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Abstract: The safe and cost-effective design of wind turbine towers is a critical and challenging aspect
of the future development of the wind energy sector. This process should consider the continuous
growth of towers in height and blades in length. Among potential failure modes of tubular steel
towers, shell local buckling due to static axial compressive stresses from the rotor, blades, and tower
weight, as well as dynamic flexural compressive stresses from wind actions on the rotating blades
and the tower itself, are dominant as thickness is optimized to reduce weight. As man door and
ventilation openings are necessary for the towers’ operation, the local weakening of the tower shell in
those areas leads to increased buckling danger. This is compensated for by tower manufacturers by
the provision of stiffening frames around the openings. However, the cold-forming and welding of
these frames are among the most time-consuming aspects of tower fabrication. Working towards the
optimization of this design aspect, the buckling response of tubular steel towers near such openings
is investigated by means of nonlinear finite element analysis, accounting for geometrical and material
nonlinearity and imperfections (GMNIA), and also considering several wind directions with respect
to the openings. The alternatives of stiffened and unstiffened openings are investigated, revealing that
a thicker shell section around the opening may be sufficient to restore lost stiffness and strength, while
the stiffener frame may also be eliminated, offering substantial benefits in terms of manufacturing
effort, time and cost.

Keywords: wind turbine towers; buckling; finite elements; nonlinear analysis; shell cut-out;
man door opening; ventilation opening

1. Introduction

In order to achieve continuously increasing percentages of energy production from
renewable sources [1–3] to meet the ambitious targets set by countries and international
organizations, the design of towers is receiving great attention as they are an inherent part
of wind turbines.

The most common type of wind turbine tower used nowadays for both on-shore
and off-shore applications is the free-standing tubular steel tower. Such towers consist of
individual tubular sections, each comprising one or more cylindrical cans, fabricated by
the roller bending of flat plates and subsequent longitudinal welding along their common
meridional edges. Adjacent cans are then held in place next to each other and welded
together along their common circumferential edges. Multiple cans are thus joined to
produce a tubular section, with such length as to fit in a track for transportation from the
factory to the wind farm site. In the factory, tubular sections are fitted at their ends with
ring flanges featuring predrilled bolt holes. During erection on the wind farm site, the
continuity between adjacent tubular sections is ensured by means of pretensioned bolted
connections between their ring flanges.
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The bottom part of the tower comprises a manhole opening to accommodate access
to the interior of the tower and to the staircase and elevator leading to the tower top,
allowing for the maintenance of electrical and mechanical parts (Figure 1). Moreover, in
modern towers with heights exceeding 100 m, ventilation openings are also inserted at
different heights to ensure healthy conditions for personnel working in the tower (Figure 2).
Openings of both types weaken the tower shell, inducing stiffness reduction, causing stress
concentrations, and increasing danger of local buckling. This is addressed by different
measures, most commonly by welding a peripheral frame around the opening, as seen in
the photos of Figures 1 and 2. However, the cold-forming and welding of stiffening frames
around the openings are among the most time-consuming and costly aspects of tower
fabrication. The fabrication of frames is commonly subcontracted by tower manufacturers,
and then substantial effort and time are required for welding the frames onto the tower,
as well as for carrying out necessary non-destructive testing. Moreover, these welded
connections are susceptible to fatigue due to cycles of wind-induced stress concentrations.
For these reasons, tower designers are exploring alternative solutions without stiffening
frames, and research efforts are ongoing to evaluate such alternatives, both numerically
and experimentally.
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Figure 1. Photos of typical man door openings: (a) during fabrication (the cross-beams of the
peripheral frame are removed after fabrication); (b) finished (courtesy of Ateş Wind Power).
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Figure 2. Photos of typical ventilation openings: (a) during fabrication; (b) finished (courtesy of Ateş
Wind Power).

