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Abstract: The production of Z bosons in emission processes by neutrinos in the expanding de Sitter
universe is studied by using perturbative methods. The total probability and transition rate for
the spontaneous emission of a Z boson by a neutrino is computed analytically; then, we conduct a
graphical analysis in terms of the expansion parameter. Our results prove that this process is possible
only for large expansion conditions of the early universe. Finally, the density number of Z bosons
is defined, and we obtain a quantitative estimation of this quantity in terms of the density number
of neutrinos.
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1. Introduction

The problem of electro-weak interactions in de Sitter space–time by using perturbative
methods was studied only recently in [1–3]. In [1,2], the general formalism for studying
the neutral current interactions intermediated by the Z boson was constructed in a curved
space–time. This allows us to explore processes of interaction that generate the production
of massive bosons and fermions in an expanding de Sitter universe by adapting the electro-
weak perturbation theory [4–15] to a curved space–time. It is well known that the massive
bosons were produced in the early universe [9,10], and it is important to explore all possible
processes that could produce them, including the first-order perturbative processes that
are forbidden in Minkowski theory [15] by energy and momentum conservation. In a
non-stationary space–time, the translational invariance with respect to time is lost, and the
amplitudes and probabilities corresponding to processes of spontaneous particle production
are non-vanishing [16–18].

The idea of exploring the problem of particle generation through fields interactions
was first proposed in [19], and the main results of this paper are related to the fact that the
perturbative calculations can be translated according to the number of particles. Another
result established in [19] is related to the conditions in which the perturbative particle
production becomes dominant in rapport with the cosmological particle production. In the
present paper, we want to study for the first time the process of Z boson emission by a
neutrino in a de Sitter metric. By using the perturbative methods, one has a powerful tool
for computations as required for the field theory in de Sitter space–time. These methods are
suitable for computing the exact dependence of the probabilities of particle generation in
terms of expansion parameters and to understand the influence of gravity in the interactions
between quantum fields. The perturbative results are also suitable for using regularization
methods when computing the transition rates and probabilities. Further from the exact
general result obtained by using a perturbative technique, one can explore the interesting
limit when the expansion parameter is larger than the particle mass and also the Minkowski
limit when the expansion parameter vanishes [2,3]. All these aspects prove that the methods
based on usual perturbative techniques are a valuable tool for understanding physics when
the quantum fields interact in a curved geometry.

The theory of quantum fields with spin can be constructed only in orthogonal (non-
holonomic) local frames, where the half-integer spin can be correctly defined [18]. With this
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method, the generators of the covariant representation are the differential operators pro-
duced by the Killing vectors [18]. By using this method, the quantum states can be globally
defined on the entire manifold as the eigenstates of a set of commuting operators. Be-
cause the states defined in this way do not depend on the local coordinates, the vacuum
state is unique and stable [18]. In our approach, the electro-weak transitions are measured
by the global apparatus that consists of the largest freely generated algebra of operators
where one can include the conserved operators [2,3,18]. The method that we present here
does not exclude the cosmological particle creation, which is observed with the local detec-
tors. Our method follows the quantum field theory methods from flat space–time where the
perturbative approach ensures a powerful tool for computations. We also use our previous
results [2,3], where we define the S matrix for the electro-weak theory in de Sitter manifold
by using the fact that the energy can be correctly defined, since the time-like Killing vector
preserves this property everywhere inside the light cone where the observers can perform
measurements. Also by using perturbative methods, we obtain the exact dependence of
the probabilities in terms of the expansion parameter, which allows us to study the early
universe limit when the expansion parameter is larger comparatively with the mass of the
Z boson. The perturbative methods also permit to employ the dimensional regularization
methods for computing the transition rates and total probabilities. Another important fact
is that the proposed mechanism could explain the production of massive bosons in the
early stages of the universe.

Our analysis is conducted using the solutions of the Dirac equation and Proca equation
in a de Sitter geometry [20,21], which have a defined momentum and helicity. We will
use the perturbative formalism employed in the field theory including renormalization
procedures for extracting finite results from our computations.

The paper begins in Section 2 with the computations of the transition amplitude and
probability for the process of Z boson emission by a neutrino. In Section 3, we compute the
total probability of the process, and in Section 4, the transition rate is obtained. The density
number of Z bosons obtained in emission processes by neutrinos is analyzed in Section 5
and in the appendices, we present the free fields solutions in de Sitter geometry and the
integrals that help us to establish the analytical results. We use natural units with h̄ = 1,
c = 1.

