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Abstract: For decades, conventional wisdom maintained that binary 0-1 Bernoulli random variables
cannot contain extra-binomial variation. Taking an unorthodox stance, Hilbe actively disagreed,
especially for correlated observation instances, arguing that the universally adopted diagnostic
Pearson or deviance dispersion statistics are insensitive to a variance anomaly in a binary context,
and hence simply fail to detect it. However, having the intuition and insight to sense the existence of
this departure from standard mathematical statistical theory, but being unable to effectively isolate it,
he classified this particular over-/under-dispersion phenomenon as implicit. This paper explicitly
exposes his hidden quantity by demonstrating that the variance in/deflation it represents occurs
in an underlying predicted beta random variable whose real number values are rounded to their
nearest integers to convert to a Bernoulli random variable, with this discretization masking any mate-
rialized extra-Bernoulli variation. In doing so, asymptotics linking the beta-binomial and Bernoulli
distributions show another conventional wisdom misconception, namely a mislabeling substitution
involving the quasi-Bernoulli random variable; this undeniably is not a quasi-likelihood situation. A
public bell pepper disease dataset exhibiting conspicuous spatial autocorrelation furnishes empirical
examples illustrating various features of this advocated proposition.
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1. Introduction

Extra-dispersion (i.e., over-/under-dispersion)—the failure of data conveying align-
ment with a particular non-normal probability model to display a second central moment
equaling its specified theoretical variance—tends to plague generalized linear model (GLM)
applications, including logistic binomial regression. Logistic regression seems to be the first
GLM explicitly implemented in successful reputable commercial software packages [a SAS
(version 5, 1985) nonlinear regression procedures (PROC NLIN) capable of, but not dedi-
cated to, implementing logistic and Poisson regression appeared earlier]| —apparently by
Stata (version 2.0) in 1986; Statistical Package for the Social Sciences (SPSS; version PC+ 2.0)
in 1987; Statistical Analysis System (SAS; version 4.0) in 1988; and Minitab (version 4.0) in
1993 (estimated 2022 market shares are: SAS, 35%; SPSS, 25%; Stata, 20%; and Minitab, 15%).
This was followed by proprietary implementations of Poisson regression (although Pois-
son [1] first introduced the concept of his eponymous regression in 1837)—apparently by
Stata (version 2.0) in 1986; Minitab (version 4.0) in 1993; SAS (version 7.0) in 1995; and SPSS
(version PC+ 15.0) in 2001. Cramer [2] furnishes a logistic regression history, beginning with
its first detailed mentioning by Verhulst (p. 8, [3]) [4], through its logit conceptualization
by Berkson [5], to its emergence as the binomial random variable specification of choice
after 1970 because of its computational simplicity, appealing mathematical properties, and
empirical generalizability across a diverse set of academic disciplines. Other now obsolete
software packages, such as the Generalized Linear Interactive Modelling (GLIM Release
#4 was its last version; from the Royal Statistical Society) and Bio-Medical Data Package
(BMDP Release #7 apparently was its last version; developed in 1965 by Wilfrid Dixon,
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and discontinued in 2017), implemented these types of GLM regression as early as 1974.
Prior to that time, normal curve theory tended to dominate applied statistical analyses and
estimation.

Bayes’s [6] discovery/derivation of the beta-binomial random variable—a compound
of the separate simple beta and binomial distributions—essentially remained dormant as a
vehicle to account for abnormal binomial variation until the mid-twentieth century, when
Skellam [7] formulated this precise use of it. Denoting the total number of dichotomized
objects (e.g., trials, exposures, at-risk items) by nt, quantitative scientists eventually de-
cided that over-dispersion required nt > 1: the prevailing view is that excess/deficient
Bernoulli variation is nonsensical. This claim became entrenched in the literature and, as
such, widely accepted and taught in the applied statistics community (e.g., (p. 419, [8]);
(p- 241, [9]); (p. 415, [10])). Its principal rationale maintains that the Bernoulli probability
model commonly employed to describe binary 0-1 data (frequently £1 in physics) has only
one parameter, p—the probability of an object belonging to one of two mutually exclusive
and collectively exhaustive groupings (e.g., a trial success, a disease infection case) that fully
determines its mean (i.e., p) and variance [i.e., p(1 — p)], resulting in any observed variance
in binary data being consistent with a Bernoulli random variable’s theoretical variance.
Hilbe [11], among relatively few other scholars, challenges this contention. Recognizing
many of his colleagues’ divergent arguments, he distinguishes between their technically
based assertion that replaces over-dispersed Bernoulli with quasi-binomial specifications,
on the one hand, and his notion of implicitly over-dispersed (which still is over-dispersion,
acknowledging more variability than theoretically permissible) Bernoulli random vari-
ables, on the other hand; his conviction also covers under-dispersion scenarios, which
tend to be rare events. The purpose of this paper is to bolster Hilbe’s perspective by more
fully explicating its meaning, utilizing a spatially autocorrelated Bernoulli distribution
for illustrative purposes. Therefore, this paper’s primary contribution to knowledge is a
deeper understanding of logistic regression over-dispersion, one that helps rectify serious
confusion at best, and a misconception at worst, lurking in the statistics literature for many
decades.

