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Abstract: The violation of the U(1) axial symmetry in QCD is stricter than the chiral SU(2) breaking
simply because of the presence of the quantum axial anomaly. If the QCD gauge coupling is sent to
zero (the asymptotic free limit, where the U(1) axial anomaly does not exist), the strength of the U(1)
axial breaking coincides with that of the chiral SU(2) breaking, which we, in short, call an axial–chiral
coincidence. This coincidence is trivial since QCD then becomes a non-interacting theory. Actually,
there exists another limit in the QCD parameter space, where an axial–chiral coincidence occurs even
with nonzero QCD gauge coupling, which can be dubbed a nontrivial coincidence: it is the case with
the massive light quarks (ml ̸= 0) and the massless strange quark (ms = 0) due to the flavor-singlet
nature of the topological susceptibility. This coincidence is robust and tied to the anomalous chiral
Ward–Takahashi identity, which is operative even at hot QCD. This implies that the chiral SU(2)
symmetry is restored simultaneously with the U(1) axial symmetry at high temperatures. This
simultaneous restoration is independent of ml( ̸= 0) and, hence, is irrespective of the order of the
chiral phase transition. In this paper, we discuss how the real-life QCD can be evolved from the
nontrivial chiral–axial coincidence limit by working on a Nambu–Jona–Lasinio model with the U(1)
axial anomaly contribution properly incorporated. It is shown that, at high temperatures, the large
differences between the restorations of the chiral SU(2) symmetry and the U(1) axial symmetry
for two light quarks and a sufficiently large current mass for the strange quark are induced by a
significant interference of the topological susceptibility. Thus, the deviation from the nontrivial
coincidence, which is monitored by the strange quark mass controlling the topological susceptibility,
provides a new way of understanding the chiral SU(2) and U(1) axial breaking in QCD.

Keywords: chiral symmetry; finite temperature; QCD phase transition

1. Introduction

The U(1) axial symmetry in QCD (denoted as U(1)A) is explicitly broken by gluonic
quantum corrections, called the U(1)A anomaly (or the axial anomaly), as well as by the
current quark masses. The axial anomaly survives even in the limit of massless quarks.
Therefore, the U(1)A anomaly is anticipated to significantly interfere with the spontaneous
breaking of the SU(2) axial (referred to as chiral SU(2)) symmetry in the nonperturbative
QCD vacuum, i.e., the quark condensate, hence, affecting the chiral phase transition in
hot QCD.

In a pioneer work based on the renormalization group running in a chiral effective
model, Pisarski and Wilczek [1] pointed out that the U(1)A anomaly, as well as the number
of quark flavors, affects the order of the chiral phase transition in massless QCD. Based on
this, the order of the chiral phase transition depending on the quark flavors has extensively
been explored in lattice QCD in terms of the universality class [2–7]. The chiral phase
transition is mapped onto a phase diagram in the quark mass plance, called the Columbia
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plot [8]. However, the anomalous U(1)A contribution to the whole phase diagram has not
been clarified yet.

Though there is no definite order parameter, the strength of the U(1)A breaking can
be indicated by meson correlation functions χmeson (susceptibility functions) for the U(1)A
partners within the U(2) meson quartet: χσ and χη for (σ, η) mesons and χπ and χδ for
(π, δ) mesons. These meson susceptibility functions are transformed also by the chiral
SU(2) rotation, like (χσ, χη) ↔ (χπ , χδ) [See also Equation (2)]. However, there exists a
discrepancy between the meson susceptibility functions for the chiral symmetry, χσ ≁ χπ

and χδ ≁ χη , and the axial symmetry, χσ ≁ χη and χδ ≁ χπ , due to the spontaneous
chiral symmetry breaking entangled with the U(1)A anomaly. Hence, the meson suscepti-
bility functions cannot generically disentangle the U(1)A anomaly contribution from the
contribution due to spontaneous chiral breaking.

With the increase in the temperature, the meson susceptibility functions for the chiral
partners turn to be degenerate as a consequence of the chiral restoration, χσ ∼ χπ and
χδ ∼ χη , where the spontaneous breaking strength is separated out. Similarly, the
approximate axial restoration can be seen from the degeneracy of the axial partner in the
meson susceptibility functions: χσ ∼ χη and χπ ∼ χδ. These degeneracies have been
observed in the lattice QCD simulations with 2 + 1 flavors at physical quark masses [9,10].
In this context, lattice QCD has also shown that the chiral symmetry tends to be restored
faster than the U(1)A symmetry at around the (pseudo)critical temperature [9,10]. This
discrepancy between the chiral and axial symmetry restorations are caused by the existence
of the U(1)A anomaly, and this may be the role of the U(1)A anomaly in the spontaneous
breaking of the chiral symmetry. Furthermore, even if the light quarks become massless
and the strange quark mass takes the physical value, the U(1)A anomaly contribution
remains manifest in the meson susceptibility functions at high temperatures [11].

However, in contrast to the 2 + 1 flavor QCD, it has been discussed that, within
the two-flavor QCD at the chiral limit, the U(1)A anomaly does not affect the symmetry
restoration [12–16]. Therefore, it is still unclear how the U(1)A anomaly can contribute to
the chiral breaking in terms of quark-flavor and mass dependencies.

Another important aspect regarding the U(1)A anomaly that one should note is
the close correlation with the transition rate of the topological charge of the vacuum,
i.e., the topological susceptibility χtop. Reflecting the flavor-singlet nature of the QCD
θ-vacuum [17,18], χtop is given as the sum of the quark condensates coupled to the current
quark masses and pseudoscalar susceptibilities [19]: χtop vanishes if either of the quarks
get massless. It is interesting to note that χtop can be rewritten as the meson susceptibility
functions χπ , χδ(σ), and χη , by using the anomalous Ward–Takahashi identity for the chiral
symmetry with three quark flavors [19–22] as χη − χδ/σ = χπ − χδ/σ + 4χtop/m2

l [23],
where ml denotes the current mass of the up and down quarks. Note that the susceptibility
difference on both sides of this identity plays the role of indicators of the breaking strength
of the chiral or axial symmetry. This identity shows that χtop is also important to explain
the chiral and axial symmetry restorations through the meson susceptibility functions.

The transparent link of χtop with the chiral or axial breaking can be observed in
another way: it is seen through the Veneziano–Witten formula based on the current algebra
assumed for U(1)A symmetry [24,25] that m2

η f 2
η ∼ χtop,g, where χtop,g is the contribution

of pure gluonic diagrams. Though it is formulated in the large Nc approximation for
massless quarks (with Nc being the number of colors), the aspect of the formula makes
transparent that, at high temperatures, the smooth decrease of the topological susceptibility
is a combined effect of the melting of the chiral condensate (which is supposed to be
scaled along with fη) and the suppression of the anomalous contribution to the mass of the
isosinglet η, mη (in the heavy quark limit).

Anyhow, it is true that if the gluonic U(1)A anomaly is removed, the strength of the
chiral symmetry breaking will coincide with the strength of the axial symmetry breaking in
the meson susceptibility functions. This corresponds to merely a trivial limit of QCD (with
the gauge coupling sent to zero), in which the understanding of the symmetry restoration
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will obviously become transparent. However, the gluonic U(1)A anomaly is essential in
the underlying QCD as an interacting gauge theory so that its contribution inevitably
produces the intricate restoration phenomena involving contamination of the chiral and
axial breaking, as mentioned above.

Therefore, in this paper, we focus on another limit where a nontrivial axial–chiral
coincidence occurs even with nonzero QCD gauge coupling. The case we consider here
is one massive light quark (ml ̸= 0) and a massless strange quark (ms = 0) due to the
flavor-singlet nature of the topological susceptibility. Following a robust anomalous chiral
Ward–Takahashi identity, this nontrivial coincidence is valid even at finite temperatures so
that the chiral symmetry gets restored simultaneously with the U(1)A symmetry at high
temperatures, no matter what order of the chiral phase transition is performed .

Usually, the topological susceptibility is used as a probe for the effective restoration of
the U(1) axial symmetry when the chiral SU(2) symmetry is restored at high temperatures.
This is the way the differences in the restorations of chiral SU(2) and U(1) axial symmetries
can be monitored by the temperature dependence of the topological susceptibility. However,
this ordinary approach suffers from the practical difficulty to access the origin of the split
without ambiguity because the chiral SU(2) symmetry breaking is highly contaminated
with the U(1) axial symmetry breaking even at the beginning, at the vacuum.

In contrast to the ordinary approach under the temperature control, the nontrivial
coincidence discussed in the present paper provides a new approach: it is the strange quark
mass that controls the strengths of the chiral SU(2) symmetry breaking and the U(1) axial
symmetry breaking, and these strengths coincide in the limit ms = 0.