2. Amplitude of Z Boson Emission by Neutrino

To analyze the emission of Z bosons by neutrinos in the early universe, we start with
the following de Sitter metric [22,23]:

ds2 = dt2 − e2ωtdx⃗ 2 =
1

(ωtc)2 (dt2
c − dx⃗ 2), (1)

where the conformal time is given in terms of proper time by tc = −e−ωt

ω , and ω is the
expansion factor (ω > 0). The first-order transition amplitude in electro-weak theory on
curved space–time for the interaction between Z bosons and the neutrino–antineutrino
field was obtained in [1]. For the process of Z emission by a single neutrino ν → ν + Z,
the transition amplitude is

Aν→Zν = −
∫

d4x
√
−g
(

e0

sin(2θW)

)
(Up′ ,σ′)ν(x)γµ̂eα

µ̂

(
1 − γ5

2

)
(Upσ)ν(x) f ∗αP ,λ,Z(x), (2)

where e0 is the electric charge, θW is the Weinberg angle, and (Upσ)ν(x) is the solution of
zero mass for the Dirac equation in de Sitter space–time [20], while Aα(Z) designates the Z
boson field. The solutions for the free fields equations on a momentum–helicity basis are
presented in Appendix A. We also mention that we use point-independent Dirac matrices
γµ̂ and the tetrad fields eα

µ̂. For the line element (1), in the Cartesian gauge, the tetrad
components are

e0
0̂
= −ωtc; ei

ĵ
= −δi

ĵ
ωtc. (3)
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Our computations are calculated in the chart with conformal time tc ∈ (−∞, 0), which
covers the expanding portion of de Sitter space.

The Calculation

Using the solutions given in Equations (A1), (A4) and (A5) from Appendix A, the am-
plitude for longitudinal modes with λ = 0 can be brought to the following form:

Aν→Zν(λ = 0) = −
∫

d4x
√−g

(
e0

sin(2θW )

)
(Up′ ,σ′)ν(x)γ0̂e0

0̂

(
1−γ5

2

)
(Upσ)ν(x) f ∗0P ,λ=0,Z(x)

−
∫

d4x
√−g

(
e0

sin(2θW )

)
(Up′ ,σ′)ν(x)γîej

î

(
1−γ5

2

)
(Upσ)ν(x) f ∗jP ,λ=0,Z(x).

(4)

In the case of transversal modes with λ = ±1, only the spatial part of the solution gives
contribution, since there are no temporal components of the solution, i.e., f0P⃗ ,λ=±1(x) = 0,
and we obtain the following:

Aν→Zν(λ = ±1) = −
∫

d4x
√
−g
(

e0

sin(2θW)

)
(Up′ ,σ′)ν(x)γîej

î

(
1 − γ5

2

)
(Upσ)ν(x) f ∗jP ,λ=±1,Z(x). (5)

The spatial integrals give the delta Dirac function expressing the momentum conser-
vation in the emission process. For the temporal integral, the new integration vari-
able is z = −tc [16,17], and we use Bessel K functions by transforming the Hankel func-
tions H(1,2)

ν (z) = ∓
(

2i
π

)
e∓iπν/2Kν(∓iz). Then, the amplitude equations for λ = 0 and

λ = ±1 are

Aν→Zν(λ = 0) = e0
sin(2θW )

δ3(P⃗ + p⃗ ′ − p⃗ ) 1√
π(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
×
{

Pω
MZ

A(tc)ξ
+
σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = 0)ξσ( p⃗ ) + Pω

MZ
C(tc)ξ+σ ( p⃗ ′)ξσ( p⃗ )

}
,

(6)

Aν→Zν(λ = ±1) = e0
sin(2θW )

δ3(P⃗ + p⃗ ′ − p⃗ ) 1√
π(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
×
{

B(tc)ξ
+
σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = ±1)ξσ( p⃗ )

}
,

(7)

The notations A(tc), B(tc), C(tc) stand for the following temporal integrals:

A(tc) =
∫ ∞

0 dz
√

z e−i(p′−p)zK−ik(iPz) 1
P

(
1
2 − ik

)
− i
∫ ∞

0 dzz3/2 e−i(p′−p)zK1−ik(iPz),

C(tc) = i
∫ ∞

0 dzz3/2 e−i(p′−p)zK−ik(iPz),

B(tc) = i
∫ ∞

0 dz
√

z e−i(p′−p)zK−ik(iPz).

(8)

By using the results for the integrals with Bessel functions [24], the final forms for the
amplitudes are

Aν→Zν(λ = 0) =
e0

sin(2θW)
δ3(P⃗ + p⃗ ′ − p⃗ )

1
(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
×
{

Ak(P , p, p′)ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = 0)ξσ( p⃗ )

+Ck(P , p, p′)ξ+σ′( p⃗ ′)ξσ( p⃗ )
}

,

Aν→Zν(λ = ±1) =
e0

sin(2θW)
δ3(P⃗ + p⃗ ′ + p⃗ )

1
(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
×
{

Bk(P , p, p′)ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = ±1)ξσ( p⃗ )
}

.

