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Abstract: In this article, we highlight that the interaction potential confining Dirac particles in a box
must be invariant under the charge conjugation to avoid the Klein paradox, in which an infinite
number of negative-energy particles are excited. Furthermore, we derive the quantization rules
for a relativistic particle in a cylindrical box, which emulates the volume occupied by a beam of
particles with a non-trivial aspect ratio. We apply our results to the evaluation of the quantum limit
for emittance in particle accelerators. The developed theory allows the description of quantum beams
carrying Orbital Angular Momentum (OAM). We demonstrate how the degeneracy pressure is such
to increase the phase–space area of Dirac particles carrying OAM. The results dramatically differ from
the classical evaluation of phase–space areas, that would foresee no increase in emittance for beams
in a coherent state of OAM. We discuss the quantization of the phase–space cell’s area for single Dirac
particles carrying OAM, and, finally, provide an interpretation of the beam entropy as the measure of
how much the phase–space area occupied by the beam deviates from its quantum limit.
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1. Introduction

We face the problem of a Dirac particle in a box with the aim of applying our findings
to the evaluation of the quantum limit for the beam emittance in particle accelerators.
Firstly, the physics of the Klein paradox are reviewed, which affect the problem of a
particle in a box in relativistic quantum mechanics. It is demonstrated that the correct box
potential must be invariant under charge conjugation, which is an equivalent approach
to the locally variable particle mass [1,2]. Furthermore, we solve the problem of a Dirac
particle within a box in cylindrical symmetry, differently from the cartesian symmetry
used in [3,4]. Cylindrical symmetry best fits the description of a particle beam with a
transverse dimension (i.e., the size of the beam in the plane orthogonal to the propagation)
that is different from the longitudinal dimension (the length of the beam along the axis of
propagation). After finding the quantization rules, we derive an analytical expression of the
quantum limit for the transverse beam emittance in particle accelerators. Transverse beam
emittance is a figure of merit for a particle beam: the lower the emittance, the better the
performance for collision or radiation purposes [5]. Our results show that the transverse
phase–space can be strongly compressed by the longitudinal (axial) momentum spread.
Finally, the cylindrical symmetry naturally allows the consideration of quantum particle
beams carrying Orbital Angular Momentum (OAM). Thus, an expression of the emittance
for such beams is derived and compared to the one obtained for particle beams without
OAM. Analogous discussions are presented for the case of single-particle emittance. A
final comment on the relation between emittance and entropy is given.
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2. On the Box Potential for Particles and Anti-Particles

The problem of a particle in a box is solved in non-relativistic quantum mechanics
by imposing a vanishing wave function at the boundaries of the box, where the box’s
potential is sent to infinity. As discussed in [3,4], when approached as in the non-relativistic
case, the problem of a Dirac particle in a box leads to the so-called Klein paradox [6–8],
in which the reflected flux in the walls of the potential is larger than the incident flux.
The problem has been avoided in [3,4], introducing a locally variable mass and suitable
boundary conditions preserving the continuity of the probability current rather than the
wave function. Moreover, the variable mass is such to go to infinity outside the box
boundaries, while remaining finite at its proper value inside the box. In the following, we
show that the mathematical trick of a locally variable mass is equivalent to the definition of
an interaction potential that is invariant under these conditions. For the relativistic particle
in a box, we propose a Dirac equation of the following kind:

Hψ =
[
c⃗α · p⃗ + β

(
mc2 + V

)]
ψ = Eψ (1)

where H is the Dirac hamiltonian operator, ψ is the bispinor, E is the energy eigenvalue of
the equation, m is the mass of the Dirac particle, c is the speed of light in vacuum, p⃗ is the
momentum of the particle, and the α⃗ and β matrices in Dirac representation are defined as:

α⃗ =

(
0 σ⃗
σ⃗ 0

)
β =

(
⊮ 0
0 −⊮

)
(2)

where ⊮ is the 2 × 2 unit matrix and σ⃗ is the vector of Pauli matrices. It is important to
note that the box potential enters Equation (1) as Hint = βV, and not just as V. Considering
V = 0 internally to the box and V → ∞ externally, the same behavior of a variable mass is
obtained. Indeed, in our notation, we define the charge conjugation operator as C = −α2C,
where C is the complex conjugation operator and the matrix α2 is:

α2 =

(
0 σ2
σ2 0

)
σ2 =

(
0 −i
i 0

)
(3)

Applying C to Equation (1) yields:

CHψ = −HψC = EψC → HψC = −EψC (4)

where ψC = Cψ, representing the anti-particle, i.e., the negative energy state. If the box
potential entered the Dirac equation in such a way that:

Hψ =
(

c⃗α · p⃗ + βmc2 + V
)

ψ = Eψ (5)

once the charge conjugation operator was applied to Equation (5), one would obtain:(
c⃗α · p⃗ + βmc2 − V

)
ψC = −EψC (6)

Therefore, sending V → ∞ would bring to the Klein paradox, in which an increasing
number of negative-energy particles are excited. Written as in Equation (5), the potential
would correspond to an electrostatic potential, changing sign under charge conjugation.
However, the box electrostatic potential cannot be of trivial scalar nature. Indeed, such a
potential is an artificial representation of a more complicated force able to confine Dirac
particles, and it must be invariant under C-symmetry.

3. Relativistic Particle in a Cylindrical Box

The solution of the free Dirac equation is fundamental in constructing the theory of a
relativistic particle in a box, since, in addition to the boundary conditions, it corresponds to
the wave function inside the box. The Dirac equation for a free particle is:
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Hψ =
(

c⃗α · p⃗ + βmc2
)

ψ = Eψ (7)

We remark that the α⃗ and β Dirac matrices in Equation (2) are 4 × 4 matrices acting on
the bispinor ψ. In this paper, we consider a cylindrical box with transverse radius R and
axial length L, as shown in Figure 1. The box potential is assumed to be such that Dirac
particles can only be found within the cylinder volume. The cylindrical volume represents
the volume occupied by a particle beam, i.e., an ensemble of confined particles, with a
non-trivial aspect ratio (such as a sphere or a cube). The beam radius is then R and the
bunch length is L. The beam propagation axis is z.

Figure 1. Left: Cylindrical coordinates system for this paper. Right: Cylindrical box with transverse
radius R and axial length L.

The vector of Pauli matrices in cylindrical coordinates is σ⃗ = {σρ, σφ, σz}. The latter
matrices are represented as:

σρ =

(
0 e−iφ

eiφ 0

)
σφ =

(
0 −ie−iφ

ieiφ 0

)
σz =

(
1 0
0 −1

)
(8)

In cylindrical coordinates and in terms of the upper (u) and lower spinor components (v),
the Dirac equation reads:(

cαρ pρ +
cαφ

ρ
pφ + cαz pz + βmc2

)
ψ = Eψ = E

(
u
v

)
(9)

where the quantum expression of the momentum operator is p⃗ = −ih̄{∂ρ, ∂φ/ρ, ∂z}, with h̄
being the Planck constant. The positive energy solution of Equation (9) is found as:

ul = AχJl
(
kρρ

)
eilφei pzz

h̄ + BχJl
(
kρρ

)
eilφe−i pzz

h̄ (10)

vl =
−ih̄c

(
σρ∂ρ +

σφ

ρ ∂φ + σz∂z

)
E + mc2 ul (11)

where A and B are normalization constants, χ is the particle spinor, and the radial wavenum-
ber is defined as:

kρ =
E2 − m2c4

h̄2c2
− p2

z

h̄2 (12)

Before proceeding to the calculation of the Dirac particle eigenstates in the cylindrical
box, let us note that l corresponds to the azimuthal quantum number associated with the
operator L̂z = −ih̄∂φ, i.e., the third component of the OAM. For sake of simplicity, from
now on, we consider l = 0, returning to the topic at the end of the work. Therefore, the
particle wave function will be described by:

u = u0 = AχJ0
(
kρρ

)
ei pzz

h̄ + BχJ0
(
kρρ

)
e−i pzz

h̄ (13)

v = v0 =
−ih̄c

(
σρ∂ρ + σz∂z

)
E + mc2 u0 (14)

As demonstrated in [3,4], the proper boundary condition yielding the quantization rules
for the relativistic particle in a box is applied to the probability current instead of the
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wave function as in non-relativistic quantum mechanics. The vanishing of the outward
component of the probability current at the boundaries is obtained by requiring that the
condition ∓iβ⃗αψ = ψ locally holds there, where the minus sign is used for the outgoing
current towards the positive direction of a given axis and vice versa. Given a radial
boundary at ρ = R, i.e., for a particle that cannot be found for ρ > R, and using the solution
of the free Dirac equation, the quantization rule for the radial momentum of the particle is
found via:

−iβαρψ(ρ = R) = ψ(ρ = R) (15)

from which, it is possible to obtain:

J0
(
kρR

)
=

h̄ckρ J1
(
kρR

)
E + mc2 =

kρλ̄c

1 + γ
J1
(
kρR

)
(16)

where γ is the Lorentz factor of the particle and λ̄c = λc/2π = h̄/mc ≃ 0.386 pm is the
reduced Compton wavelength. It is important to note that, when the Compton wavelength
is to be considered negligible on the scale of 1/kρ (in other words, when the radial particle
momentum is non-relativistic), the quantization condition at Equation (16) reduces to
the non-relativistic one, i.e., J0(kρR) = 0. Thus, Equation (16) behaves well in the non-
relativistic limit, yielding the same result expected from the Schroedinger equation. In
an analogous way, for a limited domain of existence for the particle along z, ranging in
[−L/2, L/2], it is possible to obtain the quantization rule for the axial momentum pz = h̄kz:

2kzλ̄c(1 + γ)

k2
zλ̄

2
c − (1 + γ)2 = tan (kzL) (17)

Equation (17) is the same as that found in [3] for a Dirac particle within a 1D box. As for
the radial case, in the non-relativistic limit λ̄c → 0, the same quantization expected from
the Schroedinger equation is retrieved. The positive energy eigenvalue of the Dirac particle
is finally found as:

E = Ekρ ,kz = γkρ ,kz mc2 =
√

m2c4 + h̄2k2
ρc2 + h̄2k2

zc2 (18)

To conclude, it must be noted that Equations (16) and (17) and coupled via γ and must hold
at the same time.

4. Limit of a Relativistic Particle Beam

For a paraxial relativistic particle beam γ >> 1, and, moreover, pz >> pρ. In these

conditions, γkρ ,kz ≃ γkz =
√

1 + k2
zλ̄

2
c ; therefore, Equation (17) becomes:

tan (kzL) ≃ −kzλ̄c (19)

The quantization rule for ultra-relativisitc particles is easily found as:

kz =
π

L

(
nz −

1
2

)
(20)

with the axial quantum number ranging within naturals, i.e., nz = 1, 2, . . . ∞. Furthermore,
for ultra-relativistic particle beams with bunch length L >> λ̄c, the average Lorentz
factor γav corresponds to a very large axial quantum number. The particle states fall
very close each other along the momentum axis kz. It is possible, then, to approximate
Equation (16) as:

J0
(
kρR

)
≃

kρλ̄c

γav
J1
(
kρR

)
≃ 0 (21)

where in the last passage we have considered R >> λ̄c. In order to count how many states
are occupied along the axial momentum space, It is sufficient to recall that the quantum of
axial momentum, from Equation (20), is h̄π/L. Therefore, for a full-width-at-half-maximum
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(FWHM) momentum spread ∆pz, it is possible to define the number of occupied states
along kz as:

∆nz =
L

h̄π
∆pz (22)

Given a beam made by N particles, each state occupation can be twofold due to spin
degeneracy. For counting the number of occupied states in the transverse momentum
space, it is necessary to consider the distribution of the J0 zeros jn. We adopt the McMahon
expansion [9]:

jn ≃
(

n − 1
4

)
π +

1

8
(

n − 1
4

)
π

(23)

where J0(jn) = 0.
Defining the Fermi-line in the radial momentum space as the curve along which the

maximum radial momenta are distributed (see Figure 2), the number of states ∆nρ occupied
in the transverse momentum space is found counting the zeros up to n = nF. Thus, by
means of Equation (23), it is possible to obtain:

∆nρ ≃ 1 − π

4
+

πn2
F

4
− π

16
log (nF) (24)

where nF is called Fermi level. For nF = 1, i.e., for a single particle in the system, ∆nρ = 1,
while for nF >> 1 ∆nρ ≃ πn2

F/4. Recognizing that N = 2∆nρ∆nz, It is finally possible to
set the following identity for the case nF ≳ 1:

nF =

√
2Nh̄
L∆pz

(25)

Equation (25) establishes the relation between the Fermi level nF and the beam momentum
spread, which acts compressing the Fermi area. This behavior must be expected from the
fact that particles with slightly different axial momenta can occupy the same state in the
transverse phase–space.

Figure 2. Occupation of states in the kρ − φ sub-space. The drawn line defines the Fermi level, as the
line of maximal transverse momenta.