Thus, the gap between the breaking strengths of the chiral SU(2) and U(1) axial
symmetries is handled by the strange quark mass, as is the case for the U(1)A anomaly .
This can be thought of as an alternative to large-Nc QCD a la Veneziano and Witten, as our
approach uses fixed Nc = 3 and varies the current quark masses.

To understand the real-life QCD departing from the nontrivial coincidence limit,
we employ the Nambu–Jona–Lasinio (NJL) model. We first confirm that the NJL model
surely provides the nontrivial coincidence at the massless limit of the strange quark. Once
the strange quark gets massive, the strange quark mass handles the deviation from the
nontrivial coincidence. We explain how the large differences in the restorations of the
chiral SU(2) symmetry and the U(1)A symmetry for 2 + 1 flavors with physical quark
masses are generated by a sufficiently large current mass of the strange quark through the
significant interference of the topological susceptibility.

The deviation from the nontrivial coincidence as monitored by the strange quark mass
by controlling the topological susceptibility provides a new way of understanding of
the chiral and axial breaking in QCD, as seen on the graphical description given by the
Columbia plot.

2. Coincidence between Chiral and Axial Symmetry Breaking

As noted in the introduction, the meson susceptibility function plays the role of an
indicator for the chiral SU(2) symmetry breaking and the U(1) axial symmetry breaking.
The U(1)A anomaly potentially produces a difference between the strength of the chiral
symmetry breaking and the axial symmetry breaking in the meson susceptibility functions
of the vacuum. In this section, we show that even in keeping a nonzero U(1)A anomaly,
there generically exists a nontrivial coincidence between the chiral and axial symmetry
breaking in QCD for N f = 2 + 1 flavors.

2.1. Chiral and Axial Symmetry in Meson Susceptibility Functions

We begin by introducing the scalar- and pseudoscalar-meson susceptibilities. The pion
susceptibility χπ , the η-meson susceptibility χη , the δ-meson susceptibility χδ (also known
as a0 meson), and the σ-meson susceptibility χσ are defined, respectively, as
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χπ =
∫

T
d4x
[
⟨(iū(0)γ5u(0))(iū(x)γ5u(x))⟩conn + ⟨(id̄(0)γ5d(0))(id̄(x)γ5d(x))⟩conn

]
,

χη =
∫

T
d4x
[
⟨(iū(0)γ5u(0))(iū(x)γ5u(x))⟩+ ⟨(id̄(0)γ5d(0))(id̄(x)γ5d(x))⟩+ 2⟨(iū(0)γ5u(0))(id̄(x)γ5d(x))⟩

]
,

χδ =
∫

T
d4x
[
⟨(ū(0)u(0))(ū(x)u(x))⟩conn + ⟨(d̄(0)d(0))(d̄(x)d(x))⟩conn

]
, (1)

χσ =
∫

T
d4x
[
⟨(ū(0)u(0))(ū(x)u(x))⟩+ ⟨(d̄(0)d(0))(d̄(x)d(x))⟩+ 2⟨(ū(0)u(0))(d̄(x)d(x))⟩

]
,

where u and d are the up- and down-quark fields; ⟨· · · ⟩conn represents the connected-
graph part of the correlation function; and

∫
T d4x ≡

∫ 1/T
0 dτ

∫
d3x with the imaginary time

τ = ix0. Under the chiral SU(2) rotation and the U(1)A rotation, the meson susceptibility
functions can be exchanged with each other:

Chiral SU(2) rotation :

{
χδ ↔ χη

χσ ↔ χπ
,

U(1)A rotation

{
χδ ↔ χπ

χσ ↔ χη
. (2)

For the convenience of the reader, we also provide the following illustration in order to
visualize the chiral SU(2) and U(1)A transformations for the meson susceptibility functions.

χπ χσ

χδ χη

U(1)A

SU(2)

SU(2)

U(1)A

Since the meson susceptibility functions are linked with each other via the chiral
symmetry and the axial symmetry, the chiral and axial partners become (approximately)
degenerate, respectively, at the restoration limits of the chiral SU(2) symmetry and the
U(1)A symmetry:

Chiral SU(2) symmetric limit :

{
χη−δ = χη − χδ → 0
χπ−σ = χπ − χσ → 0

,

U(1)A symmetric limit :

{
χπ−δ = χπ − χδ → 0
χη−σ = χη − χσ → 0

. (3)

Note that, in the chiral limit, we encounter the infrared divergence in the pseudoscalar-
meson susceptibilities due to the emergence of the exactly massless Nambu–Goldstone
bosons. The nonzero light quark mass thus plays the role of a regulator for the infrared
divergence, making them well-defined. The differences of the susceptibility functions
of the mesons forming the chiral and axial partners, χη−δ, χπ−σ, χπ−δ, and χη−σ, can
safely serve as well-defined indicators for the symmetry breaking of SU(2)L × SU(2)R
and U(1)A.
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The pseudoscalar susceptibility functions have close correlations with the quark
condensates through the anomalous Ward–Takahashi identities for the chiral symmetry
with the three quark flaovrs [19,20]:

⟨ūu⟩+ ⟨d̄d⟩ = −mlχπ ,

⟨ūu⟩+ ⟨d̄d⟩+ 4⟨s̄s⟩ = −
[
mlχη − 2(ms + ml)

(
χus

P + χds
P

)
+ 4msχss

P

]
,

⟨ūu⟩+ ⟨d̄d⟩ − 2⟨s̄s⟩ = −
[
mlχη + (ml − 2ms)

(
χus

P + χds
P

)
− 2msχss

P

]
, (4)

where ml = mu = md is the isospin-symmetric mass for the up and down quarks, ms is the
strange quark mass, and the pseudoscalar susceptibilities χ

f1 f2
P are defined as

χ
f1 f2
P =

∫
T

d4x⟨(q̄ f1(0)iγ5q f1(0))(q̄ f2(x)iγ5q f2(x))⟩ , for q f1,2
= u, d, s. (5)

In addition, we also define the scalar susceptibilities χ
f1 f2
S :

χ
f1 f2
S =

∫
T

d4x⟨(q̄ f1(0)q f1(0))(q̄ f2(x)q f2(x))⟩. (6)

Because of the the anomalous Ward–Takahashi identities in Equation (4), the behavior
of the quark condensates close to the chiral phase transition is directly reflected in that of
the pseudoscalar susceptibility functions.

2.2. Trivial Coincidence between Chiral and Axial Symmetry Breaking

In the previous subsection, we show that χη−δ or χπ−σ (χπ−δ or χη−σ) serves as an
indicator for the strength of the chiral (axial) symmetry breaking. The symmetry breaking
in the meson susceptibility functions has been studied in a chiral-effective model approach
[20,23] and the first-principle calculations of lattice QCD [9,10,12,13,21,22]. It is known that
there exists a difference between the indicators for the chiral SU(2)L × SU(2)R symmetry
breaking and the U(1)A symmetry breaking at the vacuum:{

χη−δ ̸= χπ−δ

χπ−σ ̸= χη−σ
. (7)

This discrepancy is originated from the anomalous current conservation laws for the
U(1)A symmetry. In the underlying QCD, the chiral current jaµ

A and the axial current jµA
follow the following anomalous conservation laws:

∂µ jaµ
A = iq̄

{
m,

τa

2

}
γ5q,

∂µ jµA = 2iq̄mγ5q + N f
g2

32π2 ϵµνρσFa
µνFa

ρσ, (8)

where q is the SU(3)-flavor triplet-quark field q = (u, d, s)T ; the chiral current and the axial
current are defined as jaµ

A = q̄γµγ5
τa
2 q and jµA = q̄γ5γµq, respectively; τa(a = 1, 2, 3) gener-

ate an SU(2) subalgebra of Gell–Mann matrices; m denotes the mass
matrix m = diag(mu, md, ms); Fa

µν denotes the field strength of the gluon field; and g stands
for the QCD coupling constant. At the Lagrangian level, the chiral SU(2) symmetry and
the U(1)A symmetry are explicitly broken by the current quark mass terms so that the
chiral current and the axial current obtain anomalous parts from the quark mass terms in
Equation (8). These anomalous parts of the quark masses can be tuned to vanish by taking
the chiral limit m = 0.
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Looking at the QCD generating functional, one notices that the gluonic quantum
anomaly g2ϵµνρσFa

µνFa
ρσ arises in the axial current but not in the chiral current. The quantum

correction only to the U(1)A symmetry induces a sizable discrepancy between the chiral
symmetry breaking and the axial symmetry breaking in Equation (7). In contrast to the
anomalous term of the quark mass, the quantum gluonic anomaly cannot be eliminated
from Equation (8) by tuning the external parameters, like the current quark masses. If
one tries to remove the gluonic quantum anomaly in Equation (8), the QCD coupling
constant is taken as g = 0. The vanishing quantum anomaly provides a coincidence
between the strength of the chiral symmetry breaking and the axial symmetry breaking
in the meson susceptibility functions (In the free theory of quarks, the chiral symmetry
is not spontaneously broken, so the U(2)L × U(2)R symmetry is realized in the meson
susceptibility functions: χπ = χσ = χη = χδ (for g = 0):{

χη−δ = χπ−δ

χπ−σ = χη−σ
(for g = 0). (9)

However, in this case QCD obviously becomes a free theory and loses the nontrivial
features driven by the interaction among quarks and gluons as quantum field theory.