(9)



Particles 2024, 7 278

The functions Ak(P , p, p′), Bk(P , p, p′), and Ck(P , p, p′) that define the amplitudes are

Ak(P , p, p′) =
i−3/2(2P)−ik

(P + p ′ − p)3/2−ik
ω

MZ
Γ
(

3
2
− ik

)
Γ
(

3
2
+ ik

)(
1
2
− ik

)
×2F1

(
3
2
− ik,

1
2
− ik; 2;

p′ −P − p
P + p′ − p

)
− i−3/2P(2P)1−ik

2(P + p′ − p)7/2−ik
ω

MZ
Γ
(

7
2
− ik

)
×Γ
(

3
2
+ ik

)
2F1

(
7
2
− ik,

3
2
− ik; 3;

p′ −P − p
P + p′ − p

)
,

Ck(P , p, p′) =
i−3/2P(2P)−ik

2(P + p′ − p)5/2−ik
ω

MZ
Γ
(

5
2
− ik

)
Γ
(

5
2
+ ik

)
× 2F1

(
5
2
− ik,

1
2
− ik; 3;

p′ −P − p
P + p′ − p

)
,

(10)

Bk(P , p, p′) =
i−1/2(2P)−ik

(P + p′ − p)3/2−ik Γ
(

3
2
− ik

)
Γ
(

3
2
+ ik

)
× 2F1

(
3
2 − ik,

1
2
− ik; 2;

p′ −P − p
P + p′ − p

)
.

(11)

The final result is dependent on Gauss hypergeometric functions 2F1 and gamma

Euler functions Γ. The amplitudes depend on gravity via the parameter k =

√(
MZ
ω

)2
− 1

4 .

We also observe that the ratio between the Z boson mass and the expansion parameter
MZ
ω , as well as the momenta p, p′, and P , determine the analytical structure of the ampli-

tudes. The delta Dirac function δ3(P⃗ + p⃗ ′ − p⃗ ) ensures the momentum conservation in
the process of Z boson emission by neutrino, and this factor will play a key role in the
computations for obtaining the transition rate. Because the amplitude is proportional to the
delta Dirac function δ3(P⃗ + p⃗ ′ − p⃗ ), one can define the transition probability per volume
unit, i.e., |δ3( p⃗ )|2 = Vδ3( p⃗ ). For the production of Z bosons with λ = 0, the probability is

Pν→Zν(λ = 0) = |Aν→Zν(λ = 0)|2 =
e2

0
sin2(2θW )

δ3(P⃗ + p⃗ ′ − p⃗ ) 1
(2π)3(

1
2 − σ

)2( 1
2 − σ′

)2
{
|Ak(P , p, p′)|2|ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = 0)ξσ( p⃗ )|2

+|Ck(P , p, p′)|2|ξ+σ′( p⃗ ′)ξσ( p⃗ )|2

+A∗
k (P , p, p′)Ck(P , p, p′)(ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = 0)ξσ( p⃗ ))∗(ξ+σ′( p⃗ ′)ξσ( p⃗ ))

+C∗
k (P , p, p′)Ak(P , p, p′)(ξ+σ′( p⃗ ′)ξσ( p⃗ ))∗(ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = 0)ξσ( p⃗ ))

}
.

(12)

The probability for the generation of transversal modes with λ = ±1 is

Pν→Zν(λ = ±1) = 1
2 ∑λ |Aν→Zν(λ = ±1)|2 =

e2
0

sin2(2θW )
δ3(P⃗ + p⃗ ′ − p⃗ ) 1

(2π)3(
1
2 − σ

)2( 1
2 − σ′

)2
{

1
2 ∑λ |Bk(P , p, p′)|2|ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ = ±1)ξσ( p⃗ )|2

}
.

(13)

Plotting the square modulus of the functions that define the probability for λ = 0,±1,
and taking the values on graphs from MZ/ω = 0, we obtain the results from
Figures 1 and 2.



Particles 2024, 7 279

Figure 1. |Bk|2 as a function of parameter MZ/ω. Solid line is for p = 0.3, p′ = 0.6,P = 0.1, while
the point line is for p = 0.2, p′ = 0.6,P = 0.3 . |A(0)|2 as a function of parameter MZ/ω. Solid line is
for p = 0.3, p′ = 0.6,P = 0.1, while the point line is for p = 0.2, p′ = 0.6,P = 0.3 .

Figure 2. |Bk|2 as a function of parameter MZ/ω. Solid line is for p = 0.2, p′ = 0.8,P = 0.1, while
the dotted line is for p = 0.5, p′ = 0.8,P = 0.2 . |A(0)|2 as a function of parameter MZ/ω. Solid line
is for p = 0.2, p′ = 0.8,P = 0.1, while the dotted line is for p = 0.5, p′ = 0.8,P = 0.2 .