5. Rms Observables

Root mean square (rms) observables are calculated by standard definitions. For the
rms value of the x − y operators on a generic Dirac particle state, we use:

σx =

√∫
ρ2 cos2 φ|ψ(ρ, φ, z)|2ρdρdφdz (26)

The observable σy is found via Equation (26) replacing cos φ → sin φ. The final result
is found in terms of the generalized hypergeometric function 2F3 and Bessel functions
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J0 and J1, but it can be approximated by introducing the Euler–Mascheroni constant
γE ≃ 0.577:

σx,y = R

√√√√√ 2F3

(
{ 1

2 , 2}; {1, 1, 3};−k2
ρR2

)
4
(

J0
(
kρR

)2
+ J1

(
kρR

)2
) ≃ γE√

2
R (27)

It is possible to notice that the approximation at Equation (27) allows the estimation of σx,y
with an expression which does not depend upon the radial quantum number, i.e., that is
the same for all the eigenstates (see Figure 3).

0 5 10 15 20 25 30
k  [1/R]

0.0

0.2

0.4

0.6

0.8

1.0

x,
y [

R]

l=0
l=1
l=2
l=3
l=4
l=5

E/ 2

Figure 3. Value of σx,y for different OAM states.

The rms value of the angular operator θx,y is found as:

θx =

√
−1

γ2
avm2c2

∫
cos2 φψ†

(
∂2

ρψ +
∂ρψ

ρ

)
ρdρdφdz =

h̄kρ√
2γavmc

(28)

with an identical expression for θy, obtained replacing cos φ → sin φ. Figure 4 shows that
Equation (28) can be approximately valid for higher OAM states.

0 5 10 15 20 25 30
k  [1/R]

0

5

10

15

20

25

30

x,
y [

av
m

c]

l=0
l=1
l=2
l=3
l=4
l=5

k
2 avmc

Figure 4. Value of θx,y for different OAM states.

Finally, the correlation observable is found:
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< xθx >= −ih̄
∫

ρ cos2 φ
(

ψ†∂ρψ
)

ρdρdφdz (29)

Solving the integral in Equation (29) yields:

< xθx >= − h̄
2γavmc

J1
(
kρR

)2

J0
(
kρR

)2
+ J1

(
kρR

)2 ≃ −
h̄ sin2 (kρR − π

4
)

2γavmc
(30)

The observable < yθy > is found via Equation (29), replacing cos φ → sin φ, leading to the
same result of Equation (30). Figure 5 shows that, for large enough occupation numbers
(nF ≳ 1), the correlation term is limited to small values (<<1), even for relatively large
OAM states. We note that, due to the axisymmetry of the considered beam, σx = σy ≡ σr,
θx = θy ≡ θr and < xθx >=< yθy >=< rθr >, where the subscript “r” stays for “radial”.

0 5 10 15 20 25 30
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m
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l=2
l=3
l=4
l=5

Figure 5. Value of transverse phase–space correlation for different OAM states.

6. Transverse Beam Emittance: The Quantum Limit

The definition of rms normalized transverse (radial) emittance for the single particle
state is:

ϵx = ϵy ≡ εr = γav

√
σ2

r θ2
r− < rθr >2 (31)

The rms emittance measures the area occupied by the single state in the horizontal(vertical)
phase–space, γav being just a normalization constant conventionally adopted in particle
accelerator physics [5]. The total radial beam emittance is to be calculated summing up all
single contributions from the occupied states:

εr ≃
λ̄c

2

n=nF

∑
n=1

√
γ2

E j2n − sin4
(

jn −
π

4

)
(32)

For a momentum spread such that nF ≳ 1 Equation (32) can be further simplified to:

εr ≃ γE
λ̄c

2

n=nF

∑
n=1

jn ≃ γE
λ̄c

2
π

2
n2

F = γE
λ̄c

2
π

2

(
2Nh̄
L∆pz

)
=

γEN
∆nz

λ̄c

2
(33)

where—performing the sum in Equation (33)—we have used Equation (23). We observe
that momentum spread can considerably decrease the beam transverse emittance, for the
particles occupy different states of axial momentum so that they can be compacted in
a smaller transverse phase–space. This behavior cannot been taken into account when
considering a spherically symmetric Fermi-sea, as in [10], but analogous results can be
found in [11] for the case of quantum oscillators. For a relativistic bunch of electrons
corresponding to N = 109, with length L = 10−4 m (300 fs) and momentum spread
∆pz ≃ mc (half a MeV), the quantum limited emittance value is of the order of 1 pm and
the Fermi level is nF ≃ 3.
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7. Role of the Transverse Temperature and Classical Limit