2.3. Flavor-singlet Nature of Topological Susceptibility

We explain later that the discrepancy between the meson susceptibility functions in
Equation (7) are actually responsible for nonzero topological susceptibility. To make it
better understood, in this subsection, we give a brief review of the construction of the
topological susceptibility [19] and its flavor-singlet nature.

The topological susceptibility is a quantity measuring the topological charge fluctu-
ation of the QCD-θ vacuum, which is defined as the curvature of the θ-dependent QCD
vacuum energy V(θ) at θ = 0,

χtop = −
∫

T
d4x

δ2V(θ)

δθ(x)δθ(0)

∣∣∣∣∣
θ=0

. (10)

V(θ) represents the effective potential of QCD, which includes the QCD θ-term represented
by the flavor-singlet gluonic operator, θg2ϵµνρσFa

µνFa
ρσ:

V(θ) = − log ZQCD(θ),

ZQCD(θ) =
∫
[Π f dq f dq̄ f ][dA] exp

[
−
∫

T
d4x

{
∑

f=u,d,s

(
q̄ f

LiγµDµq f
L + q̄ f

RiγµDµq f
R

+q̄ f
Lm f q f

R + q̄ f
Rm f q f

L

)
+

1
4
(Fa

µν)
2 +

iθ
32π2 g2Fa

µν F̃a
µν

}]
, (11)

with ZQCD being the generating functional of QCD in Euclidean space. In Equation (11),

q f
L(R) denotes the left-hand (right-hand) quark fields, the covariant derivative of the quark

field is represented as Dµ involving the gluon fields (Aa
µ), and Fa

µν is the field strength of
the gluon field. From Equation (10), the topological susceptibility χtop is directly given as

χtop =
∫

T
d4x⟨Q(x)Q(0)⟩, (12)

with Q = g2/(32π2) Fa
µν F̃aµν. Obviously the topological susceptibility in Equation (12)

takes a flavor-independent form.
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Under the U(1)A transformation with the rotation angles θ f=u,d,s, the QCD-θ term in
the generating functional is shifted by the U(1)A anomaly:

∫
[Π f dq f dq̄ f ][dA] exp

[
−
∫

T
d4x

{
∑

f=u,d,s

(
q̄ f

LiγµDµq f
L + q̄ f

RiγµDµq f
R

+q̄ f
Lm f eiθ f q f

R + q̄ f
Rm f e−iθ f q f

L

)
+

1
4
(Fa

µν)
2 +

i(θ − θ̄)

32π2 g2Fa
µν F̃a

µν

}]
, (13)

where θ̄ = ∑ f=u,d,s θ f = θu + θd + θs. The θ-dependence of the topological operator FF̃ can
be transferred to the quark mass terms by choosing the rotation angles as

θ̄ = θu + θd + θs = θ. (14)

Absorbing the θ dependence into the quark mass terms by this choice, the QCD θ-term
is removed from the generating functional. However, currently, the θ-dependent quark
mass term is not flavor-universal, though the original QCD θ-term is flavor-independent.
Thus, one should impose a flavor-singlet constraint on the axial rotation angles left in the
quark mass sector as [17,18]

muθu = mdθd = msθs , (15)

for θ ≪ 1, so that the θ-dependent part of the quark mass term satisfies the flavor-
singlet nature:

L(θ)
QCD = ∑

f

(
q̄ f

LiγµDµq f
L + q̄ f

RiγµDµq f
R

)
+ q̄LMθqR + q̄RM†

θ qL +
1
4
(Fa

µν)
2 , (16)

where Mθ denotes the θ-dependent quark matrix,

Mθ = diag
[

mu exp
(

i
m̄
mu

θ

)
, md exp

(
i

m̄
md

θ

)
, ms exp

(
i

m̄
ms

θ

)]
, (17)

with m̄ ≡
(

1
ml

+ 1
ml

+ 1
ms

)−1
. We thus find, per [19],

χtop = m̄2
[
⟨ūu⟩
ml

+
⟨d̄d⟩
ml

+
⟨s̄s⟩
ms

+ χuu
P + χdd

P + χss
P + 2χud

P + 2χus
P + 2χds

P

]
=

1
4

[
ml
(
⟨ūu⟩+ ⟨d̄d⟩

)
+ m2

l χη

]
= ms⟨s̄s⟩+ m2

s χss
P . (18)

It is important to note that the topological susceptibility in Equation (18) vanishes if
either of the quarks get massless, i.e.,

χtop = 0 (for ml or ms = 0), (19)

which reflects the flavor-singlet nature of the QCD-θ vacuum.

2.4. Correlation between Susceptibility Functions

By combining the anomalous Ward–Takahashi identities in Equation (4) with χtop in
Equation (18), the topological susceptibility can be also rewritten as

χtop =
1
4

m2
l (χη − χπ). (20)
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Inserting the scalar-meson susceptibility in Equation (20), we eventually obtain the
crucial formula for understanding the QCD vacuum structure:

1
4

m2
l (χη−δ − χπ−δ) = χtop,

1
4

m2
l (χη−σ − χπ−σ) = χtop. (21)

Of interest is that the susceptibility functions for the chiral symmetry, the axial symme-
try, and the topological charge are merged into a single equation. Therefore, Equation (21)
is valuable in considering the nontrivial correlation between the symmetry breaking and
the topological feature in the susceptibility functions. In particular, it is shown that the
difference between the indicator for the chiral symmetry breaking strength χη−δ (χπ−σ)
and the indicator for the axial symmetry breaking strength χπ−δ (χη−σ) corresponds to the
topological susceptibility.

2.5. Nontrivial Coincidence between Chiral and Axial Symmetry Breaking

As shown in the trivial limit of Equation (9), the strength of the chiral symmetry
breaking certainly coincides with that of the axial one because of the absence of the gluonic
quantum anomaly in the U(1)A symmetry. Once we include the quantum corrections in the
QCD generating functional, it is inevitable that the U(1)A anomaly shows up in the axial
current. Thus, one may think that there does not exist the limit of the nontrivial coincidence
between the chiral and axial symmetry breaking strength in the nonperturbative QCD vac-
uum. However, paying attention to the flavor-singlet nature of the topological susceptibility,
we can find a nontrivial coincidence while saving the gluonic U(1)A anomaly.

From Equation (21), we note that the discrepancy between the strength of the chiral
and axial symmetry breaking in the meson susceptibility functions can be controlled
by the topological susceptibility. This implies that the discrepancy can be tuned to be
zero by taking the massless limit of the strange quark, due to the flavor-singlet nature in
Equation (19): {

χη−δ = χπ−δ

χη−σ = χπ−σ
, (for g ̸= 0, ml ̸= 0 and ms = 0). (22)

Remarkably, the coincidence between the strength of the chiral and axial symmetry
breaking is realized for the QCD vacuum even if the gluonic quantum correction in the
U(1)A anomaly is taken into account. Note that the chiral SU(2) symmetry cannot be
seen in the susceptibility functions because of the spontaneous chiral symmetry breaking.
At the nontrivial limit in Equation (22), the quantum U(1)A anomaly contribution in the
associated meson channels is disentangled from the spontaneous chiral breaking in the
meson susceptibility functions.

