demonstrate the
efficiency and effectiveness of the two improvement methods of nonlinear balancing factor
and elite learning strategy. Moreover, the optimal value is already found at the early
stage of iterations in the results of Fy, F5, F4, etc. The convergence speed is fast, while
the optimization accuracy is high. Combined with the above analysis, it is not difficult to
conclude that compared with PSO, GWO, IGWO, and BWO, the IBWO algorithm proposed
in this paper has superior optimization performance and high stability.

In addition, Table 4 presents the Wilcoxon rank-sum test results for the nine types
of tests mentioned above, aimed at assessing whether IBWO is significantly different
from the other four algorithms. The p-value is calculated for this purpose. Under the
standard significance level of p = 0.05, if it is greater than 0.05, there is no significant
difference between the above algorithms and IBWO; otherwise, the difference with IBWO
is significant. According to Table 5, the p-values calculated for the four algorithms are far
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less than 0.05, indicating that the optimization performance of IBWO is significant in the
benchmark test function.

Table 4. Simulation results of the benchmark test function.

Evaluation

Function . PSO GWO IGWO BWO IBWO
Indicators
Best 71.341 2.69 x 1072 2.51 x 107300 7.21 x 107271 0
F, Aver 303.0467 9.14 x 10728 3.59 x 10~2%2 1.78 x 107238 0
STD 149.2212 1.02 x 10727 0 0 0
Best 1022.374 254 x 10 26.1 28.6 2.73 x 1077
F, Aver 11576.77 2.69 x 10 27.1 28.7 6.441 x 1075
STD 6748.933 6.33 x 1071 7.03 x 1071 3.01 x 1072 4216 x 10710
Best 0.03 3.54 x 1074 7.01 x 10°° 2.62 x 1073 1.03 x 10~¢
F3 Aver 1.723 1.68 x 1073 1.26 x 10~* 1.42 x 1074 5.76 x 10>
STD 4.737 8.61e x 1074 1.13 x 107* 1.10 x 10~* 429 x 1073
Best —8858.05 —7.59 x 10° —8.40 x 10° —1.26 x 10* —1.26 x 10*
Fy Aver —7312.45 —6.06 x 10° —4.01 x 103 —1.26 x 10* —1.26 x 10*
STD 1103.469 8.85 x 102 1.66 x 10° 521 x 10~* 1.73 x 1077
Best 138.748 568 x 10714 0 0 0
Fs Aver 186.6874 3.654 0 0 0
STD 32.90669 4.773 0 0 0
Best 1.796 6.79 x 10714 444 x 10716 4.44 x 10716 444 x 10716
Fs Aver 5.545 1.03 x 10713 444 x 10716 444 x 10716 444 x 10716
STD 1.224 1.68 x 10714 0 0 0
Best 9.98 x 107! 9.98 x 107! 9.98 x 107! 9.98 x 107! 9.98 x 107!
F; Aver 9.98 x 1071 495 3.35 9.98 x 1071 9.98 x 107!
STD 1.84 x 10~10 4.25 3.49 1.62 x 1073 1.81 x 10~10
Best 0.001 3.94 x 10* 488 x 1074 3.18 x 10~* 3.04 x 107
Fg Aver 0.011695 1.04 x 1072 534 x 107 446 x 1074 347 x 10°*
STD 1.54 x 1072 1.41 x 1072 6.50 x 107° 1.81 x 107* 1.70 x 1075
Best 0.398 3.98 x 1071 398 x 107! 3.98 x 1071 3.98 x 107!
Fo Aver 0.398 3.98 x 107! 398 x 107! 417 x 1071 401 x 107!
STD 496 x 10 1.89 x 107° 5.82 x 108 3.63 x 1072 3.55 x 1073

Table 5. Wilcoxon rank-sum test results.

p-Value PSO GWO IGWO BWO
Fy 1.2118 x 1012 1.2118 x 1012 1.2118 x 1012 1.2118 x 1012
F; 1.2118 x 10712 1.2118 x 10712 1.2118 x 10712 1.2118 x 10712
F3 1.2118 x 10712 1.2118 x 10712 1.2118 x 10712 1.2118 x 10712
Fy 3.0199 x 1071 3.0199 x 10~ 3.0199 x 10~1 45043 x 1071
Fs 1.2118 x 1012 1.1575 x 10712 NaN NaN
Fe 1.2118 x 10~12 1.083 x 10712 NaN NaN
F7 0.037782 0.0083146 0.29047 0.019876
Fg 3.0199 x 10712 0.34029 0.06735 0.28378
Fo 5.4941 x 10~ 3.3384 x 10~ 3.0199 x 10~ 0.25805

Fi F2 F3
10* x10'

200
100 2
0
0 205 0
1 5

(a) F1 3D diagram (b) F2 3D diagram (c) F3 3D diagram

Figure 7. Cont.
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5.3. Analysis of Icing Prediction Method Result
5.3.1. Example 1: Data Preprocessing Method

To verify the effectiveness of the data preprocessing method, a comparison experi-
mental group is set up, 20 sets of continuous winter meteorological data are input, and
Robust STL-BTSF and BTSF are tested for alignment. The distance distribution results are
shown in Figure 9. In addition, after verifying the superiority of IBWO above, the results of
icing prediction obtained by two methods based on the IBWO-LSSVR model are shown in
Figure 10, respectively. The comparison of data preprocessing methods is shown in Table 5.

W BTSF
Robust STL-BTSF —

—_ =
S N
o
o O

800

T

600F

" -m:whﬁ]]l LU

O 1 L 1 1 L L 1 1 L 1
0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Distance

Distance Contribution Number

Figure 9. Distance distribution number.