It is customary to associate a temperature to the maximal kinetic energy value of a
Fermi gas. In particular, for the transverse kinetic energy, the maximum value for nF ≳ 1
is Emax

kρ
≃ h̄4n2

F/2mR2 = kBTF, where kB is the Boltzmann constant and we have assumed
that Emax

kρ
is non-relativistic. It is important to note that the Fermi temperature TF that we

have introduced here refers only to the radial momentum space. Recalling Equation (33), it is
possible to establish the following relation between quantum emittance and Fermi temperature:

εr ≡ εq ≃ γE
λ̄c

2
mπR2

h̄4 kBTF (34)

where, in this section, the quantum emittance εq is understood as the radial emittance εr
that has been previously introduced. For a classical beam of particles, we can define
the emittance at the source as εc = σr

√
kBTc/mc2, where for a thermionic gun Tc is the

temperature of the cathode; meanwhile, for a photoelectric gun, kBTc = (h̄ω − W)/3,
where h̄ω is the photon energy used to extract charge from the cathode and W the work
function of the latter. The scaling of the emittance as a function of temperature is very
different for the quantum case compared to the classical one, due to the different equation
of state of the two gases. The classical limit for the behavior of a particle beam is not simply
obtained by directly comparing TF with Tc. Indeed, using Equation (27), the ratio between
quantum and classical emittance is found:

εq

εc
=

λ̄c√
2

mπR
h̄4 kBTF

√
mc2

kBTc
=

λ̄c√
2

πh̄N
RL∆pz

√
mc2

kBTc
(35)

For a relativistic bunch of electrons corresponding to N = 109, with length L ≃ R = 10−4 m
and momentum spread ∆pz ≃ mc, the ratio between the quantum and classical emittances is:

εq

εc
≃ 0.0008 ×

√
1

Tc[K]
(36)

When the temperature Tc is of the order of a fraction of eV, corresponding to a momentum
spread of the same order of magnitude at the cathode, the quantum to classical emittance
ratio at Equation (36) is of the order of 10−5, showing that the above-considered beams
behave classically. Moreover, we can define a critical temperature, for which the ratio at
Equation (36) is equal to one, implying a quantum behavior of such beams. Given the
above choice of parameters, the critical temperature value is Tc << 1 µK, corresponding to
a momentum spread at the source which is below 1 neV. In order to keep quantum effects
alive in a particle accelerator, such a spread should be preserved along the acceleration
chain, which is demanding.

8. Particle Beams Carrying Orbital Angular Momentum

For Dirac particles carrying OAM, the bispinor solution of the wave equation is
determined by Equations (10) and (11). Let us assume that all particle in the ensembles
are in the same state of angular momentum, defined by the quantum number l. In these
conditions, it is possible to state that the beam carries OAM Lz = Nlh̄. In the limit of a
relativistic particle beam in the paraxial approximation, the quantization rule for kρ, as for
the case l = 0, is found as:

Jl(kρR) = 0 (37)
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which is solved by jln, where Jl(jln) = 0. For counting the number of occupied states in
the transverse momentum space, we consider the distribution of the Jl zeros. We adopt an
approximation similar to Equation (23) [9]:

jln ≃
(

n +
l
2
− 1

4

)
π −

(
4l2 − 1

)
8
(

n + l
2 − 1

4

)
π

(38)

The number of occupied states in the transverse momentum space is, therefore:

∆nρ =
Nh̄π

2L∆pz
≃ 1 − π

4
+

πn2
F

4
− π

16

(
1 − 4l2

)
log (nF) (39)

The Fermi level is determined by inversion of Equation (39). From Figures 3–5, it is possible to
note that, for relatively large occupation numbers, σx,y ≃ γER/

√
2 and θx,y ≃ h̄kρ/

√
2γav mc,

for any value of OAM. In the same approximation, the correlation terms are negligible, as was
the case for l = 0. Therefore, the final transverse emittance is easily found as:

ε
(l)
r ≃ γE

λ̄c

2

n=nF

∑
n=1

jln ≃ γE
λ̄c

2
π

2
nF(nF + l) = ε

(0)
r

(
1 +

l
nF

)
(40)

Equation (40) is completely equivalent to Equation (33) for l = 0 and for all the cases of relatively
small OAM l << nF. Otherwise, the OAM increases the emittance of the particle beam. For
the same parameters used in the example at the end of Section 6, an OAM corresponding to
l = 1 would lead to a non-negligible increase in transverse emittance of ∼30%.