2. Selected Relationships between Bernoulli and Beta-Binomial Random Variables

The compound beta-binomial parametric mixture distribution is the outcome of a beta
conjugate prior defining the non-constant probability p (i.e., its probability density function)
of a binomial probability mass function—even parameters of discrete random variables
are continuous. Its particular instance of interest here is the beta-Bernoulli (i.e., nT = 1).
Accordingly, illumination of Hilbe’s implicit over-dispersion idea requires inspecting
variation in these two distributions. The variance of a standard Bernoulli distribution
is the well-known calculation p(1 — p). Next, for the beta distribution alone and in a
mixture—whose interpretation is a probability distribution of probabilities—the following
propositions, one pertaining to its variance, highlight some of its noteworthy properties.

Lemma 1. If a standard beta distribution has positive real shape parameters « and B = aK, then its
mean probability is 1/(K + 1).

Proof. fol y%y“‘l(l — ) lay =14k +1).0
Remark 1. The arithmetic average probability, say p, is a ratio function of the two shape parameters,
afa + B) = af(a + aK), with « increasing relative to B shifting the probability density skewness to
the right, toward zero, with B increasing relative to a shifting this skewness to the left, toward one,
and with « = B preserving symmetry as well as asymptotically concentrating the probability density
atp=1/2asa=p — oo.

Lemma 2. The mean standard beta probability p equals the mean beta-Bernoulli mixture probability
1/K +1).
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Proof. From Lemma 1, p =1/(K + 1) for the standard beta distribution. For the beta-Bernoulli

mixture distribution, 2;:0 Yy r(yr?:c)) Fr((allz)yﬁ(ﬂ[ﬁar(%ﬁ;l)] =ua/[a(K+1)]=1/(K+1) =p. Thus,

in addition, 1 —p=K/(K+1). O

Remark 2. This result is directly observable from the well-known formulae for the respective
arithmetic averages of the two distributions: a/(a + B), and nta/(a + B).

Lemma 3. The limit of the beta-Bernoulli mixture distribution as its parameter o governing shape
goes to 0 is the standard Bernoulli distribution.

Proof. Let the symbol E denote the calculus of expectations operator; then the standard
Bernoulli moment generating function is E(e'¥) = (1 — p)e! O+ pe!*! = (1 — p) + pe’. Next, let
»F1 denote the hypergeometric function, then the beta-binomial mixture moment generating

function is oF1[~1, a; a(K + 1); 1 — ] = L _g e T AL el BalEll = K/ (K + 1) +

e! /(K + 1). From Lemma 2, this expression is equivalent to (1 — p) + pe'. O

Remark 3. According to the Moment Generating Function Uniqueness Theorem—if two random
variables X and Y have the same moment generating function, then they have the same probability
distribution ([12] pp. 652—-654)—the standard Bernoulli and the beta-Bernoulli distributions are
identical.

Corollary 1. The variance of the beta-Bernoulli mixture is p(1 — p).
Proof. A direct consequence of Lemmas 2 and 3. [

Remark 4. The beta-binomial random variable accounts for over-dispersion. This corollary implies
that a standard Bernoulli description of 0-1 values already contends with—and, more specifically,
masks—this excess binomial variation: Hilbe’s implicit over-dispersion.

These four propositions—which constitute easily proven claims that are helpful for
proving forthcoming theorems—summarize and document relevant established findings
using modestly more convenient mathematical notation, thus supplying necessary ingredi-
ents for uncovering a deeper meaning than the prevailing one of implicit extra binomial
(i.e., Bernoulli) variation affiliated with logistic regression.

3. Extra-Dispersion and Bernoulli Random Variables

Autocorrelation and heterogeneity are two primary random variable extra/excess
variation sources. This component pair, respectively, relates to the very popular and per-
vasive independent and identically distributed (iid) assumption that abounds in classical
mathematical statistics theory. The former is the source of interest here, with its particu-
lar manifestation as spatial autocorrelation subsequently furnishing specimen empirical
exemplifications. Meanwhile, the hypothesis this paper pursues is that the interval [0, 1]
contains an observed binary 0-1 value’s predicted/fitted real number counterpart that
then is rounded to its closest integer for analytical comparison purposes (see pp. 32-33,
54, 62, 68,125, 264, [13]), with this estimated beta random variable experiencing variance
inflation—in essence, Hilbe’s implicit over-dispersion; this rounding process (i.e., 0-0.5
becomes 0, and 0.5-1 becomes 1) obfuscates any materialized extra variation. Within this
setting, the following theorems emphasize important designated random variable features
for understanding such implicit over-dispersion. The first (ref. [14] presents an applicable
limit problem conceptualization in a blog-type web page format; beta-to-Bernoulli con-
vergence enjoys an impression of being well-known while lacking any habitually cited
published proof) is as follows:
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Theorem 1. The beta distribution variance asymptotically converges upon the 2-point Bernoulli
distribution variance as & — 0.