Figures 1 and 2 show the variation of the probability density with the parameter
MZ/ω and prove that the process of Z boson emission is important when the Hubble
parameter is larger than the mass of the boson. Another consequence of the graphs is
that the probability is finite and non-vanishing for ω >> MZ and also for k = 0 or

MZ/ω = 1
2 . The ratio used in our graphs must be understood as MZ c2

h̄ ω and we observe
that the probability is non-vanishing as long as the energy of the background is larger or
has the same order as the rest of the energy of the Z boson. This result corresponds to
the well-established knowledge that places the Z bosons production in the early universe.
Our graphical results for the probability prove that in the Minkowski limit MZ/ω → ∞,
the probabilities are vanishing, and this result can also be obtained by taking the limit in
Equations (12) and (13). We can conclude that the process of Z boson emission by a neutrino
is possible as a perturbative process only in early universe when the expansion factor is
much larger than the Z boson mass.
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3. Total Probability

In this section, we will analyze the situation when the expansion parameter ω is much
larger than the Z boson mass. We will analyze the case of transversal polarization with
λ = ±1. This can be achieved by observing that in Equation (8), the algebraic argument
of the Bessel K functions become very small when t → ∞, and we can use the following
formula [24]:

Kν(z) ≃
Γ(ν)

2

(
2
z

)ν

, z → 0, (14)

where the real part of the index must meet the condition Re(ν) > 0. In order to study
the case where the expansion parameter is larger than the mass of the Z boson, we
will consider the situation where MZ/ω << 1/2. We mention that both the probabil-
ities and amplitudes have a good behaviour in terms of parameter of the MZ/ω (see
Figures 1 and 2). We compute the total probability of transition in the case of large expan-
sion, when MZ/ω → 0 and the index of Bessel K functions becomes −ik → 1

2 . The total
probability is obtained by solving the integrals after the final momenta. These kinds of
integrals are in general divergent, and we will apply a method for regularization.

Ptot =
∫

d3P
∫

d3 p′ Pi→ f . (15)

First, we obtain the transition amplitude in the limit MZ/ω → 0 by using
Equations (8) and (11):

Aν→Zν(λ = ±1) =
e0

sin(2θW)

δ3
(→

P+
→
p
′
−→

p
)

(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
1√

2iP(P+p′−p)

×ξ+σ′

(→
p
′)→

σ ·→ϵ
∗
ξσ

(→
p
)

.

(16)

Then, the total probability expression of Z boson emission by a neutrino in the limit of large
expansion is

Ptot =
1
2 ∑

λ

∫
d3P

∫
d3 p′

e2δ3(P⃗ + p⃗ ′ − p⃗)
2(2π)3 sin2(2θW)P(P + p′ − p)2

(1
2
− σ

)2(1
2
− σ′

)2∣∣ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗∗ξσ( p⃗ )
∣∣2 (17)

To facilitate our calculations, we need to consider the case where the particles’ momenta are
in the same direction, that is the z-axis, in such a way that the angle between the momenta
vectors is 0, i.e., p⃗ = p e⃗3 , p⃗ ′ = p′ e⃗3. In this case, the bispinor summation is reduced to
a number. The momentum of the Z boson is also considered on the third axis such that
P⃗ = P e⃗3. Then, the momenta integrals in total probability expression are

I =
1

(2π)3

∫
d3P

∫
d3 p′

δ3(P⃗ + p⃗ ′ − p⃗)
P(P + p′ − p)

=
1

(2π)3

∫
d3P

1
2P(p − P)2 , (18)

where we perform the delta Dirac integration, and finally we obtain an integral that
is logarithmically divergent. To obtain a finite result, we will apply the dimensional
regularization proposed in [25–27]. Then, we will replace our integral with a D-dimensional
momenta integral as follows:

I(D) =
1
2

∫ dDP
(2π)D

1
P(p − P)2 =

2πD/2

2(2π)DΓ
(D

2
) ∫ ∞

0
dP

PD−1

P(p − P)2 . (19)
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The new variable P = −py is introduced to obtain the integral of the Beta Euler
function [24], as given in Appendix B, and the final result is

I(D) =
2πD/2 pD−3

2(2π)DΓ
(

D
2

) ∫ ∞
0

dy·yD−2

(1+y)2

=
2πD/2 pD−3Γ(D − 1)Γ(3 − D)

2(2π)DΓ
(

D
2

) .

(20)

Because the result is still divergent for D = 3, we will use the relation between gamma
Euler functions zΓ(z) = Γ(1 + z) to obtain Γ(3 − D) = Γ(4−D)

(3−D)
, which allows us to rewrite

I(D) as

I(D) =
2πD/2 pD−3Γ(D − 1)Γ(4 − D)

2(2π)DΓ
(D

2
)
(3 − D)

. (21)

We observe that the above function is divergent in D = 3, and to remove the divergence,
we use the method of minimal subtraction proposed in [27]. The pole of I(D) in D = 3 has
the following residue:

ResI(D) = lim
D→3

(D − 3)I(D) = − 1
4π2 . (22)

The method of minimal subtraction allows one to choose a counter-term dependent on a
mass parameter µ with the general form µsR

D−3 , where s is taken such that the dimension of
I(D) remains the same. Then, the renormalized integral is

I(D)r = I(D) +
µD−3

4π2(D − 3)
(23)

=
1

D − 3

(
2πD/2 pD−3Γ(D − 1)Γ(4 − D)

2(2π)DΓ
(D

2
) − µD−3

4π2

)
. (24)

The parenthesis from the above equation can be expanded around D = 3, and the result is