In the classical limit, the radial emittance of a beam with OAM is expected to be [12]:

ε
(l)
c =

√
ε2

c + ε2
l (41)

where εc has been discussed in Section 7, and the OAM contribution to classical emittance is:

ε l =
1
2

√
< L2

z > − < Lz >2 (42)

It is interesting to recall that the OAM denotes an x − y coupling that extends the projected
transverse phase–space, leading to the increase in emittance compared to the zero OAM
case, in both the quantum and classical cases. Equation (42) measures the spread of the
OAM within the particle beam, since each particle can carry a different value of OAM. A
degenerate beam, with all particles carrying the same OAM, i.e., lh̄, as considered at the
beginning of this section, would carry zero OAM according to classical theory. Conversely,
as we have shown, an appropriate quantum treatment considering the Pauli exclusion prin-
ciple leads to the correct results given by Equation (40), where a non-negligible correction
appears of the order of l/nF, leading to emittance increase.

9. Single-Particle Emittance

A single particle with l = 0 occupies the ground state kρ = j0/R. The rms value for
the position operators becomes:

σx = σy = σr = R

√√√√ 2F3

(
{ 1

2 , 2}; {1, 1, 3};−j20
)

4J1(j0)
2 ≃ 0.467√

2
R (43)

The rms divergence of the ground state is then:

θx = θy = θr =
h̄

Rγavmc

√√√√ j20 J1(j0)
2 − 1

2J1(j0)
2 ≃ 2.405h̄√

2Rγavmc
(44)
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It is important to notice that σxθx ≃ 1.123 ×λ̄c/2 > λ̄c/2, obeying the Heisenberg principle
of uncertainty. Furthermore, from Equation (30), it is easily verified that:

< xθx >=< yθy >=< rθr >=
h̄

2γavmc
(45)

Thus, the single-particle transverse emittance is found:

εr ≃ 0.511
λ̄c

2
(46)

In Table 1, we report the values of single-particle emittance for different states of OAM.

Table 1. Single-particle transverse emittance for different states of OAM.

l ε
(l)
x,y

0 0.511λ̄c
2

1 1.474λ̄c
2

2 2.112λ̄c
2

3 2.650λ̄c
2

4 3.133λ̄c
2

5 3.576λ̄c
2

It is worth noting that, for large values of l, the difference between single-particle
emittance values for different states of OAM tends to be comparable to the ground-state
emittance given by Equation (46).

10. Entropy

In the classic paper [13], the entropy formula for the kind of beam considered in this
work is reported:

S = NkB log
( εc

A

)
(47)

which determines the contribution to the entropy due to the classical emittance εc. The
A parameter, for Lawson, is the elementary area of the transverse phase–space cell. By
identifying the elementary area as A = εq, the entropy can be interpreted as the measure of
how much the emittance of the beam deviates from its quantum limit. Furthermore, using
the Sommerfeld expansion [14], one could write εc = εq + ∆ε(Tc), where ∆ε(Tc = 0) = 0.
When εc → εq, i.e., for very low temperatures, the entropy goes to zero, recovering the
third principle of thermodynamics.

11. Summary and Conclusions

In conclusion, we have presented a work on the the quantum mechanics problem of the
relativistic particle in a box. We have highlighted that the box interaction potential figuring
in the Dirac equation must be invariant under charge conjugation, in order to avoid the
Klein paradox. Furthermore, we have found quantization rules for the particle momentum
in a cylindrical 3D box, resembling the shape of a particle beam with a non-trivial aspect
ratio. Starting from that, we have estimated the quantum limit for the beam emittance in
particle accelerators. Our findings demonstrate that the transverse beam emittance can be
compressed by the axial momentum spread. In fact, particles can occupy the same state
of transverse momentum as far as they occupy different state of longitudinal momentum.
Differently from the plane–wave theory in cartesian coordinates, our theoretical description
naturally allows us to study quantum particle beams carrying orbital angular momentum.
Finally, we have presented a discussion on the single-particle emittance for different states
of OAM. For a relativistic bunch of electrons corresponding to N = 109, with length and
radius L ≃ R = 10−4 m and momentum spread ∆pz ≃ mc (half a MeV), we have found
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that the quantum limited emittance value is of the order of 1 pm. For the above beam
parameters and for ordinary beams generated by thermionic or photoelectric electron guns,
we have calculated that quantum effects are negligible; this is because, for them to be
observable, the momentum spread at the source should reach values well below 1 neV and
be preserved along the accelerator.
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