1 2Tw(K+1)] 4 aK-1, _ .t _
Proof. |; (y - ﬁ) Wy l1-y) y= (Kfl)z a(K+11)+1 ’ }E)% (Kfl)z a(K+11)+1 =

K/(K +1)?, which is the variance of the Bernoulli distribution (see Lemma 2)—the invariance
property of maximum likelihood estimators [15] means both logistic regression predicted
probabilities as well as their integer round-offs are maximum likelihood estimates. [

Remark 5. As o decreases toward zero, the affiliated probability density increasingly concentrates
at both endpoints of the interval [0, 1], the two Bernoulli random variable integer values (see
Figure 1). Because « > 0 and K > 0, and hence a(K + 1) + 1 > 1, then the fraction 1/[a(K + 1) + 1]
that gradually disappears represents the materializing variance inflation in this transition from a
beta to a Bernoulli random variable.

10 10

8 8
6 6
4 4
2 J 2
02 04 06 08 10 ] 02 04 06 08 10 ] 02 04 06 08 10
(a) (b) (9

Figure 1. Selected beta random variable plots: black lines denote « = 1; gray lines denote o« = 0.1; and
red lines denote o« = 0.0001. Left (a): K=1; u=p =1/2. Middle (b): K =3; p = p = 1/4. Right (c):
K=100; p=p=1/101.

Conjecture 1. If a < 0.001, then fll/z %y“‘l(l —y)"*dy ~ 1/(K + 1) is both the
beta and Bernoulli random variable mean (see Lemma 2; employing I’Hospital’s rule from calculus
discharges any concern about the case of a = 0).

Evidence. A numerical experiment computing the CDF beta(x, aK) values across the
interval [0.5, 1] fora =7/10,000,i=1,1.1,1.2,...,10,and K =1, 2, .. ., 100-9100 systematically
chosen replication possibilities—yields the linear regression equation CDF, x = —0.00002 +
1.00001/(K + 1)—the respective least squares parameter estimation deviations from 0 and 1
being consistent with the numerical precision rounding error—R? = 1, and MSE = 1.975 x
10719~ 0. O

Remark 6. Although a threshold larger than 0.001 may apply, the relevant demonstration here
concerns a beta random variable converging upon, and hence increasingly approximating, a binary
0-1 Bernoulli random variable. Figure 1 provides selected appropriate illustrative visualizations of
it; red lines in each of the three graphics comprising this figure effectively overlay the two vertical
and the single horizontal axes, depicting near-zero probability density across the [0, 1] interval
except at its two endpoints.

Next, Mielke [16] inspires the following assertion with a predecessor beta random
variable reparameterization similar to the one it uses:

Theorem 2. The over-dispersion magnitude accounted for in binary data is the Theorem 1 quantity
a(K+1)+1.

Proof. The beta variance is given by f01 (y— K"—Lf%y“*(l — ) gy = (Kfl)z

. . . . o n
m, whereas the beta-binomial mixture variance is given by ):ZLO (y— K"—ll)z ( yT>
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I'(y+a) T(np—y+aK) T[a(K+1)] _  nrK np+a(K+1)
I(a) [(aK) Tnr+a(K+1)] 7 (k+1)2 1+a(K+1)

dom variable, this second result reduces to K/ (K + 1)?, the asymptotic result for Theorem 1,
inflating the first variance by the quantity a(K + 1) + 1. [J

. Recognizing that ny = 1 for a Bernoulli ran-

frprral i)l g”f;r&(fﬁl)] , with 7”T[1"JZ;(DI‘<(5$ ) denoting

the variance inflation accounting for extra-binomial variance. The standard Bernoulli distribution
having nt = 1 reduces this variance inflation factor from 1 by creating a fraction whose positive
numerator becomes identical to its denominator. Essentially, then, rounding off the continuous
values to their corresponding integers, as suggested by Conjecture 1, masks any excess variance.

Remark 7. This outcome is equivalent to (1 — p)p

These formal postulates expose an operational meaning for Hilbe’s implicit over-
dispersion phrasing: the injected variance inflation creating extra binomial variation that
generates an increasingly conspicuous U-shape distributed beta random variable proba-
bility density function plot as its shape parameters & and «K (i.e., §) approach zero, in the
limit, respectively, concentrating K/(K + 1) and 1/(K + 1) of this total probability density
at the integer points 0 and 1 of the support interval [0, 1], an amount that a rational- or
irrational-to-integer numbers rounding routine ultimately masks.

Finally, the Lemma 3 proof bolsters this preceding deduction. Hilbe [11] comments that
many statistically literate quantitative scientists maintain that a true Bernoulli probability
model embraces no extra-dispersion because its observations are mutually independent.
Once these observations become (auto)correlated, this model is no longer truly Bernoulli
because it fails to adhere to the classical random variable’s correct distributional properties;
rather, it is technically a Bernoulli quasi-likelihood model, or more precisely a quasi-
binomial (i.e., quasi-Bernoulli) model. This description requires some contextualizing
discussion of the quasi-likelihood function notion.