2πD/2 pD−3Γ(D − 1)Γ(4 − D)

2(2π)DΓ
(D

2
) − µD−3

4π2 =
(D − 3)

8π2

[
2 − ln

(4πµ2

p2

)
− ψ

(3
2

)]
+O((D − 3)2), (25)

where Ψ(3/2) is the digamma Euler function. Using this method, we successfully cancel
the divergent term D − 3, and the final result of the renormalized integral is finite:

I(D)r =
1

8π2

[
2 − ln

(4πµ2

p2

)
− ψ

(3
2

)]
. (26)

The final expression for the total probability for the process of Z boson emission by a neu-
trino in the early universe depends on the fundamental constants of the electro-weak theory

Ptot =
e2

16π2 sin2(2θW)

[
2 − ln

(4πµ2

p2

)
− ψ

(3
2

)]
=

√
2M2

W GF sin2 θW

4π2 sin2(2θW)

[
2 − ln

(4πµ2

p2

)
− ψ

(3
2

)]
(27)

where in the second equality, we introduce the Fermi constant GF, i.e., e2 = 4
√

2M2
W GF

sin2 θW , with MW representing the mass of the W boson.

4. The Rate of Transition

In the previous section, we computed the total probability for the process of Z boson
emission by a neutrino in de Sitter geometry, but a fundamental problem is related to
the computation of measurable quantities for such a process. For that, we will compute
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the rate of transition in this geometry, following the results obtained in [28] for the Milne
universe. Consider the transition amplitude between the initial and final state in a de Sitter
space–time of the form:

Ai f = δ3( p⃗ f − p⃗i)Mi f Ii f , (28)

where the delta functions assure the momentum conservation in the process. In
Equation (28), the usual delta function of energy δ(E f − Ei) is missing in de Sitter am-
plitudes. This problem comes from the temporal integrals denoted by Ii f :

Ii f =
∫ ∞

0
dtKi f , (29)

whose results do not give the usual δ(E f − Ei) as in Minkowski space–time but instead have
a rather complex dependence on hypergeometric Gauss functions as in Equations (6)–(8).
The rate of transition is defined in Minkowski space–time by using the fact that the four
delta Dirac functions δ4(p) when squared give the usual δ(0)δ3(0) = 1

(2π)4 VT, where V is
the volume and T is the interaction time. Then, the rate is obtained dividing the probability
by VT, or in other words, the rate is the probability derivative with respect to time. Since in
de Sitter geometry this is no longer valid, we adopt the definition given in [28], where the
derivative with respect to time is applied on the integrals Ii f . These integrals are written in
terms of conformal time tc, and the transition rate will be defined in conformal chart {tc, x⃗}
where we expect that the results are similar to those from the following Minkowski metric:

Ri f = lim
tc→0

1
2V

d
dtc

|Ai f |2 = lim
t→∞

eωt

2V
d
dt
|Ai f |2. (30)

The above result for the rate of transition can be written now as shown below:

Ri f =
1

(2π)3 δ3( p⃗ f − p⃗i)|Mi f |2|Ii f | lim
t→∞

|eωtKi f |, (31)

where Ki f represents the integrands from the temporal integrals given in Equations (8).
Since in the present paper, the transition between states in a continuum spectrum are
discussed, then to obtain the rate, we must integrate after the final momenta in Equation (31).
Then, the rate definition for the process of Z emission by a neutrino is

Rν→Zν =
1

(2π)3

∫ d3 p′

(2π)3

∫ d3P
(2π)3 δ3(P⃗ + p⃗ ′ − p⃗ )∑

λ

|Mν→Zν(λ)|2|Iν→Zν(λ)| lim
t→∞

|eωtKν→Zν(λ)|, (32)

where Iν→Zν are the temporal integrals given in Equation (8) with the results given in
Equations (10) and (11). The quantity Mν→Zν(λ) is proportional to the coupling constants
and the polarization terms ξ+− 1

2
( p⃗ ′ )⃗σ · ϵ⃗ ∗ (⃗nP , λ)ξ− 1

2
( p⃗ ). The function Kν→Zν(λ) repre-

sents the integrands from Equation (8). All these quantities depend on λ. Knowing that
the neutrino polarizations are fixed σ = σ′ = − 1

2 , we need to sum only after the Z boson
polarizations λ.

The transition rate can be evaluated in the limit where the expansion parameter is
larger than the mass of the Z boson by using the amplitude equation in this limit:

Aν→Zν(λ = ±1) =
ie0

sin(2θW)

δ3
(→

P+
→
p
′
−→

p
)

(2π)3/2

(
1
2 − σ

)(
1
2 − σ′

)
×
∫ ∞

0 dz
√

z e−i(p′−p)zK1/2(iPz)ξ+σ′

(→
p
′)→

σ ·→ϵ
∗
ξσ

(→
p
)

.