Once the strange quark obtains a finite mass, the topological susceptibility takes a
nonzero value and gives the interference for the correlation between the chiral symme-
try breaking in χη−δ (χπ−σ) and the axial symmetry breaking in χπ−δ (χη−σ) through
Equation (21). Namely, the coincidence between the chiral and axial symmetry breaking
in Equation (22) is spoiled by the finite strange quark mass through nonzero topological
susceptibility. This is how, in the real-life QCD, the sizable discrepancy between the chiral
and axial symmetry breaking emerges because of a sufficiently large current mass of the
strange quark controlling the presence of χtop. Intriguingly, given the existence of the
nontrivial coincidence in Equation (22), we may identify the topological susceptibility
controlled by the strange quark mass as an indicator for the discrepancy between the chiral
and axial symmetry breaking strength in the meson susceptibility functions. Moreover, the
nontrivial coincidence in Equation (22) persists even at finite temperatures. This implies
that the chiral symmetry is simultaneously restored with the axial symmetry in hot QCD
at the massless limit of the strange quark. The simultaneous symmetry restoration occurs
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regardless of the order of the chiral phase transition. Thus, Equation (22) is a key limit to
give us a new aspect of the chiral and axial phase transitions in QCD, which help deepen
our understanding of the QCD phase structure.

With those preliminaries, we may now pay attention to the Columbia plot to consider
the quark mass dependence on the symmetry restoration. Figure 1 shows the conventional
Columbia plot where the QCD phase diagram is described on the mu,d–ms plane. As a result
of Equation (22), the chiral symmetry is simultaneously restored with the axial symmetry
on the mu,d-axis.

In the next section, in order to explain the implication of the nontrivial coincidence
in Equation (22) on the chiral–axial phase diagram, we investigate the interference of the
topological susceptibility for the chiral and axial symmetry breaking based on the NJL
model. This is visualized by drawing the chiral–axial phase diagram in the mu,d–ms plane,
describing the trend of the chiral and axial symmetry restoration.

Quenched 
regime

𝑚"

𝑚#,%

1st

order

Physical point

Crossover

Chiral = Axial 

Figure 1. Conventional Columbia plot. The strength of chiral symmetry breaking coincides with
the axial symmetry breaking strength in the meson susceptibility functions with ms = 0 because
of the vanishing topological susceptibility. Thus, the simultaneous symmetry restoration between
the chiral SU(2) and U(1)A is realized on the mu,d axis independently of the order of the chiral
phase transition.

3. Chiral and Axial Symmetry Breaking in Low-Energy QCD Description
3.1. Nambu–Jona–Lasinio Model

To make the qualitative understanding of the nontrivial correlation among suscepti-
bility functions in Equation (21) more explicit, we employ an NJL-model analysis based
on the chiral symmetry and the U(1)A symmetry of the underlying QCD possessions. As
mentioned later, the NJL model predictions are shown to be in good agreement with the
lattice QCD results at finite temperatures. In this subsection, we briefly introduce the NJL
model description. Later, we show the formulae for the susceptibility functions in the
framework of the NJL model approach.

The NJL model Lagrangian with three quark flavors is given as

L = q̄(iγµ∂µ − m)q + L4 f + LKMT . (23)

The four-quark interaction term L4 f is invariant under the chiral U(3)L × U(3)R

transformation: q → U · q, where U = exp[−iγ5 ∑8
a=0(λ

a/2)θa] with λa (a = 0, 1, · · · , 8)
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being the Gell–Mann matrices in the flavor space together with λ0 =
√

2/3 · 13×3 and θa

being the chiral phases. It takes the form

L4 f =
gs

2

8

∑
a=0

[(q̄λaq)2 + (q̄iγ5λaq)2] , (24)

where gs is the coupling constant.
In the NJL model approach, the anomalous U(1)A part is described by the determinant

form, called the Kobayashi–Maskawa–‘t Hooft (KMT) term [26–29],

LKMT = gD[det q̄(1 + γ5)q + h.c.] , (25)

with the constant real parameter gD. Note that the axial breaking LKMT, which is induced
from the QCD instanton configuration, still keeps the chiral SU(3)L × SU(3)R symmetry.

The current conservation of the chiral symmetry and the U(1)A symmetry becomes
anomalous because of the presence of the quark mass terms and the KMT term:

∂µ jaµ
A = iq̄

{
m,

τa

2

}
γ5q,

∂µ jµ
A = 2iq̄mγ5q − 4N f gDIm[detq̄(1 − γ5)q], (26)

where the terms within the curly brackets ({, }) represent an anticommutator. In the spirit
of effective models based on the underlying QCD, the anomalous conservation laws of the
NJL model have to be linked with those of the underlying QCD, as in Equation (8). Thus,
the KMT operator, gDIm[detq̄(1 − γ5)q], may mimic the U(1)A anomaly of the gluonic
operator, g2ϵµνρσFa

µνFa
ρσ. One should notice here that the U(1)A anomaly described by

the KMT term can vanish by taking gD → 0. As far as the U(1)A anomaly contribution
is concerned, this limit corresponds to turning off the QCD gauge coupling g, which is
equivalent to the trivial limit for the vanishing axial anomaly. (Note that even in the case
of the vanishing anomaly associated with gD = 0 the NJL model is still an interacting
theory because of the existence of the four-quark interaction term. Although gD is not
completely compatible with the QCD coupling constant g, we can monitor the U(1)A
anomaly contribution through the effective coupling constant gD.)

3.2. Mean-Field Approximation and Vacuum of NJL Model

In this work, we employ the mean-field approximation corresponding to the large Nc
expansion. Within the mean-field approximation, the interaction terms are as follows:

L4 f → 2gs
(
αūu + βd̄d + γs̄s

)
− gs(α

2 + β2 + γ2) ,

LKMT → 2gD
(

βγūu + αγd̄d + αβs̄s
)
− 4gDαβγ, (27)

where α, β, and γ denote the quark condensates,

⟨ūu⟩ ≡ α, ⟨d̄d⟩ ≡ β, ⟨s̄s⟩ ≡ γ. (28)

In the isospin symmetric limit (mu = md = ml), α and β are taken as α = β. Hence,
the NJL Lagrangian is reduced to the mean-field Lagrangian Lmean:

L = q̄(iγµ∂µ − m)q +
gs

2

[
(q̄λaq)2 + (q̄iγ5λaq)2

]
+ gDdet[q̄(1 + γ5)q + h.c.]

→ Lmean = q̄(iγµ∂µ − M)q − gs(α
2 + β2 + γ2)− 4gDαβγ, (29)
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where M = diag(Mu, Md, Ms) represents the mass matrix of the dynamical quarks,

Mu = mu − 2gsα − 2gDβγ ,

Md = md − 2gsβ − 2gDαγ ,

Ms = ms − 2gsγ − 2gDαβ . (30)

By integrating out the quark field in the generating functional of the mean-field
Lagrangian, the effective potential at finite temperature is evaluated as (see e.g., [30])

Veff(α, β, γ) = gs(α
2 + β2 + γ2) + 4gDαβγ − 2Nc ∑

i

∫ Λ d3 p
(2π)3

{
Ei + 2T ln

(
1 + e−Ei/T

)}
, (31)

where Nc = 3 denotes the number of colors and Ei =
√

M2
i + p2 represents the energies

of the constituent quarks. The NJL model is a nonrenormalizable theory. Hence, the
momentum cutoff Λ should be prescribed in the quark loop calculation to regularize the
ultraviolet divergence. In Equation (31), we apply a sharp cutoff regularization to the
three-dimensional momentum integration.

The quark condensates sit on the stationary point of the effective potential with
respect to α, β, and γ, which are determined from the stationary conditions for the
effective potential,

∂Veff(α, β, γ)

∂α
= 0,

∂Veff(α, β, γ)

∂β
= 0,

∂Veff(α, β, γ)

∂γ
= 0. (32)

By solving the stationary conditions, one can obtain the following analytic expression of
the quark condensates, which corresponds to the quark one-loop result:

⟨q̄iqi⟩ = −2Nc

∫ Λ d3 p
(2π)3

Mi
Ei

[
1 − 2(exp(Ei/T) + 1)−1]. (33)

3.3. Scalar- and Pseudoscalar-Meson Susceptibility in NJL Model

In this subsection, we introduce the pseudoscalar meson susceptibilities in the NJL
model approach. First, the pseudoscalar susceptibilities, which construct the meson suscep-
tibilities in Equation (2), are evaluated as [31]

χab
P (ω = 0, p = 0) = lim

p→0

∫
T

d4xeip·x⟨(iq̄(x)γ5λaq(x))(iq̄(0)γ5λbq(0))⟩ , (34)

with the external momentum pµ = (ω, p). The susceptibilities are defined by the two-point
correlation function of the quark bilinear field at the zero external momentum, pµ = 0.