The quasi-likelihood construct foregoes a formal specification of a joint data distri-
bution. Its methods derive estimators based exclusively on the first two moments (i.e.,
the mean and variance) of a joint distribution of individual data, playing an important
role in the analysis of correlated (e.g., spatially autocorrelated) data. Wedderburn [17]
introduces this concept to describe a mathematical expression that has similar properties
to the conventional log-likelihood function corresponding to some know probability dis-
tribution, allowing parameter estimation employing a straightforward extension of GLM
numerical algorithms when the assumption that a joint data distribution comes from the
exponential family is not necessarily tenable. Because quasi-likelihood estimating equa-
tions are homogeneous, estimation of a dataset’s mean is achievable in a setting where the
associated variance is off by a multiplicative constant (i.e., extra-dispersion). Instead of
deriving moments by beginning with the log-likelihood for a known exponential family
random variable, quasi-likelihood starts with the first two moments and then attempts
to reconstruct an appropriate log-likelihood function, with this resulting reconstituted
function being a quasi-likelihood one, adopting the Latin prefix quasi meaning “as if.” In
other words, by engaging a computational viewpoint, Wedderburn exploits the only two
necessary GLM estimation assumptions, namely specification of the mean (in terms of
regression parameters), and the relationship between the mean and the variance; this adap-
tation replaces a fully specified likelihood function for a known probability distribution.
These two distinct likelihood expressions exhibit similar algebraic and frequency properties,
but with quasi-likelihood possessing the additional advantage of supplying a legitimate
mechanism that accounts for over-dispersion. Furthermore, a correctly specified mean
function renders consistent regression parameter estimators that are less efficient than their
log-likelihood counterparts, with even an incorrectly specified variance function failing to
compromise their inferences. Therefore, the pertinent question now asks whether or not
the extra-dispersed Bernoulli is a quasi-Bernoulli random variable, which the following
theorem addresses:
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Theorem 3. The extra-dispersed Bernoulli distribution is not solely a quasi-Bernoulli random
variable.

Proof. The Lemma 3 proof proves that the standard Bernoulli and beta-Bernoulli distribu-
tions have exactly the same moment generating function, and thus all of their moments
are identical. Therefore, because the beta-Bernoulli random variable accounts for extra-
dispersion, and they have more than just their first two moments in common, the standard
Bernoulli is not a quasi-likelihood function. [J

Remark 8. The standard and beta-Bernoulli distributions equivalency establishes the presence
of implicit over-dispersion in the former case when correlated observations occur. Lemma 3 and
Conjecture 1 corroborate this perspective. Hilbe [11] also reasons that if binary Bernoulli values
aggregate into binomial random variables, and the latter grouped data have extra-dispersion, because
the observational information content of both is identical, the former also must have extra-dispersion,
stating that to claim otherwise is a logically inconsistent (i.e., fallacious) argument. In addition,
Lemma 3 declares that observation independence is not necessary for a binary response model to be a
true standard rather than a quasi-likelihood Bernoulli. Finally, Conjecture 1 shows how implicit
extra-dispersion happens in a correlated Bernoulli random variable.

The principal Bernoulli implication here is substantiation that Hilbe’s implicit extra-
dispersion exists.

4. An Empirical Example with Discussion: Spatial Autocorrelation in a Real World
Binary Georeferenced Random Variable (Also See [18])

Graham [19], and Gumpertz et al. [20] furnish a 20 by 20 grid, superimposed upon an
agricultural field plot, of geotagged Phytophthora root and crown rot disease incidence in bell
pepper plant data measured with a binary 0-1 presence—absence Bernoulli response vari-
able (see Figure 2); their analyses utilize an auto-logistic model, in keeping with Besag [21].
This section analyzes part of these geospatial data which display statistically significant
moderate positive spatial autocorrelation. These specimen data contain 61 infected plants,
yielding an empirical presence probability of 61/400 =2 0.1525 (i.e., the Bernoulli average
sample probability that a response of one occurs). Their spatial correlation indices (see
Figure 2), all of which are highly statistically significant (i.e., z-scores with critical region
p-values near zero), suggest the description of a geographic distribution containing moder-
ate positive spatial autocorrelation. The ensuing discussion examines the following three
spatial statistical specifications of a Bernoulli regression equation depiction of these data,
in turn: an auto-logistic (a spatial autoregressive form); a random effects (RE; a paramet-
ric mixture model form); and a Moran eigenvector spatial filter (MESF [22]; a standard
GLM form). Each is a purely spatial autocorrelation descriptor, deliberately lacking any
substantive covariates.

Hilbe [11] notes that extra-Bernoulli dispersion is not necessarily immediately apparent
from a simple inspection of the customary Pearson or deviance dispersion statistics. There-
fore, several preliminary alternative benchmark calculations now merit attention. The lo-
gistic regression intercept estimate (i.e., standard intercept-only GLM output), ignoring any
latent spatial dependency component for the bell pepper data, gives e~ 17151 /(1 + ¢~ 17151)
~ 0.1525 = 61/400, implying K = 5.5574. Meanwhile, replacing 0 with 1 x 107! and
1by 1—1 x 1071¢ in this dataset facilitates exploring the aforementioned beta-Bernoulli
convergence. A beta regression for this approximation involving a very slight perturbation
produces an estimated beta parameter sum of (« + aK) ~ 0.0905 (see [24]), and hence
& =0.0905/(5.5574 + 1) = 0.0138, confirming that both beta parameters for the diseased bell
pepper data are very close to zero; more specifically, the estimated beta parameter duo is
(0.0138, 0.0767), generating an extremely pronounced U-shaped distribution.
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z-score inferences based upon a +2.13 Bonfer-
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(a) (b)

Figure 2. Phytophthora root and crown rot disease incidence in bell pepper plants in an agricultural
field; filled black circle and circumpunct symbols, respectively, denote infected and healthy plants.
Left (a): the observed geographic distribution. Right (b): the spatial autocorrelation indices for
Figure 2a; see ref. [23].