(33)

In the present case of large expansion, Iν→Zν has the following expression:

Iν→Zν = i
∫ ∞

0
dz
√

z e−i(p′−p)zK1/2(iPz) =
√

π

2iP
1

p′ + P − p
, (34)
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while Mi f is given by

Mi f =
e0

(2π)3/2 sin(2θW)
ξ+σ ′( p⃗ ′ )⃗σ · ϵ⃗∗ξσ( p⃗ ). (35)

The limit from Equation (31) can be obtained by using the integrand in Equation (34):

lim
t→∞

∣∣∣eωtKν→Zν

(MZ
ω

= 0
)∣∣∣ = √

π√
2P

. (36)

Putting all the above quantities together and summing after the polarization, we
obtain the transition rate:

Ri→ f =
1
2 ∑

λ

e2
0 δ3(P⃗ + p⃗ ′ − p⃗)

∣∣ξ+σ′( p⃗ ′ )⃗σ · ϵ⃗∗ξσ( p⃗ )
∣∣2

(2π)6 sin2(2θW)2P(P + p′ − p)
, (37)

which can be simplified by choosing the momenta of particles in the same direction:

Ri→ f =
e2

0

sin2(2θW)

δ3(P⃗ + p⃗ ′ − p⃗ )
(2π)64P(P + p′ − p)

(38)

The total transition rate is obtained by integration after the final momenta:

Rtot =
∫

d3P
∫

d3 p′ Ri→ f =
1

(2π)3

∫
d3 p′

∫
d3P

δ3(P⃗ + p⃗ ′ − p⃗ )
P(P + p′ − p)

. (39)

The momenta integral that needs to be computed is shown below:

I =
1

2(2π)3

∫
d3P

1
P(p − P)

. (40)

In this case, we also use the dimensional regularization [25–27], and the D-dimensional
integral reads

I(D) =
1

2(2π)D

∫ dDP
P(p − P)

=
1

2(2π)D
2πD/2

Γ
(

D
2

) ∫ ∞
0 dP

PD−1

P(p − P)

=
−2πD/2 pD−2

2(2π)DΓ
(

D
2

) ∫ ∞
0

dy yD−2

(1 + y)
,

(41)

where the last equality in the above equation is obtained by making the variable change
P = −py. The final result of the integral is obtained by using the definition of the Beta
Euler function as shown:

I(D) = − 2πD/2 pD−2

2(2π)DΓ
(D

2
) Γ(D − 1)Γ(2 − D)

Γ(1)
, (42)

which is divergent for D = 3. To remove the divergence, we apply the method of minimal
subtraction [27]. First, we rewrite the divergent gamma function as

Γ(2 − D) =
Γ(3 − D)

(2 − D)
=

Γ(4 − D)

(2 − D)(3 − D)
(43)
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Then, I(D) becomes

I(D) = −2πD/2 pD−2Γ(D − 1)
2(2π)DΓ

(D
2
) Γ(4 − D)

(2 − D)(3 − D)
(44)

The residue in D = 3 is then computed

ResI(D) = lim
D→3

(D − 3)I(D) = − p
4π2 . (45)

Then, the regularized integral is obtained by choosing a counter-term with the same
dimension [27]

I(D)r =
1

(D − 3)

[
2πD/3 pD−2Γ(D − 1)Γ(4 − D)

(2π)DΓ
(D

2
)
(2 − D)

+
pµD−3

4π2

]
, (46)

where µ is a bosonic mass parameter. The parenthesis expansion around D = 3 then gives
the following: 2πD/3 pD−2Γ(D − 1)Γ(4 − D)

(2π)DΓ
(

D
2

)
(2 − D)

+
pµD−3

4π2


≃

( p
8π2

)[
ψ

(
3
2

)
+ ln

(
4πµ2

p2

)]
+O

(
(D − 3)2

)
.

(47)

In this way, one can obtain the regularized result for the momenta integral:

I(D)r =
p

8π2

[
ψ
(3

2

)
+ ln

(4πµ2

p2

)]
. (48)

The total transition rate is then given by a finite expression:

Rtot =
e2

(2π)3 sin2(2θW)

p
32π2

[
ψ
(3

2

)
+ ln

(4πµ2

p2

)]
=

√
2M2

W GF sin2 θW

(2π)3 sin2(2θW)

p
8π2

[
ψ
(3

2

)
+ ln

(4πµ2

p2

)]
(49)

In Equation (49), we can obtain a numerical estimation for the transition rate of a
Z boson emission by neutrino. Furthermore, one can establish the density number of Z
bosons by taking into account the density numbers of neutrinos at different temperatures.
For a very large number of neutrinos, this process could have an important impact to the Z
boson generation, as we will discuss in the following section.