We work in the random-phase approximation [31] so that the pseudoscalar suscepti-
bilities are evaluated only through the resummed polarization diagram of the quark loop,
taking into account the four-point interactions in the NJL model. Within the mean-field
approximation, these four-point interaction terms represent fluctuations from the vacuum
characterized by the nonzero quark condensates,
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L(4)
fluc =

1
2

(
gs +

2
3
(α + β + γ)gD

)
q̄qq̄q +

1
2
(gs − gDγ)

3

∑
i=1

q̄λiqq̄λiq +
1
2

(
gs +

1
3
(γ − 2α − 2β)gD

)
q̄λ8qq̄λ8q

+

(√
2

6
(2γ − α − β)gD

)
q̄qq̄λ8q +

(
− gD√

6
(α − β)

)
q̄qq̄λ3q +

(
gD√

3
(α − β)

)
q̄λ3qq̄λ8q

+
1
2

(
gs −

2
3
(α + β + γ)gD

)
q̄iγ5qq̄iγ5q +

1
2
(gs + gDγ)

3

∑
i=1

q̄iγ5λiqq̄iγ5λiq (35)

+
1
2

(
gs −

1
3
(γ − 2α − 2β)gD

)
q̄iγ5λ8qq̄iγ5λ8q

+

(
−
√

2
6

(2γ − α − β)gD

)
q̄iγ5qq̄iγ5λ8q +

(
gD√

6
(α − β)

)
q̄iγ5qq̄iγ5λ3q +

(
gD√

3
(α − β)

)
q̄iγ5λ3qq̄iγ5λ8q

+ · · · .

Here, we pick up only the interaction terms relevant to χπ,η,δ,σ. Note that since we
keep the isospin symmetry, i.e., α = β, the four-point interaction terms proportional to
(α − β) vanish; hence, those terms do not come into play in the later discussion. Then, the
pseudoscalar susceptibilities are expressed as

χac
P = − lim

ω→0
lim
p→0

Πab
P (ω, p)D−1

Pbc(ω, p), (36)

with

Dab
P (ω, p) = δab + Gac

P Πcb
P (ω, p), (37)

where Gab
P is the coupling strength corresponding to the four-point interaction within the

mean field approximation and Πab
P is the polarization function at the quark one-loop level.

Note that χab
P , Gab

P , and Πab
P take a matrix form.

The pion susceptibility corresponds to this χab
P with a, b = 1, 2, 3 as

χπ = χ11
P

= −
[

Ππ(0, 0) ·
{

13×3 + Gπ · Ππ(0, 0)
}−1

]11
= χ22

P = χ33
P , (38)

where the coupling strength in the pion channel Gπ = diag(G11
P , G22

P , G33
P ) and the pion

polarization function Ππ = diag(Π11
P , Π22

P , Π33
P ) are given as

Gπ = (gs + gDγ)13×3,

Ππ = (Iu
P + Id

P)13×3 = 2Iu
P13×3 , (39)

with Ii
P(ω, p) being the pesudoscalar one-loop polarization functions [32],

Ii
P(0, 0) = −Nc

π2

∫ Λ

0
dp p2 1

Ei

[
1 − 2(exp(Ei/T) + 1)−1

]
, for i = u, d, s . (40)

Note that owing to the isospin symmetry, Gπ and Ππ exhibit no off-diagonal compo-
nents. In contrast, as shown in Equation (36), the flavor symmetry breaking associated with
the U(1)A anomaly provides off-diagonal components in Gab

P and Πab
P for a, b = 0, 8,

GP =

(
G00

P G08
P

G80
P G88

P

)
=

(
gs − 2

3 (α + β + γ)gD −
√

2
6 (2γ − α − β)gD

−
√

2
6 (2γ − α − β)gD gs − 1

3 (γ − 2α − 2β)gD

)
, (41)

ΠP =

(
Π00

P Π08
P

Π80
P Π88

P

)
=

(
2
3 (2Iu

P + Is
P)

2
√

2
3 (Iu

P − Is
P)

2
√

2
3 (Iu

P − Is
P)

2
3 (Iu

P + 2Is
P)

)
. (42)
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The pseudoscalar susceptibilities in Equation (5) are obtained as linear combinations
of χab

P for a, b = 0, 8 as

 1
2 χuu

P + 1
2 χud

P
χus

P
χss

P

 =


1
6

√
2

6
1

12
1
6 −

√
2

12 − 1
6

1
6 −

√
2

3
1
3


χ00

P
χ08

P
χ88

P

 , (43)

where we take the isospin symmetric limit into account, i.e., χuu
P = χdd

P and χus
P = χds

P .
Then, the η meson susceptibility is evaluated as

χη = 2χuu
P + 2χud

P . (44)

Similarly, the scalar meson susceptibilities are given by

χac
S = −Πab

S (0, 0)D−1
Sbc(0, 0) , (45)

with

Dab
S (0, 0) = δab + Gac

S Πcb
S (0, 0), (46)

where Gab
S is the coupling strength matrix and Πab

S is the polarization tensor matrix in the
scalar channel.

The explicit formula for χδ reads

χδ = χ11
S

=
[
−Πδ(0, 0) · {13×3 + Gδ · Πδ(0, 0)}−1

]11
= χ22

S = χ33
S , (47)

where the coupling strength in the δ meson channel Gδ = diag(G11
S , G22

S , G33
S ) and the

δ-meson polarization function Πδ = diag(Π11
S , Π22

S , Π33
S ) are given as

Gδ = (gs − gDγ)13×3,

Πδ = (Iu
S + Id

S)13×3 = 2Iu
S 13×3, (48)

with Ii
S being the scalar one-loop polarization functions,

Ii
S(0, 0) = −Nc

π2

∫ Λ

0
p2dp

E2
i − M2

i
E3

i
{1 − 2[exp(Ei/T) + 1]−1} , i = u, d, s . (49)

For a, b = 8, Gab
S and Πab

S are given as

GS =

(
G00

S G08
S

G80
S G88

S

)
=

(
gs +

2
3 (α + β + γ)gD

√
2

6 (2γ − α − β)gD√
2

6 (2γ − α − β)gD gs +
1
3 (γ − 2α − 2β)gD ,

)
(50)

ΠS =

(
Π00

S Π08
S

Π80
S Π88

S

)
=

(
2
3 (2Iu

S + Is
S)

2
√

2
3 (Iu

S − Is
S)

2
√

2
3 (Iu

S − Is
S)

2
3 (Iu

S + 2Is
S) .

)
(51)

Then, taking the linear combinations of χab
S , one can obtain the scalar susceptibilities

in Equation (6),  1
2 χuu

S + 1
2 χud

S
χus

S
χss

S

 =


1
6

√
2

6
1

12
1
6 −

√
2

12 − 1
6

1
6 −

√
2

3
1
3


χ00

S
χ08

S
χ88

S

, (52)
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where the isospin symmetric limit takes into account χuu
S = χdd

S and χus
S = χds

S . From
Equation (52), we obtain the sigma-meson susceptibility χσ in the NJL model analysis,

χσ = 2χuu
S + 2χud

S . (53)

3.4. Trivial and Nontrivial Coincidence of Chiral and Axial Breaking in a View of the
NJL Description

With Equation 20 and the pseudscalar meson susceptibility in Equations (38) and (44),
the topological susceptibility in the NJL model can be described as

χtop = −mlmsgD

(
α
(Π08

P )2 − Π00
P Π88

P
6det(1 + GPΠP)

)
. (54)

Using Equation (54) together with the meson susceptibilities in Equations (38), (44),
(47) and (53), one can easily check that the NJL model reproduces Equation (21):

1
4

m2
l (χη−δ − χπ−δ) = χtop,

1
4

m2
l (χη−σ − χπ−σ) = χtop.

Note that the analytical expression of χtop in Equation (54) explicitly shows that χtop
is proportional to the U(1)A anomaly-related coupling gD. As is noted earlier, χtop goes
away in the limit of the vanishing U(1)A anomaly, gD → 0, while the meson susceptibility
functions keep finite values. This is the NJL-model realization of the trivial coincidence be-
tween the indicators for the chiral and axial symmetry breaking in the meson susceptibility
functions, as in Equation (9):{

χη−δ = χπ−δ

χη−σ = χπ−σ
, (for gD = 0, ml ̸= 0 and ms ̸= 0). (55)

Of crucial is to note that χtop in Equation (54) is also proportional to both the light
quark mass and the strange quark mass, as the consequence of the flavor-singlet nature in
Equation (19). Hence, the NJL model also provides the nontrivial coincidence between the
chiral and axial indicators with keeping the U(1)A anomaly, as derived from the underlying
QCD in Equation (22):{

χη−δ = χπ−δ

χη−σ = χπ−σ
, (for gD ̸= 0, ml ̸= 0 and ms = 0). (56)

This coincidence implies that the U(1)A anomaly contribution in the associated meson
channels becomes invisible in the meson susceptibility functions at ms = 0 where χtop = 0,
even in the presence of the U(1)A anomaly (gD ̸= 0).