The main structural actions on wind turbine towers comprise axial compression due
to the weight of the tower and the weights of the rotor and blades imposed at its top, as
well as flexure due to the interaction with wind, causing pressure on the tower and on the
rotating blades. The necessary structural verifications include avoiding resonance between
the tower and the rotating blades, preventing the local buckling of the tower shell, and
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performing fatigue checks at the welded and bolted connections [4]. The thickness of the
tower cans is mostly dictated by buckling checks.

The structural design of wind turbine towers is commonly carried out by the engineer-
ing departments of wind turbine companies according to international guidelines [5–8].
In Europe, the design of wind turbine towers against buckling is performed according
to Parts 1–6 of Eurocode 3 [9,10]. Buckling checks are performed at the section level, tak-
ing the dynamic nature of the tower’s response to wind indirectly into account. Namely,
action effects are obtained from specialized software, such as [11], where the dynamic
aeroelastic interaction between tower, blades, and wind, as well as the control system of
the turbine, is taken into consideration. The wind field is modeled as a stochastic process
and 10 min wind time histories are artificially generated. These are used as inputs for
computing the time histories of action effects over the tower height [12]. Such analyses are
repeated for a large number of wind time histories corresponding to the entire spectrum
of mean wind velocities within the operating range of the turbine, so that the results are
statistically significant.

In these aeroelastic, dynamic simulations, the tower is modeled simplistically, with
a relatively coarse beam element mesh. Such a model is sufficient for providing time
histories of action effects over the tower height but is not capable of performing local
buckling verifications. On the other hand, advanced finite element software, which is
capable of nonlinear analyses of shell element models of the tower to detect local buckling
(for example [13]), cannot take into account aeroelastic interaction and control. For that
reason, despite the dynamic nature of the phenomenon, buckling verifications of wind
turbine towers are performed against equivalent static action effects, which are computed
at the different sections of a tower’s height as the maximum values of all corresponding
time histories obtained from the aeroelastic simulations. In most cases this equivalent
static verification is performed analytically, on the basis of code provisions [9,10]. In areas
of discontinuities, such as the considered openings, analytical formulas are not available
in codes or in the literature, and nonlinear finite element analyses are necessary (for
example [14]). Considering the very dense finite element mesh that is needed for reliable
shell buckling prediction, these analyses are static. Some dynamic analyses have been
attempted for research purposes (for example [15]), but they are less reliable due to the
necessity for coarser mesh and are still prohibitive from a computational effort point of
view for use in everyday engineering design applications.

Due to its numerous applications in many engineering fields, shell buckling has been
studied extensively for many years. The buckling of cylindrical shells was studied experimen-
tally for the case of axial compression in elastic [16–18] and inelastic regions [19–21], exhibiting
significant deviations from analytical solutions, due to the strong influence of imperfections on
the buckling response of thin shells. Buckling tests of cylinders in bending were also performed
by several researchers [22–25], yielding similar conclusions.

Wind turbine towers differ from most cylindrical and conical shells that have been
studied in the literature in one important aspect, namely, they exhibit a stepwise variation
in shell thickness owing to their fabrication process. As each can is fabricated from a
different plate, the shell thickness is different from one can to the next, the aim being to
optimize the overall tower weight. The lack of analytical solutions for the buckling of shells
with stepwise varying thickness is treated in Part 1–6 of Eurocode 3 [9,10] by transforming
the actual tower geometry into approximately equivalent sections of uniform thickness
between the tower’s ring flanges. Moreover, the tower is subjected to combined axial and
flexural actions, with both contributing significantly to the resulting stress state. Torsion
is also not negligible, particularly towards the top of the tower, producing shear stresses
that must be accounted for in buckling verifications. In addition, the shell thickness is
relatively high towards the tower’s base and smaller near the top, resulting in varying local
slenderness relative to height.

Due to the above reasons, a numerical treatment of the tower’s buckling response is
pertinent. The buckling behavior of wind turbine towers was investigated by some of the
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authors in [26,27], placing emphasis on the numerical modeling of the ring flanges away from
the openings, while a very comprehensive investigation was published recently [28,29].