5. Density Number of Z Bosons

In the process of Z boson emission by neutrinos, the density number of neutrinos will
determine the density number of Z bosons. For this reason, we define the density number
of Z bosons with our transition rate given in Equation (49), as follows:

nZ =
Rν→Zν

Rd
n′

ν, (50)

where Rd is the rate of Z boson decay and n′
ν is the density number of neutrinos in the

conditions of early universe with the observation that all three species will be taken into
account. It is a well-established fact that the Z bosons decay into fermion–anti-fermion
pairs and hadrons. The total rate of the decay for the Z boson is the sum of the mentioned
rates, and in Minkowski field theory, its value is Rd = 2.5 GeV [29]. For the very early
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universe, the temperatures of photons and neutrinos are supposed to be equal (Tγ = Tν)
such that the relations between the number of photons and neutrinos is [30]

n′
ν =

9
4

n′
γ =

9
4

2ζ(3)
π2

(
kBT′

h̄c

)3

, (51)

where the primed values describe the density numbers in the early universe. From
Equation (51), it is clear that the density number of neutrinos in the early universe will be
higher, and we can say that the universe was dominated by neutrinos. As the temperature
decreases and the universe expands, the neutrinos decouple and the number of neutrinos
remains constant. This situation happens at temperatures around 1010 K. Now, let us
comment on the implications in relation with our rate given in Equation (49).

Using the equations for the decay rate of Z bosons (49) and the number of neutrinos (51),
the final equation for the density number of Z bosons produced in emission processes by
neutrinos is

nZ =

√
2M2

W GF sin2 θW

(2π)3 sin2(2θW)Rd

p
8π2

[
ψ
(3

2

)
+ ln

(4πµ2

p2

)]
n′

ν (52)

Taking into account the results given in Equations (51), we can obtain the density
number of Z bosons per cubic centimeter produced in emission processes by neutrinos.
For example, we set the temperature at T′ = 1014 K. The density number of neutrinos
given in Equation (51) is n′

ν = 4.56 · 1043. Then, the density number of Z bosons per cubic
centimeter obtained from Equation (52) is

nZ ≃ 7 · 1037 cm−3, (53)

where we take the ration µ2

p2 from the logarithm to be equal approximately to one. This

result shows that in each cubic centimeter, we have around 1037 Z bosons, when the
temperature was 1014 K. Using Equation (52), one can obtain the number densities of Z
bosons at different temperatures with the observation that for a realistic evaluation, we
need to keep the values around the temperatures specific to the end of the electro-weak
epoch and hadron epoch when the Z bosons become massive [31]. Another observation
is related to the fact that in our estimation, we use the decay rate from Minkowski theory.
This result can be improved by using the decay rates in de Sitter space–time that also need
to be evaluated in the limit of a large expansion factor.

At earlier times and high temperatures, it is also possible to study the number of
Z bosons with the observation that the mass of the Z boson could be smaller or close to
zero in these conditions, because the mass is related to the expectation values of the Higgs
field. Another important step for a better understanding of our results is related to the
establishing of the variation of the Z boson mass with the temperature via the expansion
parameter, or the dependence on the form MZ[T(ω)], where ω is the Hubble constant. This
is an important issue that we hope to analyze in future research.

If the finite temperatures are considered, then the forbidden processes from Minkowski
theory are allowed because of the energy received from the thermic bath, and this could be
seen as similar to a certain degree to what the gravitational field can do on de Sitter space–time.
This means that in the early universe, the thermic effect and the expansion effect could
compete as mechanisms that generate particle production. For this reason, it is important
to study both effects for a complete picture related to the problem of matter–antimatter
generation in the early universe.

6. Conclusions

In this paper, we investigate the problem of particle production in the early universe
by using a perturbative method that accounts for the generation of particles through fields’
interactions. Our results prove that for a clear picture of the mechanisms that were involved
in matter production in the early universe, one should take into account the perturbative
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mechanism based on computations of the first-order transition amplitudes that have non-
vanishing contributions in a non-stationary geometry. The mechanism proposed here could
be one of the possible explanations for the abundance of Z bosons in the conditions of
the early universe. We must point out that the rate computed in our paper is valid in the
conformal chart {tc, x⃗}, and the result was obtained by using the modes for the Dirac field
and Proca field, which are defined globally in de Sitter manifold. Thus, we do not obtain
the rate dependence on the observer, since this will imply the using of different modes in
different charts and the Bogoliubov transformations. However, the perturbative result for
the rate should be considered along with the cosmological results for a complete picture
regarding the problem of particle production in the early universe, as was proved in [19].
To the best of our knowledge, the problem of cosmological production of massive bosons is
less studied in the literature, and we hope that our perturbative results will be the start of
the study of the Bogoliubov transformations in the case of the Proca field, which should also
give the non-perturbative density number of massive bosons. One of the notable results
related to the production of massive vector bosons in the FRLW universe was obtained
in [32], where the density number was obtained using the Bogoliubov transformations.
For further studies, it will be interesting to establish the behavior of the transition rate (32)
and density number (52) at isometry transformations on de Sitter space–time. This should
establish the invariance of this quantities in de Sitter geometry.