The topological susceptibility has also been studied by some effective model ap-
proaches [33–42]. However, the previous studies did not consider the flavor-singlet
nature of the topological susceptibility, so the nontrivial coincidence in Equation (56)
has never been addressed. (one may further rotate quark fields by the U(1)A trans-
formation with the rotation angles θ f=u,d,s, so that the NJL Lagrangian is shifted as
LNJL(θ) → LNJL(θ− θ̄)+ θ̄QNJL, where θ̄ = θu + θd + θs and QNJL = −4gDIm

[
detq̄i(1− γ5)qj

]
.

By taking the θ̄ = θ, the θ-dependence is completely rotated away from the quark mass
term and then moves to the QNJL term: LNJL(θ = 0) + θQNJL. Indeed, the topological
susceptibility has been evaluated based on the NJL Lagrangian including the θQNJL term:
χtop =

∫
T d4x⟨QNJL(x)QNJL(0)⟩ [33]. However, the θ-dependence on the θQNJL term ac-

cidentally goes away within the ordinary mean-field approach. This is because QNJL
vanishes under the mean-field approximation, QNJL ∝ det[q̄(1+ γ5)q]− det[q̄(1− γ5)q] →
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(βγūu + αγd̄d + αβs̄s − 2αβγ)− (βγūu + αγd̄d + αβs̄s − 2αβγ) = 0. Hence, the topologi-
cal susceptibility cannot be evaluated based on LNJL(θ = 0) + θQNJL within the mean-field
approach through the second derivative of the generating functional with respect to θ.
Therefore, we do not take this way; instead, we directly apply the Equation (18), which is
evaluated from the θ-dependent quark-mass term with the flavor-singlet nature.)

4. Quark Mass Dependence on QCD Vacuum Structure

In this section, through Equation (21), we numerically explore the correlations among
the susceptibility functions for the chiral symmetry breaking, the axial symmetry breaking,
and the topological charge.

4.1. QCD Vacuum Structure with Physical Quark Masses

To exhibit the numerical results of the susceptibility functions, we take the value of
the parameters as listed in Table 1 [31]. With the input values, the following four hadronic
observables are obtained at T = 0 [31]:

mπ = 136 MeV, fπ = 93 MeV, mK = 495.7 MeV, mη′ = 957.5 MeV , (57)

which are in good agreement with the experimental values. Furthermore, the topological
susceptibility at the vacuum (T = 0) qualitatively agrees with the lattice observations [43,44],
as discussed in [23].

Table 1. Parameter setting.

Parameters Values

light quark mass ml 5.5 MeV

strange quark mass ms 138 MeV

four-fermion coupling constant gs 0.358 fm2

six-fermion coupling constant gD −0.0275 fm5

cutoff Λ 631.4 MeV

We do not consider intrinsic temperature-dependent couplings; instead, all the T
dependence should be induced only from the thermal quark loop corrections. Actually, the
present NJL shows good agreement with lattice QCD results on the temperature scaling for
the chiral, axial, and topological susceptibilities, as shown in Ref. [23]. In this sense, we
do not need to introduce such an intrinsic T dependence for the model parameters in the
regime up to temperatures around the chiral crossover.

In Figure 2, we first show plots of the susceptibilities as a function of temperature. This
figure shows that the meson susceptibilities forming the chiral partners (chiral indicators),
χη−δ and χπ−σ, approach zero smoothly at high temperatures but do not exactly reach
zero. This tendency implies that the NJL model undergoes a chiral crossover. (What we
work on are the susceptibilities, which correspond to meson-correlation functions at zero
momentum transfer. This is in contrast to the conventional meson correlators depending on
the transfer momentum, off which meson masses are read. Furthermore, the susceptibilities
involve contact term contributions independent of momenta, which can be sensitive to
high-energy scale physics, while the conventional meson correlators are dominated by the
low-lying meson mass scale. Nevertheless, the degeneracy of the chiral or axial partners at
high temperatures, similar to those detected in the susceptibility, can also be seen in the
mass difference or equivalently the degeneracy of the conventional meson correlators for
the partners, which is simply because the mass difference plays an alternative indicator of
the chiral or axial breaking, as observed in the lattice simulation [45].)
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The pseudocritical temperature of the chiral crossover can be evaluated from the
inflection point of χη−δ or χπ−σ with respect to temperature, d2χη−δ,π−σ/dT2

∣∣
T=Tpc

= 0,

and then, we find Tpc|NJL ≃ 189 MeV. This inflection point coincides with that estimated
from the light quark condensate [23]. However, the NJL’s estimate of the pseudocritical
temperature is somewhat bigger than the lattice QCD’s, Tpc|lat. ∼ 155 MeV [10,46,47]. In
fact, the NJL analysis is implemented in the mean-field approximation corresponding to the
large Nc limit. The corrections of the beyond mean-field approximation are subject to the
size of the next-to-leading order corrections of the large Nc expansion, O(1/Nc) ∼ O(0.3).
Including the possible corrections to the current model analysis, the NJL’s result may be
consistent with the lattice observation. Supposing this systematic deviation by about 30%
to be accepted within the framework of the large Nc expansion, one may say that the NJL
description at finite temperatures yields qualitatively good agreement with the lattice QCD
simulations. Indeed, all the temperature dependence of χη−δ, χπ−δ, and χtop qualitatively
accords with the lattice data [9,10,43,44,48] (for a detailed discussion, see [23]).

From panel (a) of Figure 2, one can see a sizable difference in the meson susceptibilities
between the chiral indicator χη−δ and the axial indicator χπ−δ in the low temperature
regime: χη−δ ≪ χπ−δ for T < Tpc. A large discrepancy also shows up in the other
combination between χπ−σ and χη−σ: χη−σ ≪ χπ−σ for T < Tpc. Looking at the high
temperature regime T > Tpc, one finds that the sizable difference is still kept, χη−δ ≪ χπ−δ,
while χπ−δ and χη−δ get close to zero, as shown in panel (b) of Figure 2. This tendency
is actually consistent with the lattice QCD observation [9,10]. In addition, we find that
χσ−η becomes larger than χπ−σ at around Tpc. As the temperature increases further, χπ−σ

and χη−σ also approach zero with keeping |χπ−σ| ≪ |χη−σ| for T > 1.5Tpc. These trends
imply that the chiral symmetry is restored faster than the the U(1)A symmetry in the meson
susceptibility functions at the physical value of the current quark masses.
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Figure 2. The temperature dependence of the susceptibility functions at the physical point
(ml = 5.5 MeV and ms = 138 MeV) for (a) T/Tpc = 0 − 2 and (b) T/Tpc = 1 − 2. The pseuso-
critical temperature for the chiral crossover is observed to be Tpc ≃ 189 MeV. The susceptibility
functions are normalized by square of the pion decay constant (≃ 93 MeV), and the temperature axis
is also normalized by Tpc, so all quantities are dimensionless to reduce the systematic uncertainty
(approximately about 30%) associated with the present NJL model description of QCD. See also
the text.

Hereafter, we vary the current quark masses while keeping the input values of the
coupling constants gs, gD, and the cutoff Λ and investigate the correlations among the
susceptibility functions through Equation (21) as well as the nontrivial coincidence in
Equation (22). Actually, in the present NJL model, as the current quark masses decrease,
the chiral crossover is changed to the chiral second-order phase transition at mc

π ≃ 60 MeV
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(corresponding to ml = ms = 1.05 MeV). Thus, the chiral first-order phase-transition
domain appears for mπ< 60 MeV. In the subsequent subsections, we focus on the chiral
crossover and the first-order phase-transition domainmains separately.

4.2. Crossover Domain

In this subsection, we evaluate the strange quark mass dependence on the suscepti-
bility functions in the crossover domain. We allow the strange quark mass to be off the
physical value, while the light quark mass is fixed at the physical one; ml = 5.5 MeV. The
present NJL model with this setup exhibits the crossover for the chiral phase transition.

In Figure 3, we plot the susceptibility functions in the massless limit of the strange
quark mass (ms = 0). This figure shows that the topological susceptibility χtop vanishes
for any temperature. This must be due to the flavor-singlet nature in Equation (19). As a
consequence of the vanishing χtop, the axial indicator χπ−δ (χη−σ) coincides with the chiral
indicator χη−δ (χπ−σ) for the whole temperature regime, so the chiral SU(2)L × SU(2)R
symmetry is simultaneously restored with the U(1)A symmetry.
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Figure 3. The plot showing the nontrivial coincidence between the chiral and axial indicators (of
two types) in the crossover domain with the massless strange quark (ml = 5.5 MeV and ms = 0;
Tpc ≃ 144 MeV). The topological susceptibility is exactly zero for all temperatures because the
flavor-singlet nature associated with the massless strange quark. Scaling factors are applied on both
horizontal and vertical axes in the same way as in Figure 2.