The research papers reported in [30–35] are typical experimental studies of axially
compressed shells with openings, while for shells with openings under bending exper-
imental work has been carried out in [36,37]. It is noted, however, that these tests refer
to geometries and slenderness ranges that are different from those near the base of wind
turbine towers, where man door and ventilation openings are commonly located. The
effect of stiffened cutouts on the buckling response of cylindrical steel shells with geometric
characteristics, which are typical of modern wind turbine towers, has been studied by
a group of the primary author experimentally and numerically [38,39], focusing on the
comparison between alternative stiffener configurations. The issue has also been addressed
in the last decade by other investigators [40,41].

Recently, the problem has been revisited, focusing on addressing the desire of tower
fabricators to eliminate the stiffening frame in order to improve the speed, cost and non-
destructive testing requirements of the manufacturing process. Hence, unstiffened openings
are investigated, where the stiffness and strength reduction caused by the opening are
addressed by increased plate thickness. Some initial efforts to compare stiffened and
unstiffened man door openings were attempted in [42], while a preliminary version of the
present paper, also involving ventilation openings, was presented by the authors in [43].

In the present paper, the buckling response of tubular wind turbine towers under
realistic wind loads is systematically investigated, with a focus on the behavior near the
man door and ventilation openings. Serving the research need described above, particular
attention is directed towards avoiding the stiffening frame and instead using thicker plates
around the openings. This may lead to heavier solutions; however, it helps to reduce
substantially the necessary cutting, forming, and welding work during tower fabrication.
The effect of plate thickness is discussed along these lines. The investigation is carried out
by employing nonlinear finite element analyses, accounting for geometrical and material
nonlinearity and imperfections (GMNIA) [44,45].

2. Materials and Methods

For the purposes of the present investigation, a wind turbine is considered with a
tubular tower of approximately 120 m in height and a diameter of 4.3 m over the lower
sections containing the openings. Typical man door and ventilation opening dimensions,
as well as loads acting on the tower, are considered.

2.1. Geometry

The width and height of the considered man door and ventilation openings are
summarized in Table 1. Moreover, the detailed geometry of the openings is illustrated in
Figure 3 (man door opening) and Figure 4 (ventilation opening). The dimensions, plate
thicknesses, and stiffening schemes shown in these figures are adopted from actual tower
designs. It is noted that man door openings are much larger than ventilation openings;
accordingly, the disruption of stress flow around the man door openings is expected to be
much more intense.

Table 1. Dimensions of examined openings.

Man Door Ventilation

Width [mm] 1000 500

Height [mm] 3050 1110
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2.2. Modeling Details

Different finite element models were developed using the general-purpose finite
element software ADINA [17]. These comprised different configurations of the tower with
stiffened and unstiffened man door and ventilation openings. Shell finite elements were
used to model the towers, while the ring flanges and the stiffening frames around the
opening could be modeled with either shell elements or beam elements representing the
sections of both flanges assumed to act together, thus taking into account the geometrical
eccentricity between the flange axis and shell mid-surface by means of rigid elements,
adopting the findings regarding numerical modeling reported in [27]. In the present paper,
the modeling of flanges and stiffeners with shells was adopted for increased accuracy.
As the objective was to assess the buckling potential of the tower in the areas of the
aforementioned openings, and in order to reduce the computational demands, instead of
modeling the entire tower, only sufficiently long parts of the tower around the examined
openings were included in the models.

Appropriate boundary conditions are applied at the models’ ends, which are properly
selected to correspond to ring flange positions. Namely, the lower shell part is fixed at its
base, while the upper part is free at its top, corresponding to a ring flange connection. As
the ring flange stiffness is sufficient to guarantee the undeformability of the top section in
its plane, all shell nodes at the top of the model are linked via a rigid constraint to a master
node at the geometric center of the cross-section to facilitate load application.
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The mesh density was decided following a sensitivity analysis, with gradual mesh
refinement until further refinement resulted in no essential differences with respect to
initial stiffness, ultimate load, and overall behavior. The different finite element models
comprised a total number of approximately 20,000 shell elements of varying size, ranging
from 40 to 90 mm.