Our process is possible only in the early universe conditions where the expansion
parameter is much larger than the Z boson mass, and this confirms the important results
obtained in [19,33–35]. In these papers, the authors prove that the processes that involve
particle production are possible only in early stages of the universe. Moreover, in [19], a
perturbative method is used, and the results prove that the perturbative mechanism of
particle production could become dominant in certain conditions. The results obtained in
the present paper are in agreement with the important results mentioned above, and in
addition is the first result from the literature that proposes the production of a Z boson in
emission processes by neutrinos.

For a more complete result, all the perturbative processes that produce massive Z
bosons must be studied in de Sitter space–time. The next step in this direction would be
the study of the transition rates for the decays of the Z bosons into fermions in de Sitter
geometry and their Minkowski limits, which are finite. Then, the total number of Z bosons
could be in principle obtained for each process as the ratio between the production rates
and the decay rates. Our present results also prove that the density number of Z bosons
depends on temperatures that are specific to the end of the electro-weak epoch when the
bosons become massive. In the Minkowski limit, when the expansion parameter is zero,
the transition probabilities and rates are vanishing, and we recover the well-known result
that the spontaneous Z boson generation by a neutrino in flat space–time is not allowed
by the conservation of momentum and energy. Our results prove that in the conditions of
the early universe, the Z bosons could be produced directly in spontaneous emission from
vacuum with two fermions vac → Z + f f̃ [2] or in emission processes by fermions, as we
prove in the present study. These massive bosons could exist as stable particles in the early
universe as long as the background energy was bigger or to the order of their rest energy,
and these conditions are no longer met for the present-day expansion.
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Appendix A. Free Fields in de Sitter Geometry

In Equation (2), the solutions of the Dirac equations for zero mass field (Upσ)ν(x) are
used. These solutions describe the neutrino field in de Sitter geometry, and their explicit
form was obtained in [20]

(Up⃗,σ(x))ν =

(
−ωtc

2π

)3/2(
( 1

2 − σ)ξσ( p⃗ )
0

)
ei p⃗·⃗x−iptc . (A1)

The form of the helicity bispinors can be expressed as follows [15]:

ξ 1
2
( p⃗ ) =

√
p3 + p

2p

(
1

p1+ip2
p3+p

)
, ξ− 1

2
( p⃗ ) =

√
p3 + p

2p

(
−p1+ip2

p3+p
1

)
, (A2)

while ησ( p⃗ ) = iσ2[ξσ( p⃗ )]∗. These spinors satisfy the following relation:

σ⃗ p⃗ ξσ( p⃗ ) = 2p σξσ( p⃗ ) (A3)

with σ = ± 1
2 , where σ⃗ are the Pauli matrices and p =| p⃗ | is the modulus of the momentum

vector. In the case of a Proca field, the temporal and spatial solutions in de Sitter geometry
are obtained in [21]. The spatial part of the solution is given by

f⃗P⃗ ,λ(x) =


i
√

πωPe−πk/2

2MZ(2π)3/2

[
( 1

2 + ik)
√
−tc
P H(1)

ik (−P tc)− (−tc)3/2H(1)
1+ik(−P tc)

]
eiP⃗ x⃗⃗ϵ (⃗nP , λ) for λ = 0

√
πe−πk/2

2(2π)3/2

√
−tcH(1)

ik (−P tc)eiP⃗ x⃗⃗ϵ (⃗nP , λ) for λ = ±1.
(A4)

while the temporal part of the solution of the Proca equation [21] is given by:

f0P⃗ ,λ(x) =


√

πωPe−πk/2

2MZ(2π)3/2 (−tc)3/2H(1)
ik (−P tc)eiP⃗ x⃗ for λ = 0

0 for λ = ±1.
(A5)

In the solutions for the Proca equation on a momentum basis, the polarization vectors
are n⃗P = P⃗/P and ϵ⃗ (⃗nP , λ). For λ = ±1, the polarization vectors are transversal,
P⃗ · ϵ⃗ (⃗nP , λ = ±1) = 0. In the case λ = 0, the polarization vectors are longitudinal
on the momentum P⃗ · ϵ⃗ (⃗nP , λ = 0) = P , since ϵ⃗ (⃗nP ,λ=0) = n⃗P . The notation for the mass

of the Z boson is MZ, and the parameter k =

√(
MZ
ω

)2
− 1

4 is dependent on the ratio MZ
ω ,

and the condition MZ
ω > 1

2 assures that the index of the Hankel function is imaginary.

Appendix B. Integrals for Obtaining the Amplitude and Rate

The temporal integrals from amplitude are of the following type [24]:

∫ ∞
0 dzzµ−1e−αzKν(βz) =

√
π(2β)ν

(α + β)µ+ν

Γ(µ + ν)Γ(µ − ν)

Γ
(

µ +
1
2

)
×2F1

(
µ + ν, ν +

1
2

; µ +
1
2

;
α − β

α + β

)
,

Re(α + β) > 0 , |Re(µ)| > |Re(ν)|.

(A6)
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The integral of the Beta Euler function is given by

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

=
∫ ∞

0
dy

ya−1

(1 + y)a+b (A7)

and in our case, the values for arguments are a = D − 1 , b = 3 − D .
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