4.1. The Bernoulli Auto-Logistic Spatial Statistical Model

Besag [21] devises this nearly successful auto-model conceptualization. His most suc-
cessful innovation is the auto-normal, which should not be a surprise given the historical
success of normal curve theory (see [25]); his near success is the auto-binomial, and hence its
special case of the auto-Bernoulli/logistic. At least one weakness of this latter formulation
is the pronounced covariation between its intercept and spatial autoregression parame-
ters [26], seriously complicating its interpretation. Another is that its joint distribution
estimation entails numerically intensive Markov chain Monte Carlo (MCMC) techniques,
not GLM algorithms. One outcome is that, in practice, pseudo-likelihood (a prefix from
the Greek word meaning false or untrue; [27])—maximizing the product of n conditional
densities—first proposed by Besag [28], has been preferred to MCMC estimation primarily
because of the former’s computational simplicity (i.e., ease of implementation as well as
an artificial likelihood profile concavity mimicking a likelihood function approximation),
combined with its ability to provide good mean response parameter estimates, although
not necessarily a sound inferential basis for them. This section summarizes selected pseudo-
likelihood findings because its focus is on the predicted probabilities computed with
parameter estimates, not inferences about these estimates themselves.

The auto-logistic equation may be written as follows (e.g., [29]):

Pr(yi _ 1) ~ ef(intercept+p Z]!‘:l Winj) / [1 + ef(intercept+p Z]-“Zl Winj) (1)

where Pr denotes probability, wj; is the (i,j)th cell entry in an n-by-n spatial weights matrix
capturing the locational configuration of geotagged observations (e.g., the regular square
lattice structure underlying Figure 2a, here with a rook adjacency definition attached to
it)—w;; > 0 if locations i and j are juxtaposed (i.e., their invisible regular square tessellation
mesh cells share a non-zero length common boundary), and 0 otherwise—and p denotes
the spatial autocorrelation parameter. Figure 3c portrays the map pattern focus of the
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spatial lag term: as the Moran coefficient and two positive spatial autocorrelation join
count statistics highlight, the coterminous patches of infected and noninfected plants
tend to increase the value of p, whereas, as the Geary ratio and third join count statistic
underscore, the boundaries of these patches coupled with isolated single and relatively
very small infected plant concentrations tend to decrease the value of p. Pseudo-likelihood
estimates employing the diseased bell pepper plant data are: intercept ~ —2.9346 and
P ~ 1.2773, using positive spatial weights matrix entries of 1. The aforementioned intercept
autoregressive parameter interpretation difficulty (also [30]) is evident in this output, e.g.,
the intercept estimates changes from —1.7151 to —2.9346), and p > 1. Meanwhile, the
accompanying pseudo-R? implication is that spatial autocorrelation accounts for roughly
40% of the geographic variation in diseased plants across the agricultural field plot under
study. The new simplified-parameters beta regression &(K + 1) is 3.4368. Substituting these
sundry computations into portions of Conjecture 1 reveals the following sequence (see
Figure 4a for their graphic portrayals),

independent observations: & ~ 0.5241, B ~ 29127, 62 ~ 0.1705> (from the
well-known variance formula),

spatially autocorrelated predicted probabilities: & ~ 0.5241,  ~ 2.9127, 6* ~ 0.2209>
Bernoulli random variable: & ~ 0.0138, (3 ~ 0.0767, 62 ~ 0.36002

Clearly these binary data have more variability than allowed by the conventional
Bernoulli distributional assumptions. Hilbe’s implicit over-dispersion accounting for this
beta-Bernoulli variance inflation is the difference between 0.22092, for the spatially autocor-
related data, and 0.17052, for their iid counterpart. Replacing these typically invisible or
glossed-over probabilities with the observed Bernoulli 0-1 values automatically relegates
the binary data variance to 0.3600?, masking these two hitherto hidden quantities.