2.3. Loading Details

As mentioned above, action effects (axial and shear forces, and bending and torsional
moments) at specified cross-sections over the tower height are assessed by means of
dynamic aeroelastic analyses performed with specialized software, such as [11]. The tower
is modelled with beam elements and the wind turbine system is subjected to randomly
generated wind velocity time histories, commonly 100 s in duration. A typical bending
moment time history at a cross-section near the tower base is illustrated in Figure 5. The
maximum absolute value of each action effect is extracted from each time history along
with the simultaneous values of the other action effects.
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Similar analyses are performed for several artificially generated wind time histories
corresponding to the entire spectrum of mean wind velocities within the operating range of
the turbine. The maximum values of all action effects are recorded from all these analyses
and are used as equivalent static actions for the buckling verification of the tower at
regularly spaced cross-sections over its height. Diagrams of maximum absolute values of
axial force, shear force, and bending moment at 10 m intervals are shown in Figure 6.
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For the purposes of the present investigation, it was assumed that the examined
opening is near the tower base and that the vertical distance between the tower top and the
flange above the man door opening is 110 m. As mentioned above, all shell nodes at the
top of the model were linked via a rigid constraint to a master node at the geometric center
of the cross-section, where loads were applied in a quasi-static fashion. A pushover-type
nonlinear static analysis was carried out, as described in the next section. Three action
effects were applied, namely, a vertical force representing the weight of the rotor, nacelle,
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blades and upper tower sections, a horizontal force representing the wind action on the
rotor, and a bending moment, causing flexure about the same axis as the flexure due to
the horizontal force. The ratio of vertical to horizontal force was considered equal to
6.5 based on available data taken from actual towers and in accordance with Figure 6. The
bending moment was taken to be equal to the horizontal force multiplied by the vertical
distance of 110 m, which was also in accordance with Figure 6. The amplitude of loading
was chosen to correspond to a buckling strength safety factor of approximately 1.5 in the
tower without any opening.

The other three action effects that are present in actual towers, namely, horizontal
force and bending moment in the crosswind direction, and torsional moment due to
eccentricities, are much smaller and have, therefore, not been taken into account in this
comparative investigation.

2.4. Analysis Details

The design methodology presented in [44] is employed. This is based on nonlinear
finite element analyses and uses general-purpose finite element software ADINA [17].
Linearized buckling analyses (LBA) are initially carried out in order to obtain the upper
limits of strength and, mainly, buckling modes, which are then used as shapes of initial
imperfections for the subsequent nonlinear analyses [46].

Next, nonlinear finite analysis, considering geometrical and material nonlinearity
and initial imperfections (GMNIA), is performed. The results are presented in terms of
equilibrium paths, in which the load amplification factor is plotted on the vertical axis and
a characteristic deformation quantity is plotted on the horizontal axis. The initial stiffness
and ultimate strength in the equilibrium path are representative quantities of the structural
response and are used to compare the considered alternative stiffening approaches of the
tower shell around the opening.

The so-called collapse method [47], which is an arc-length type of solution algorithm,
is adopted to obtain the non-linear equilibrium path of the model, enabling us to also trace
the descending branch. The “angle” between the ascending and descending branch of the
equilibrium path, and the associated area between the equilibrium path and the horizontal
axis, provides insight into the levels of ductility offered by each stiffening solution.

Viewing deformations and stress distributions at characteristic points along the equi-
librium path, particularly on its descending branch, helps to identify the weakest areas of
the structural configuration, where buckles and stress concentrations are encountered. This
is in turn useful for proposing targeted strengthening measures.

3. Results

Different arrangements of the presented openings are considered, comprising sections
with a single man door opening, two ventilation openings at the same level, as well
as a man door opening and a ventilation opening at the same level. The results are
presented next.