Once a finite strange quark mass is turned on, the topological susceptibility χtop
becomes finite no matter how small ms is, as seen in Figure 4. It is interesting to note
that when ms ≪ ml , like in Figure 4 with ms = 10−3ml , the topological susceptibility
(−4χtop/m2

l ) is much smaller than the chiral indicator χη−δ (χπ−σ) and the axial indicator
χπ−δ (χη−σ). This is because χtop is proportional to the ms, as the consequence of the flavor-
singlet nature in Equation (19). According to the correlation among susceptibility functions
in Equation (21), the chiral indicator χη−δ (χπ−σ) takes almost the same trajectory of what
the axial indicator χπ−δ (χη−σ) follows at finite temperatures. Thus, it is the negligible
χtop that triggers the (almost) simultaneous symmetry restoration for the chiral and axial
symmetries in the case of the tiny strange quark mass, where ms ≪ ml .
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Figure 4. The plot showing the finiteness of the topological susceptibility along with the temperature
dependence of the chiral and axial indicators in the crossover domain with a small strange quark
mass (ml = 5.5 MeV and ms = 10−3ml ; Tpc ≃ 144 MeV). The same scaling for two axes has been
made as in Figure 2.

As ms increases, the topological susceptibility further grows, and χtop starts to sig-
nificantly contribute to the chiral and axial indicators following the correlation form in
Equation (21). Actually, when the strange quark mass takes O(10 ml), the topological sus-
ceptibility (−4χtop/m2

l ) becomes on the same order of magnitude of χη−δ and χπ−σ in the
low temperature regime: −4χtop/m2

l ∼ χπ−δ ∼ χπ−σ for T < Tpc. This trend is depicted
in panel (a) of Figure 5 for ms = 10ml . Thus, the sizable discrepancy between the chiral
indicator χη−δ (χπ−σ) and the axial indicator χπ−δ (χη−σ) for T < Tpc is due to the interfer-
ence of χtop. As the temperature further increases, the susceptibilities go to zero. However,
a sizable discrepancy still appears between the chiral and axial indicators: |χη−δ| ≪ |χπ−δ|
and |χπ−σ| ≪ |χη−σ| for T > 1.5Tpc, as depicted in panel (b) of Figure 5. This indicates
that the large strange quark mass providing the significant interference of the topological
susceptibility urges a faster restoration of the chiral symmetry for ms = O(10 ml).

0 0.5 1 1.5 2
-100

0

100

200

300

400

500

600

(a)

1 1.2 1.4 1.6 1.8 2
10-2

10-1

100

101

102

103

(b)

Figure 5. The plots clarifying the significant interference of the topological susceptibility to make
the sizable discrepancy between the chiral and axial indicators in the crossover domain with the
large strange quark mass (ml = 5.5 MeV and ms = 10 ml ; Tpc ≃ 174 MeV) for (a) T/Tpc = 0 − 2 and
(b) T/Tpc = 1 − 2. The manner of scaling axes is the same as in Figure 2.
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4.3. First-order Domain

We next consider the first-order phase-transition domain. In this subsection, we fix the
light quark mass as ml = 0.1 MeV and vary the strange quark mass ms. This setup leads to
the first-order phase transition for the chiral symmetry.

First of all, see Figure 6, which shows the susceptibility functions for ms = 0. One
can find a jump in meson susceptibility functions at the critical temperature Tc ≃ 119 MeV.
This jump indicates that the chiral first-order phase transition occurs in the NJL model.
Note that, even for T > Tc, the meson susceptibility functions take finite values because of
the presence of the finite light-quark mass, as shown in panel (b) of Figure 6. This implies
that the chiral and axial symmetries are not completely restored. However, the topological
susceptibility is exactly zero because ms = 0, reflecting the flavor-singlet nature of χtop.
This is why we observe χη−δ = χπ−δ and χπ−σ = χη−σ for the whole temperature (see
Figure 6). In particular, panel (b) of Figure 6 shows that χη−δ (χπ−σ) asymptotically goes
to zero along with χπ−δ (χη−σ) as the temperature increases. Thus, the chiral symmetry
tends to simultaneously restore with the axial symmetry even in the chiral first-order
phase-transition domain.
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Figure 6. The plots clarifying the trend of the nontrivial simultaneous restoration for the chiral and
axial symmetries even in the chiral first-order phase-transition domain with ml = 0.1 MeV and
ms = 0. Panel (a) shows a jump in the mesons susceptibility functions at around Tc ≃ 119 MeV as a
consequence of the first-order phase transition. The panel (b) closes up the temperature dependence
for the chiral and axial indicators after the chiral phase transition. The manner of scaling axes is the
same as in Figure 2. The trend induced by the interference of χtop is similar to the one observed in
the crossover domain in Figure 3.

Next, we supply a finite value for the strange quark mass to see that the non-vanishing
χtop certainly emerges in the first-order phase-transition domain, as in the case of the chiral
crossover domain. See Figure 7. As long as the strange quark mass is small enough, i.e.,
ms ≪ ml , the topological susceptibility is negligible compared with the chiral and axial
indicators. Therefore, the coincidence between the chiral and axial symmetry restoration is
effectively almost intact.

As the strange quark mass further increases, the topological susceptibility develops
to be non-negligible. For ms = O(10ml), the topological susceptibility (−4χtop/m2

l ) sig-
nificantly interferes with the chiral and axial indicators via Equation (21) and becomes
comparable to χπ−δ and χπ−σ for T < Tc (see Figure 8). For T > Tc, we observe a large
discrepancy— |χη−δ| ≪ |χπ−δ| and |χπ−σ| ≪ |χη−σ|— due to the significant contribution
of the topological susceptibility. Thus, the sizable strange quark mass makes the chiral
restoration faster than the axial restoration through the non-negligible contribution of
the topological susceptibility. Indeed, these trends of the strange quark mass controlling
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χtop in the first-order phase-transition domain are similar to those observed in the chiral
crossover domain.
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Figure 7. The plots showing the still almost coincidence of the chiral and axial indicators for
all temperature ranges, even in the first-order phase-transition domain with ml = 0.1 MeV and
ms = 10−4ml ; Tc ≃ 119 MeV. The two displayed axes are scaled in the same way as explained in the
caption of Figure 2. The trend induced by the interference of χtop is similar to the one observed in the
crossover domain in Figure 4.
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Figure 8. The plots clarifying the significant interference of χtop with the chiral and axial indicators
in the first-order phase-transition domain with ml = 0.1 MeV and ms = 10 ml ; Tc ≃ 126 MeV. The
two displayed axes are scaled in the same way as explained in the caption of Figure 2. The trend
induced by the interference of χtop is similar to the one observed in the crossover domain in Figure 5.

4.4. Chiral and Axial Symmetry Restorations in View of Chiral–Axial Phase Diagram

In the previous subsections, it is found that the topological susceptibility handled
by the strange quark mass is closely related to the meson susceptibilities and interferes
with the strengths of the chiral and axial symmetry breaking. Here, we clarify more on the
strange quark mass dependence on the restoration trends of the chiral and axial symmetry.

In Figure 9, we plot the strange quark mass dependence on the difference between the
two indicators, |χπ−δ| − |χη−δ| and |χη−σ| − |χπ−σ|, above the (pseudo)critical temperature
T(p)c. In particular, |χπ−δ| = |χη−δ| and |χη−σ| = |χπ−σ| are realized at ms = 0 even after
reaching a high temperature regime where T ∼ (1.5 − 2.5) T(p)c. This implies that in the
case of the massless strange quark, the simultaneous restoration for the chiral and axial
symmetries takes place in both the chiral crossover and first-order phase-transition domains.
Once the strange quark obtains a finite mass, the axial indicator |χπ−δ| (|χη−σ|) starts to
deviate from the chiral indicator |χη−δ| (|χπ−σ|) because of the emergence of nonzero χtop.
Actually, Figure 9 shows that the strength of the axial symmetry breaking in the meson
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susceptibilities is enhanced by the finite strange quark mass through the interference of the
topological susceptibility. Furthermore, the discrepancy between the axial indicator |χπ−δ|
(|χη−σ|) and the chiral indicator |χη−δ| (|χπ−σ|) persists even at the high temperature
T ∼ 2.5 Tpc. Therefore, the axial restoration tends to be delayed, occurring later than the
chiral restoration as the strange quark mass gets heavier.
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Figure 9. The strange quark mass dependence on the difference between the axial indicator |χπ−δ|
(|χη−σ|) and the chiral indicator |χη−δ| (|χπ−σ|) in (a) the crossover domain and (b) the first-order
phase-transition domain. In the crossover domain with ms/ml = 0 (50), the pseudocritical temper-
ature is evaluated as Tpc ≃ 144 (200) MeV, and the temperatures T = 300 − 400 MeV displayed as
in panel (a) correspond to T ≃ (1.5 − 2.8) Tpc. On the other hand, in the first-order phase-transition
domain, the temperatures T = 240 − 300 MeV as fixed in panel (b) correspond to T ≃ (1.8 − 2.5) Tc,
where Tc ≃ 119 (130) MeV for ms/ml = 0 (20).