4.2. The Bernoulli RE Spatial Statistical Model

Whereas the auto-normal is a complete success, in both its simultaneous (i.e., SAR) and
conditional autoregressive (i.e., CAR) renderings, and the auto-logistic and binomial are
partial successes, perhaps the most consequential Besag spatial dependency model failure
is the widely craved auto-Poisson [19], which is unable to characterize the inescapable
preponderance of positive spatial autocorrelation situations. Although this breakdown
feature extends to others of his auto-models (e.g., the auto-gamma, and the auto-negative
binomial his work motivated), with some of his peer spatial statisticians concocting awk-
ward remedies for its shortcomings (e.g., [31]) in order to salvage it, Besag and certain of
his colleagues [32] turned their attention to clustered statistical models that incorporate
RE—a notion whose basic idea Fisher [33] first articulated (p. 127, ref. [4] reports that
Eisenhart [34] invented this exact phrasing)—to account for the observation correlation-
induced clustering structure in, for example, binary data (i.e., a clustered Bernoulli random
variable [35]), thus allowing for more accurate estimation and inference when dealing
with correlated observations. Accordingly, they replaced his initial auto-models with RE
Gaussian mixture models—frequentist probability models, for example, describing data
containing repeated measures invariant unobserved heterogeneity, uncorrelated with their
mean response regression covariates, if any, in which density /mass function parameters
are random variables (e.g., [36]). This paradigm shift was possible because Besag and
his research associates could take advantage of remarkable computational methods and
statistical software advances occurring during the 1970s and 1980s, (e.g., WinBUGS with its
1989 debut; [37]), enabling estimation and interpretation of RE models. He also retained
his successful auto-normal model in his new creation, defining his synthetic RE variate in
terms of a CAR spatial dependency structure. As such, he introduced a two-component RE
term to handle spatial autocorrelation effects: spatially structured (SSRE) accounting for
geographically patterned (i.e., spatial autocorrelation induced), and spatially unstructured
(SURE) accounting for aspatial stochastic (e.g., white noise), variation. SSRE estimation
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involves the intrinsic CAR (i.e., ICAR; see [30]) formulation implementation that facilitates
simplifying MCMC estimation; unfortunately, its joint RE density is improper. Although a
traditional CAR model captures rather weak spatial autocorrelation, its embedding in a
model parameter enhances it so that it is able to account for marked spatial autocorrelation,
when required. In addition, Besag’s RE approach avoids a need for repeated measures by
employing a prior distribution within a Bayesian analysis context to input the mandatory
additional information necessary to estimate a RE term. Fortunately, this more recent
fabrication by Besag extends spatial statistical models handling spatial autocorrelation
to any random variable harboring a regression version, not just the handful of statistical
distributions appearing in the auto-model literature.

(a) (b) (©)

Figure 3. Local indices of spatial autocorrelation demarcated geographic clusters; solid red circles
and circumpunct symbols, respectively, denote infected plants and non-statistically significant results.
Left (a): LISA [38]; solid black, blue, and green filled embedded circles, respectively, denote high-high
(HH), high-low (HL), and low-low (LL) concentrations. Center (b): Getis-Ord statistic [39]; solid
black filled embedded circles and triangles, respectively, denote 99%, and 90% statistically significant
hot spots. Right (c): the intersection of Figure 3a,b maps: solid gray filled embedded circles denote
dually marked plants.

The ICAR RE Bayesian mathematical expressions may be written as follows [40]:

sijs —1i ~ N(pi + Z]?‘Zl Wij [sj — u]-}, (rg/ni)
pi ~ uniform[—co, o]
yi ~ Bernoulli(pi)
pi — e*(O(JrSi)/ [1 + e*(CXJrSi):|

@

where s; is a RE value for pepper plant i, with s denoting its n-by-1 vector and s_; denoting
the spatial lag term w;s for spatial weights matrix W row vector i (indicating a conditional
distribution of value s; on its designated nearest neighbors), 1 is the mean of first-order
spatial neighboring RE values for pepper plant i, 02 is the RE variance, and n; is the
number of first-order neighbors for pepper plant i. Unfortunately, Bayesian parameter
estimation for the ICAR-based hierarchical structure (2) with the WinBUGS platform entails
MCMC chains that suffer from numerous repeated failures in their numerical convergence
across a wide range of initial parameter values. Therefore, WinBUGS was replaced with
the Integrated Nested Laplace Approximation (INLA) R package implementation that
employs the Laplace approximation [41] to Bayesian computations, a more robust approach
that has been around since roughly 2009 (see [42,43]). INLA Bayesian estimates for the
diseased bell pepper plants data are intercept ~ —2.63 and an approximated ICAR RE
with a mean of 0.001, a Shapiro-Wilk normality diagnostic statistic of 0.959 (p < 0.001),
and a Moran coefficient of 0.80 and a Geary Ratio of 0.17 (i.e., strong positive spatial
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autocorrelation). Meanwhile, the accompanying pseudo-R? implication is that spatial
autocorrelation accounts for roughly 53% of the geographic variation in diseased plants
across the agricultural field plot under study. The new beta regression & (K + 1) is 6.9547.
Substituting these sundry computations into their corresponding parts of Conjecture 1
reveals the following sequence (see Figure 4b for their graphic portrayals),

independent observations: & ~ 1.0606, B ~ 5.8941, 62 ~ 0.12752 (from the
well-known variance formula)

spatially autocorrelated predicted probabilities: & ~ 1.0606,  ~ 58941, 6> ~ 0.14222
Bernoulli random variable: & =~ 0.0138, B ~ 0.0767, 62 ~ 0.36002

Percent

90 90 90
80 80 80
70 70 70
60 60 60
a a
50 £ 50 £ 50
£ £
40 2 40 2 40
30 30 30
20 20 20
10 10 10
0 0 0
000 0.15 030 045 060 075 0.90 000 0.15 030 045 060 075 0.90 000 0.15 030 045 060 075 0.90
beta random variables beta random variables beta random variabales
(a) (b) (c)

Figure 4. Comparative variance inflation histogram overlays (n = 2000; systematic Blom [44] defined
CDF samples): iid beta, asymptotic beta, and beta-Bernoulli plots, respectively, denoted by black,
red, and gray filled rectangles; asymptotic beta integrals yield 0.8481 for interval [0, 0.5] and 0.1519
for interval [0.5, 1]. Left (a): auto-logistic-based output. Middle (b): RE-based output. Right (c):
MESF-based output.