3.1. Section with Man Door Opening

A section with a man door opening with the geometry shown in Figure 3 was modeled
and analyzed. Four alternative arrangements of strengthening around the man door
opening were considered, denoted as cases 3 to 6, and were compared to case 1, which was
the section without any opening, and to case 2, which was the section with an opening
without any strengthening. The four strengthening cases are described next:

• Case 3: with a 65 mm thick door plate around the man door opening and with a
stiffening frame like that illustrated in Figure 3;

• Case 4: without thickening of the door plate around the man door opening but with a
stiffening frame, the same as the one illustrated in Figure 3;

• Case 5: with 65 mm thick door plate around the man door opening, but without a
stiffening frame;
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• Case 6: with 75 mm thick door plate around the man door opening, but without a
stiffening frame.

The more onerous loading direction, causing maximum compression on the side with
the man door opening, was considered. GMNI analyses of the six cases were performed
and the resulting equilibrium paths are presented in Figure 7, where the load multiplier λ
of the design loads is plotted on the vertical axis, and the lateral displacement at the top of
the modelled tower section is plotted on the horizontal axis.
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Figure 7. Equilibrium paths for cases 1 to 6 of section with man door opening.

When comparing cases 1 and 2, it is obvious that the man door opening causes
significant stiffness and strength reduction. From the deformations at failure of these
two cases, shown in Figure 8, it is observed that in case 2 local buckling takes place much
lower, occurring at the level of the opening, where sectional weakening results in stress
concentrations. It is hence clear that the stiffening of the section around the opening is
necessary to recover the lost strength and stiffness.

The basic stiffening design of case 3, comprising both thickening of the door plate and
a peripheral stiffening frame, is fully effective in recovering from the loss of stiffness and
strength, exhibiting an equilibrium path that is almost identical to that in case 1. Moreover,
from the deformation in Figure 8, it is observed that the buckle in case 3 occurs at almost
the same location as in case 1. In case 4, with a stiffener frame but without a thicker door
plate, the stiffness reduction is initiated at lower loads, but a slightly higher strength is
achieved, and the degradation beyond the ultimate load is less sharp, indicating higher
ductility. Buckling occurs at the top of the man door opening and seems to be arrested by
the frame.

The response of case 5, with a 65 mm thick door plate but without stiffener frame,
is similar to that in case 4, but the stiffness reduction starts at a lower load level, and the
ultimate strength is also lower. Buckling occurs near the mid-height of the opening. As
mentioned above, the elimination of the stiffener frame is desirable from the fabrication
point of view as there is no need for the separate procurement of stiffener frames and
because the associated welding effort is much less. Thus, the further thickening of the door
plate is investigated in case 6, where, for a 75 mm thick door plate, buckling occurs also
near the mid-height of the opening, but at higher load levels due to the thickening, so that
the loss in strength is almost fully compensated.
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Figure 8. Deformation at failure for cases 1 to 6 of section with man door opening.

Regarding the initial stiffness, which is important in terms of the tower resonance
verification, it is observed that all stiffening cases from 3 to 6 exhibit almost the same
stiffness as case 1 for load levels up to approximately λ = 1; hence, they are equally effective
from that point of view.

The von Mises stress distributions at failure for cases 3, 4 and 5 are presented in
Figure 9. Stress concentrations, denoted with a red color, are encountered at the same
locations where the buckles and wrinkles occur in the deformed shapes of Figure 8. If both
a thick door plate and peripheral stiffener are used, failure occurs well above the opening.
If only peripheral stiffener is employed, failure is observed near the top of the opening. If
only thick door plate is adopted, failure is in the middle-upper part of the opening. In both
cases 4 and 5, the high-stress area is more extended. The behavior in case 6 is qualitatively
similar to that in case 5.
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3.2. Section with Two Ventilation Openings

Next, the response of a section with two ventilation openings, which had the geometry
illustrated in Figure 4 and were arranged at the two opposite ends of a section diameter,
was investigated. Typical wind turbine tower designs feature stiffening frames around
such ventilation openings. Numerical modeling and GMNI analyses have been conducted,
subjecting the section to the same loads as used for the man door openings and applying
them at the top. Considering the symmetry of this tower section, three different angles of
loading application within a quarter-circle were examined, as shown in Figure 10.
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Figure 10. Considered wind directions.