Finally, we draw the predicted tendency of the chiral and axial restorations in a chiral–
axial phase diagram on the mu,d–ms plane, which is shown in Figure 10. This phase diagram
is a sort of the Columbia plot, in which we reflect the discrepancy between the chiral and
axial restorations in terms of the meson susceptibilities at around T ∼ (1.5 − 2.0) T(p)c.
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Figure 10. The predicted chiral–axial phase diagram on the mu,d-ms plane, in which the discrepancy
of the chiral and axial symmetry restorations at around T ∼ (1.5 − 2.0) T(p)c is drawn by the shaded
area. When the strength of the axial symmetry breaking deviates from the chiral breaking strength to
be large, the shaded areas become thick. The nontrivial coincidence, as in Equation (22), is associated
with the vanishing χtop, which is located on the mu,d axis. When the strange quark mass obtains a
finite mass, the axial restoration deviates from the chiral restoration. At around ml = O(10ml), the
axial restoration is much later than the chiral restoration because of the significant interference of χtop.
Namely, at the physical quark masses, the topological susceptibility provides the large discrepancy
between the chiral and axial restorations in the meson susceptibilities.

5. Summary and Discussion

The anomalous chiral-Ward identity in Equation (20) relating the topological suscepti-
bility to the pseudoscalar meson susceptibility functions has often been used to measure
the effective restoration of the U(1) axial symmetry in the SU(2) chiral symmetric phase
so far. The U(1)A restoration probed by the topological susceptibility has been studied
extensively in the chiral effective model approaches [33–42] and the lattice QCD frame-
works [9,10,43,44,48] to explore the origin of the split in restorations of the chiral SU(2)
symmetry and the U(1) axial symmetry. This ordinary method is summarized in panel (a)
of Figure 11). However, this ordinary approach suffers from practical difficulty in accessing
the origin of the split without ambiguity because the chiral SU(2) symmetry breaking is
highly contaminated with the U(1) axial symmetry breaking even at the beginning, at
the vacuum.



Particles 2024, 7 259

Figure 11. The split in the restorations of the chiral SU(2) symmetry and the U(1) axial symmetry
at hot QCD. (a): Ordinary way to address the symmetry restorations. The ambiguous origin of the
effective U(1)A restoration is often measured by the topological susceptibility (which is normalized
by the quark mass, χ̄top = 4χtop/m2

l ). (b): New point of view for symmetry restorations at ms = 0.
Because of the anomalous Ward–Takahashi identity at hot QCD, the chiral SU(2) symmetry breaking
exactly coincides with the U(1)A symmetry breaking, and this coincidence holds for any tempera-
tures. As a robust consequence, when the chiral SU(2) symmetry is restored at the (pseudo)critical
temperature, the U(1)A symmetry is simultaneously restored. Therefore, the limit ms = 0 manifests
the symmetry restorations on the quark mass plane: it can be unambiguously understood that the
strange quark mass handles the split in the restorations of chiral SU(2) symmetry and the U(1)A

symmetry at hot QCD with the three quark flavors having finite masses.

In this paper, we find a new approach: it is the strange quark mass that controls the
strengths of the chiral SU(2) symmetry breaking and the U(1) axial symmetry breaking,
and those strengths coincide in the limit ms = 0. The idea is to depart from a nontrivial
coincidence limit emerging even in the presence of nonzero U(1)A anomaly due to the
nonperturbatively interacting QCD, in sharp contrast to the trivial equivalence between the
chiral and axial breaking, where QCD gets reduced to the free quark theory. Of course, the
nontrivial coincidence is robust because it is tied with the anomalous chiral Ward–Takahashi
identity, Equation (21), and the flavor-singlet condition of the topological susceptibility.
Hence, it holds even at finite temperatures, so the chiral symmetry is simultaneously
restored with the axial symmetry regardless of the order of the chiral phase transition.

The simultaneous restoration at ms = 0 is viewed as a significant limit to consider the
symmetry restorations on the quark mass plane. Given the “rigid” limit of ms → 0, we can
unambiguously understand that the split in the restorations of the chiral SU(2) and U(1)A
is handled by the strange quark mass (ms ̸= 0). This new point of view for symmetry
restorations is described in panel (b) of Figure 11.
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To be concrete, we employ the NJL model with three flavors to monitor the essential chi-
ral and axial features that QCD possesses. We confirm that the NJL model surely provides
the nontrivial coincidence of the chiral and axial breaking in the case of ms = 0 in terms of
the meson susceptibility functions and exhibits the simultaneous restoration for the chiral
and axial symmetries in both the chiral crossover and the first-order phase-transition cases:{

χη−δ = χπ−δ → 0
χη−σ = χπ−σ → 0

, (for T > T(p)c, gD ̸= 0, ml ̸= 0 and ms = 0). (58)

Once the strange quark gets massive, the topological susceptibility takes a finite
value and interferes with the meson susceptibility functions through Equation (21). The
simultaneous restoration for the chiral and axial symmetries is controlled by the strange
quark mass through the interference of nonzero χtop. Thus, with the large strange quark
mass (ms ≫ ml), the chiral restoration significantly deviates from the axial restoration
above the (pseudo)critical temperature:

{
χη−δ → 0, χπ−δ → 0 with |χπ−δ| ≫ |χη−δ|
χη−σ → 0, χπ−σ → 0 with |χη−σ| ≫ |χπ−σ|

, (for T > 1.5T(p)c, gD ̸= 0, ml ̸= 0 and ms ̸= 0). (59)

Because of the significant interference of the topological susceptibility, the chiral
symmetry is restored faster than the axial symmetry in the 2 + 1 flavor case with the
physical quark masses. Figure 10 shows a schematic view of the evolution of the chiral and
axial breaking deviating from the nontrivial coincidence limit toward real-life QCD.

In closing the present paper, we give a list of several comments on our findings
and another intriguing aspect of the nontrivial coincidence between the chiral and axial
symmetry breaking strengths.

• The predicted chiral–axial phase diagram in Figure 10 is a new guideline for exploring
the influence of the U(1)A anomaly on the chiral phase transition, which is sort of
giving a new interpretation of the conventional Columbia plot. Further studies are
desired in lattice QCD simulations to draw definitely conclusive benchmarks on the
chiral–axial phase diagram.

• The existence of the nontrivial coincidence implies that the U(1)A anomaly can be
controlled by the current mass of the strange quark. The controllable anomaly can
give a new understanding of the η′ meson mass originated from the U(1)A anomaly.
The investigation for the ms-dependence on the pseudoscalar meson masses will thus
be a valuable study.

• The fate of the U(1)A anomaly in the nuclear/quark matter is a longstanding problem
and has attracted a lot of people so far. The nontrivial coincidence should also be
realized in the finite dense matter involving the massless strange quark. The nontrivial
coincidence at finite density may shed light on a novel insight for the partial U(1)A
restoration in the medium with physical quark masses.

• The contribution of the U(1)A anomaly to the color confinement is an open question.
It is worth including the Polyakov loop terms in the NJL model to address the cor-
relation between the nontrivial coincidence of the chiral and axial breaking and the
deconfinement–confinement phase transition.

• Though the NJL model produces the qualitative results consistent with lattice obser-
vations, it is a rough analysis due to the mean-field approximation. However, the
existence of the nontrivial coincidence is robust because it is based on the anomalous
Ward identity, This should thus be seen even beyond the mean-field approximation
that the present NJL study has assumed or even more rigorous nonperturbative analy-
ses, such as those based on the lattice NJL-model and the functional renormalization
group method.

• The nontrivial chiral–axial coincidence is a generic phenomenon, which can also
be seen in a generic class of QCD-like theories with “1 (ms = 0) + 2 (ml) flavors”,
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involving models beyond the standard model. In particular, the coincidence in the
first-order phase-transition case may impact cosmological implications of QCD-like
scenarios with axionlike particles associated with the axial breaking, including the
gravitational wave probes. Investigation along also this line may be interesting.
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