24
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Samples

Figure 10. Comparison of data preprocessing methods.

As shown in Figure 9, the alignment results of the two methods are displayed. Com-
pared with BTSF, Robust STL-BTSF has the highest average value of the orthogonal feature
distance, which preserves the maximum information of the data, indicating that Robust
STL-BTSF achieves the best alignment of the data features. Analyzing Figure 10 and
Table 6, Robust STL-BTSF improves by 20.5% in running time. In terms of MSE, there are
problems such as insufficient feature quantity extraction and low pre-prediction accuracy
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under BTSF processing. In summary, after verifying the superiority of Robust STL-BTSF
in the processing of meteorological data with small samples and short time series, all the
following sections use this method to analyze and preprocess meteorological data.

Table 6. Comparison of data preprocessing methods.

Data Preprocessing Methods Running Time/s MSE
BTSF 13.9989 1.5836
Robust STL-BTSF 11.1227 1.4206

5.3.2. Example 2: Model Experiment

To verify the superiority of the prediction model, Robust STL-BTSF and IBWO-LSSVR
are simulated and compared with a variety of models, and the iterative adaptation curves
are shown in Figure 11.

0.080 F —&— Robust STL-BTSF & IBWO-LSSVR
I Robust STL-BTSF & PSO-LSSVR
0.075 k- —&— Robust STL-BTSF&IGWO-LSSVR
I —w— Robust STL-BTSF& BWO-LSSVR
0.070 —&— Robust STL-BTSF& GWO-LSSVR
2 0065}
= 0.060 .
it |
£ 0.055
SIS i
0.050
0.045 |
0.040 |
0 20 40 60 80 100
Iterations

Figure 11. Fitness values.

Analysis of Figure 11 reveals that the proposed model has a strong optimization
ability in the pre-iteration period, with lower adaptation values compared to the other
four models at the same number of iterations. Furthermore, the optimization ability of
this model significantly improves during the middle of the iteration process. A clear
superiority can be observed compared to the other models, reaching optimum performance
at 30 iterations. In contrast, the other models have not yet achieved their best fitness values
at this point.

5.3.3. Example 3: Simulation Analysis of Online Icing Prediction of Transmission Lines

Model testing and evaluation were carried out, and the Robust STL-BTSF and
IBWO-LSSVR model was used for icing prediction and model evaluation. The comparison
of evaluation index results is shown in Table 7. The residual plot is shown in Figure 12, and
the comparison of prediction results is shown in Figure 13.
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Table 7. Comparison table of evaluation indicators.
Evaluation Indicators
Model
MSE/mm RMSE/mm MAE/mm MAPE/mm
Robust STL-BTSF o
and PSO-LSSVR 8.0351 2.8346 2.3285 0.2223%
Robust STL-BTSF o
and GWO_LSSVR 6.6646 2.5816 2.1156 0.1816%
Robust STL-BTSF o
and IGWO_LSSVR 6.0588 2.4615 1.9509 0.1681%
Robust STL-BTSF o
and BWO-LSSVR 6.1377 24774 1.9793 0.1707%
Robust STL-BTSE 5.4632 2.3373 1.7807 0.1475%

and IBWO-LSSVR

8
—=— Robust STL-BTSF&IBWO-LSSVR
6l Robust STL-BTSF&PSO-LSSVR
—A— Robust STL-BTSF&IGWO-LSSVR
4+ —v— Robust STL-BTSF&BWO-LSSVR
—&— Robust STL-BTSF&GWO-LSSVR
~ 2
S
S of
&
2k
4+
6F
-8 1 1 1 1 1 1
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Samples

Figure 12. Residual map of test results.
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Figure 13. Comparison of test results.

Analyzing Table 7, Robust STL-BTSF and IBWO-LSSVR have the lowest error values
of the four evaluation indexes, which validates the prediction accuracy of the model.
Furthermore, through Figures 12 and 13, compared with other methods, the residual
values of the proposed are more evenly distributed on both sides of the central axis, which
proves that its prediction effect is better than that of other methods. In addition, the model
proposed in this paper has the highest accuracy on the prediction curves with the real ice
cover thickness, which further verifies the superiority of the method proposed in this paper.
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6. Conclusions

To improve the speed and accuracy of the online icing prediction model, and to guar-
antee the safety and reliability of power supply to the power grid, this paper proposes an
online icing prediction method for transmission lines, drawing the following conclusions:

(1) Robust STL-BTSF and IBWO-LSSVR deals with the time—frequency domain de-
composition and fusion of small-sample short time-series meteorological data, which can
effectively retain effective information and improve the alignment of the feature volume.

(2) Improve BWO by introducing a multi-strategy improvement method with a
Sigmoid-based nonlinear balancing factor, a population preference strategy, an improved
whale fall strategy, and an elite learning strategy. The superiority of IBWO in terms of
convergence speed and optimization-seeking accuracy is verified through nine typical
test functions.

(3) Using IBWO to optimize LSSVR and introducing IOL, an online icing prediction
model is constructed, and online updating of the regression function and prediction model
is realized. The prediction speed and accuracy are greatly improved.

In the future, we will focus on areas with longer ice cover cycles within the year.
Furthermore, research will be conducted on prediction methods for transmission line
icing scenarios with long-term cycles and large-scale data to further improve prediction
accuracy. In addition, we plan to conduct research using the physical model of the icing
mechanism and construct a complete, reasonable, and efficient ice prediction and evaluation
index model.
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