In Figure 11, load–displacement curves for the three considered wind directions are
presented. It is observed that the ultimate load is almost identical for all wind angles.
However, significantly less ductility is achieved for the 45◦ and 90◦ angles compared to the
0◦ angle. This is attributed to the fact that the two ventilation openings for the 0◦ angle are
on the neutral axis. The 90◦ angle is selected for use in further investigations.
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To assess the benefit of using stiffening frames around the ventilation openings,
the tower section’s response with and without such frames is compared. The obtained
load–displacement curves are shown in Figure 12, and the corresponding deformed shapes
and von Mises stress distributions at failure are seen in Figure 13. Failure takes place
due to local buckling near the top of the tower section, regardless of the presence of a
frame. Material yielding is concentrated at the buckles on the compression side, while on
the tension side the stress distribution is smoother and high stresses extend over a larger
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area. The frames’ presence does not seem to have any substantial beneficial effect on the
response, which could have been anticipated considering the openings’ small size.
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around the two ventilation openings.

Having concluded that it is possible to omit the stiffening frames around the ventila-
tion openings without seeing any adverse effect on the structural response, the influence
of the plate thickness of the part hosting the openings is also investigated. Three shell
thickness values are compared, namely, 44 mm, 48 mm, and 58 mm. The obtained load–
displacement curves are shown in Figure 14 and the corresponding deformed shapes and
von Mises stress distributions at failure are seen in Figure 15. It can be observed that
for the two smaller thickness values buckling occurs at the openings and a more duc-
tile behavior is achieved characterized by a smooth post-buckling path. With a higher
examined thickness, buckling moves towards the top and a more abrupt post-buckling
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path is obtained. With respect to ultimate load, the two higher thickness values yield
comparable results, while the thinner shell has a smaller ultimate strength. Thus, the inter-
mediate thickness value of 48 mm combines the benefits of material savings, high ductility,
and high stiffness and strength.
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Figure 14. Comparison of equilibrium paths for varying door plate thickness without stiffening
frames around the two ventilation openings.
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Figure 15. Deformation and stress distributions (MPa) at failure for varying door plate thickness
without stiffening frames around the two ventilation openings.

3.3. Section with Man Door and Ventilation Opening

Finally, the case of both a man door opening and a ventilation opening located at
90◦ angles in the lower part of the examined tower section was investigated. The same
loads were used as for the previously studied cases. Two load cases were considered, one
using loads aiming to cause maximum compression at the man door and the other at the
ventilation opening.
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For loads directed at the man door opening, the obtained load–displacement curves
are presented in Figure 16 and the corresponding deformed shapes and von Mises stress
distributions at failure are seen in Figure 17. The effect of using stiffening frames around
the openings can be assessed from these figures. The ventilation opening frame appears to
have no significant effect on the behavior of the section, while the man door frame seems
to limit yielding to the upper area. The absence of it results in more extensive yielding but
enhances ductility. This behavior was expected when taking into account the size difference
of the two openings discussed in Section 2.1.
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Figure 17. Deformation and stress distributions (MPa) at failure with and without stiffening frames
around the man door and ventilation openings for loads directed at the man door opening.

When the loads are directed towards the ventilation opening, neither the ventilation
opening frame nor the man door opening frame appear to have any effect on the behavior
of the section. This is attributed to the fact that in this case the man door opening is located
at the neutral axis of the cross-section, while the ventilation opening is too small to have
any noticeable effect. The obtained load–displacement curves are presented in Figure 18,
and the corresponding deformed shapes and von Mises stress distributions at failure are
shown in Figure 19.



Vibration 2024, 7 225Vibration 2024, 7, FOR PEER REVIEW  15 
 

 

 
Figure 18. Comparison of equilibrium paths with and without stiffening frames around the man 
door and ventilation openings for loads directed at the ventilation opening. 