Once more, these binary data obviously have more variability than allowed by the
iid Bernoulli distributional assumptions. Hilbe’s implicit over-dispersion accounting for
this beta-Bernoulli variance inflation is the difference between 0.14222, for the spatially
autocorrelated data, and 0.1275%, for their iid counterpart. As mentioned previously,
replacing these typically invisible or glossed-over probabilities with the observed Bernoulli
0-1 values automatically relegates the binary data variance to 0.3600?, masking these two
hitherto hidden quantities.

Because this analysis exploits posited priors, (an inferior source of ancillary infor-
mation by itself because it can be susceptible to overfitting of residuals (also see [45])),
rather than repeated space-time data, (a reliable source when facts and figures are available
for a sufficient number of time periods), its RE estimate apparently suffers, as a visual
contrasting of Figures 2a and 5a discloses. An SSRE component (Figure 5b) aligning with a
lower-left- to upper-right-hand trend, rather than simply a left-to-right-hand horizontally
oriented trend, would be more representative of the geographic distribution of the detected
bell pepper disease infections.
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Figure 5. INLA RE output; tertile maps in which white, gray, and black, respectively, denote relatively
low, moderate, and high synthetic values. Left (a): the INLA composite RE (rendering a SAR
autocorrelation parameter of p ~ 0.899). Middle (b): the SSRE component (Moran coefficient ~ 0.90;
Geary Ratio ~ 0.06). Right (c): the SURE component (Moran coefficient ~ —0.11; Geary Ratio ~ 1.10).

4.3. The Bernoulli MESF Spatial Statistical Model

MESF offers a third feasible and effective methodological treatment of spatially au-
tocorrelated Bernoulli random variables (e.g., [46]; also see [47]). It employs judiciously
selected eigenvectors from a doubly centered spatial weights matrix—the principal matrix
algebraic expression in the numerator of a Moran coefficient—as covariates to account for
spatial autocorrelation latent in a geographic distribution. The orthogonality and uncorre-
latedness of these vectors coupled with a multiple testing adjustment (also see [48]) bolster
the trustworthiness of this stepwise regression analytic approach. Tiefelsdorf and Grif-
fith [49] show that this transformation is a dimension reduction/simplification alternative
to the auto-regressive spatial lag term: both utilize the same spatial weights matrix, but
MESF dismisses eigenvectors latent in this matrix that are not strongly correlated with the
given binary response variable, and hence introduce corrupting noise into a conventional
auto-logistic analysis.

The auto-logistic equation here may be rewritten/approximated as follows (e.g., [46]):

©)

Pr(y, = 1) ~ o (At EiBi) / [1 4 e (ot iy ExBi)
where 25:1 Ey Bi denotes an eigenvector spatial filter (ESF)—a weighted linear combina-
tion of judiciously selected, doubly centered spatial weights matrix eigenvectors. Stepwise
logistic regression for this pepper plant, disease incidence data analysis involves a can-
didate set of 123 positive and 124 negative, (from a total of 399), spatial autocorrelation
eigenvectors using a Moran coefficient threshold of £0.25. Executing this GLM procedure
extracts four positive spatial autocorrelation eigenvectors that render an ESF (see Figure 6;
also, visually compare it with Figure 2) whose accompanying pseudo-R? implication is
that spatial autocorrelation accounts for roughly 46% of the geographic variation in dis-
eased plants across the agricultural field plot under study. This slight increase vis-a-vis
the preceding auto-logistic specification is attributable to a reduction in covariate noise
achieved by replacing a spatial lag with an ESF. Ordinary GLM estimates for the diseased
bell pepper plant data are intercept ~ —2.6142, which again is comparable to the preceding
auto-logistic result. The ESF Moran coefficient, which is easier to immediately interpret
than the auto-logistic p value, suggests very strong positive spatial autocorrelation. The
aforementioned auto-logistic interpretation difficulty seems to persist in this output (e.g.,
the intercept estimate now changes from —1.7151 to —2.6142); this result alludes to the
issue Caragea and Kaiser [30] address, concerning geographic distributions over regular
square lattices of observed Bernoulli response variables representing presence/absence.
Meanwhile, the new beta regression & (K + 1) is 2.0073. Substituting these sundry computa-
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tions into their matching Conjecture 1 parts reveals the following sequence (see Figure 4c
for their graphic portrayals):

independent observations: & ~ 0.3061, B ~ 1.7012, 6% ~ 0.20732 (from the
well-known variance formula)

spatially autocorrelated predicted probabilities: & ~ 0.3061, B ~ 1.7012, 62 ~ 0.2307
Bernoulli random variable: & ~ 0.0138, f ~ 0.0767, 62 =~ 0.3600%
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(a) (b)

Figure 6. Selected MESF analysis output. Left (a): a tertile map of the empirical four-vector con-
structed ESF; white, gray, and black, respectively, denote relatively low (i.e., negative; —4.9 to —0.7),
moderate (i.e., near zero; —0.7 to 0.6), and high (i.e., positive; 0.6 to 7.8) regression coefficient weighted
linear combination values. Right (b): certain ESF eigenvector statistics.