       

 

Ventilation and man door open-
ings both stiffened with frame. 

Only man door opening stiffened 
with frame/ 

Ventilation and man door open-
ings both unstiffened.  

Figure 19. Deformation and stress distributions (MPa) at failure with and without stiffening frames 
around the man door and ventilation openings for loads directed at the ventilation opening. 

4. Discussion 
The objective of the presented investigation was to evaluate alternative strengthening 

measures around man doors and ventilation openings in tubular steel wind turbine tow-
ers. The aim of strengthening is to recover the loss in stiffness and strength due to such 
openings, which are necessary for operational reasons of the wind turbine. It is common 
practice in the tower industry to employ peripheral stiffening frames around the open-
ings. These are sometimes combined with thicker shell plates in this area. This investiga-
tion was motivated by the heavy demands in terms of labor and cost for the fabrication 
and installation of stiffening frames. 

A numerical approach was employed for the investigation. This was based on per-
forming Geometrically and Material Nonlinear Analyses with Imperfections (GMNIA) of 
a detailed finite element model of the tower section containing the openings, which was 
subjected to a realistic combination of axial and flexural loading corresponding to that of 
a 120 m tubular steel tower. The analyses results were presented and evaluated by means 
of load–displacement curves accompanied by snapshots of deformation and stress distri-
bution at failure. 

Figure 18. Comparison of equilibrium paths with and without stiffening frames around the man
door and ventilation openings for loads directed at the ventilation opening.
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4. Discussion

The objective of the presented investigation was to evaluate alternative strengthening
measures around man doors and ventilation openings in tubular steel wind turbine towers.
The aim of strengthening is to recover the loss in stiffness and strength due to such openings,
which are necessary for operational reasons of the wind turbine. It is common practice in
the tower industry to employ peripheral stiffening frames around the openings. These are
sometimes combined with thicker shell plates in this area. This investigation was motivated
by the heavy demands in terms of labor and cost for the fabrication and installation of
stiffening frames.

A numerical approach was employed for the investigation. This was based on per-
forming Geometrically and Material Nonlinear Analyses with Imperfections (GMNIA)
of a detailed finite element model of the tower section containing the openings, which
was subjected to a realistic combination of axial and flexural loading corresponding to
that of a 120 m tubular steel tower. The analyses results were presented and evaluated by
means of load–displacement curves accompanied by snapshots of deformation and stress
distribution at failure.
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For the ventilation openings, featuring relatively small size, it has been concluded
that the stiffening frame is unnecessary as it makes a negligible contribution to the initial
stiffness and ultimate strength. The thickness of the shell plate around the opening has
a more pronounced effect. High plate thickness is beneficial for stiffness and strength,
but leads to a more abruptly declining post-buckling response. Average plate thickness is
preferable to achieve balanced stiffness, strength, and ductility characteristics.

For the man door openings with significantly larger sizes, both the stiffening frame
and the shell plate thickness make a significant contribution to the initial stiffness and
ultimate strength. The combination of stiffening frame and thicker shell plate employed in
the current designs leads to a response closely resembling the case of a tower without any
opening. On the other hand, eliminating the frame and appropriately increasing the plate
thickness results in comparable stiffness and strength, as well as improved ductility.

5. Conclusions

According to the presented numerical investigation, the elimination of the stiffening
frame in man door and ventilation openings of tubular steel wind turbine towers seems to
be a viable and desirable approach. The numerical confirmation of this option constitutes
the major quantitative contribution of this research. This results in substantial reductions
in the required fabrication effort, with significant benefits in time and cost. Moreover, even
though fatigue has not been considered in the present investigation, the elimination of the
residual stresses due to welding between frame and shell is also expected to be beneficial
in terms of fatigue verification. On the account of these findings, an extensive experimental
campaign focusing on tower sections featuring thick shell plates around the openings is
warranted, and this is a natural next step towards promoting this strengthening concept as
a replacement for stiffening frames.
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