Yet again, these binary data clearly have more variability than allowed by the original
Bernoulli distributional assumptions. Hilbe’s implicit over-dispersion accounting for
this beta-Bernoulli variance inflation is the difference between 0.23072 for the spatially
autocorrelated data, and 0.2073 for their iid counterpart. As before, replacing these
typically invisible or glossed-over probabilities with the observed Bernoulli 0-1 values
automatically relegates the binary data variance to 0.3600?, masking these two hitherto
hidden quantities.

Finally, Figure 6 better replicates Figure 2 than does Figure 5, essentially capturing the
lower-left- to upper-right-hand geographic trend in diseased plants. Its most conspicuous
errors occur in a too symmetric reproduction of the infected pepper plant map pattern.

5. Concluding Comments

The overarching objective of this paper is to extend the logistic regression compre-
hension promoted by Hilbe [11] by providing, for the first time, a detailed explanation of
the meaning of his implicit extra-dispersion notion for Bernoulli response variables. For
example, the spatial autocorrelation infused variance inflation that creates extra binomial
variation, in turn generating an increasingly conspicuous U-shape distributed beta random
variable as its probability density function increasingly bifurcates to approach, in the limit,
a Bernoulli mass function on the integer points 0 and 1 of the support interval [0, 1] that
ultimately, a(n) (ir)rational-to-integer numbers rounding routine masks. This definition
builds upon well-known and long-established variance formulae for beta, beta-binomial,
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and Bernoulli random variables, as well as the already known asymptotic convergence of a
beta-binomial on a Bernoulli distribution. One novel contribution is a cogent demonstration
that a spatially autocorrelated Bernoulli is not necessarily a quasi-binomial distribution,
countering another segment of the conventional wisdom circulating about this subject.
In addition, summarized illustrations of various Bernoulli over-dispersion assessments
contained in this paper employ a readily accessible and published-about bell pepper plant
disease dataset. These empirical examples quantify spatial autocorrelation and its variance
effects, and then differentiate between its induced variance inflation and the masking of
this over-dispersion by shifting to a Bernoulli distribution substitution. The three model
specifications for completing this decomposition are: Besag’s auto-logistic, Besag’s ICAR RE
(ala INLA approximation), and the more novel MESF GLM. Table 1 tabulates the Bernoulli
rounded-to-integer outcomes of Equations (1)—(3); all three specifications yield comparable
results, with the RE specification producing the poorest and the MESF producing the best of
these triplet sets. As an aside, these conclusions generalize to other correlated data sources,
such as time series sequence structuring.

Table 1. Rounded-off predicted probabilities: from a beta to a Bernoulli random variable.

Besag’s Auto-Logistic INLA Approximated ICAR RE MESF GLM
predicted predicted predicted
Bernoulli 0 1 Bernoulli 0 1 Bernoulli 0 1
a a a
c 0 338 3 c 0 339 0 c 0 337 2
t t t
u u u
a 1 31 30 N 1 46 | 15 N 1 28 33
1 1 1

predicted beta p ~ 0.1525

predicted beta p ~ 0.1537 predicted beta p ~ 0.1525

Bernoulli round off p ~ 0.0825

Bernoulli round off p ~ 0.0325 Bernoulli round off p ~ 0.0875

NOTE: bold font denotes correctly predicted/classified pepper plants.

Although some conceptualizations presented in this paper are reminiscent of sundry
pieces of the existing literature, with such arguments as the beta convergence on a Bernoulli
recognized as not being surprising to scholars in the subfield dedicated to logistic regression
(who often openly nurture an awareness of it), this appears to be the first systematic writing
explicitly and comprehensively detailing and expanding upon it in a single organized
narrative. Figures 1 and 2 serve as effective visualizations of this notion. Its spatially
autocorrelated Bernoulli specification not definitively being a quasi-binomial distribution
also is an interesting discovery. Figures 3 and 4 furnish illuminating portrayals of this
empirical context, emphasizing the role of map pattern coupled with variance inflation
attributable to spatial autocorrelation. Figures 5 and 6 take it one step further, illustrat-
ing how a specimen geospatial dataset relates to both the frequentist and the Bayesian
perspectives about this theme. In the tradition of remote sensing classification analysis
employing a multinomial distribution (e.g., the kappa index), Table 1 provides a confusion
matrix-type cross-tabulation to exemplify prominent spatial autocorrelation impacts on
2-point Bernoulli random variables. Therefore, the major contribution this paper makes
is a better clarification and deeper understanding of logistic regression extra-Bernoulli
variation, particularly that attributable to correlated data.
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