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Abstract: Southeast Asia (SEA), known for its diverse climate and broad coastal regions, is par-
ticularly vulnerable to the effects of climate change. The purpose of this study is to enhance the
spatial resolution of temperature projections over Southeast Asia (SEA) by employing three machine
learning methods: Random Forest (RF), Gradient Boosting Machine (GBM), and Decision Tree (DT).
Preliminary analyses of raw General Circulation Model (GCM) data between the years 1990 and 2014
have shown an underestimation of temperatures, which is mostly due to the insufficient amount of
precision in its spatial resolution. Our findings show that the RF method has a significant concordance
with high-resolution observational data, as evidenced by a low mean squared error (MSE) value
of 2.78 and a high Pearson correlation coefficient of 0.94. The GBM method, while effective, had a
broader range of predictions, indicated by a mean squared error (MSE) score of 5.90. The Decision
Tree (DT) method performed the best, with the lowest mean squared error (MSE) value of 2.43,
which closely matched the actual data. The first General Circulation Model (GCM) data, on the other
hand, exhibited significant forecast errors, as evidenced by a mean squared error (MSE) value of 7.84.
The promise of machine learning methods, notably the Random Forest (RF) and Decision Tree (DT)
algorithms, in improving temperature predictions for the Southeast Asian region is highlighted in the
present study.

Keywords: climate downscaling; machine learning; Southeast Asia; temperature prediction; general
circulation models (GCMs)

1. Introduction

Climate models, notably General Circulation Models (GCMs), are critical tools used
by climate scientists to anticipate and investigate potential future climate scenarios [1].
GCMs provide an in-depth understanding of the Earth’s climate dynamics by combining
numerous atmospheric, oceanic, and terrestrial phenomena. These models also allow for an
evaluation of the interrelated effects of human actions [2]. Despite their broad capabilities,
General Circulation Models (GCMs) usually operate at a spatial scale that may not fully
represent local fluctuations or different regional characteristics [3]. The use of a low-
resolution method may result in imprecisions, especially when investigating phenomena
that are limited to certain locations or developing climate projections for specific regions.
As a result, the advancement and acceptance of downscaling approaches have been greatly
expedited. Downscaling is used to bridge the spatial and temporal gaps between the
outputs of coarse-scale General Circulation Models (GCMs) and the more precise data
requirements of local impact studies [4]. In general, there are two main downscaling
methodologies: dynamical and statistical approaches. The use of regional climate models
(RCMs) to simulate climate conditions within a specified geographical area of interest is
referred to as dynamic downscaling [5–8]. Statistical downscaling, on the other hand, is
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based on statistical relationships between large-scale atmospheric components and local-
scale climate variables [9]. Machine learning and computing advances have resulted in the
creation of a new set of statistical downscaling algorithms. As Ghosh et al. [10] highlight,
these techniques have the potential to give more precise and localized climate estimates.

Downscaling, which is required to make global climate model (GCM) outputs relevant
at regional and local scales, can be roughly classified into two approaches: dynamical
and statistical methods [9]. The dynamical approach primarily employs regional climate
models (RCMs) to simulate more accurate climatic data at higher resolutions within specific
regions. This enables the processing of broader outputs from global climate models (GCMs)
into projections specific to the region of interest [11]. In contrast, statistical downscaling
exploits empirical connections between large-scale atmospheric predictions obtained from
General Circulation Models (GCMs) and climate reactions at the local scale. This technique
seeks to capture local variability, even if it is not explicitly accounted for in GCMs [12].
Moreover, the change factor method was employed to downscale the future temperature
scenarios. This downscaling technique enables the adjustment of future projections of a
climate variable using in situ observations from a historical period. It involves adding
projected changes in the climate variable to the historical in situ observed climatological
year, relative to the same baseline period [13–15]. Because of advancements in data sci-
ence and computational methods, the use of machine learning (ML) methodologies in
statistical downscaling has become increasingly prevalent [16]. These algorithms have
shown considerable proficiency in this field, as they can understand subtle non-linear
relationships. The use of Random Forest (RF), Gradient Boosting Machine (GBM), and
Decision Tree (DT) learning methods has been critical in achieving improved downscaling
by effectively identifying and comprehending the complex patterns that connect large-scale
climate predictors with local meteorological variables [17,18]. The use of machine learning
(ML) in downscaling is expected to improve the accuracy and reliability of localized climate
forecasts. This, in turn, would contribute to more accurate assessments of climate impacts
and more effective adaptation planning [19].

Machine learning (ML) has emerged as an essential tool in a variety of scientific dis-
ciplines. The application of General Circulation Models (GCMs) into climate research
constitutes a dynamic and promising subject of investigation. GCMs (General Circulation
Models) have long been the primary tool for modeling the Earth’s climate and generat-
ing future projections [20]. Nonetheless, these systems’ intrinsic poor spatial resolution
has limited their ability to efficiently capture regionally specific climate phenomena [1].
Furthermore, the current limitations of computers is a substantial impediment to running
these models at higher levels of resolution. This is where machine learning enters into
the mix. Deep learning models, in particular, have proved their competence in the task
of spatial downscaling. Spatial downscaling, as defined by Reichstein et al. [21], is the
process of improving the geographical resolution of General Circulation Model (GCM)
outputs. According to Cannon et al. [18], through the process of learning from observa-
tional data, these models can produce high-resolution climate maps that closely correspond
with empirical observations. Lguensat et al. [22] identify model emulation as one potential
area where machine learning (ML) can be effectively used in General Circulation Models
(GCMs). General Circulation Models (GCMs) are computationally demanding, requiring
the use of supercomputers for execution. Emulators that have been trained on a limited
number of model runs are capable of producing model outputs quickly. This functionality
considerably facilitates sensitivity analysis and model inter-comparison. Machine learning
techniques have also been used to improve the representation of sub-grid processes in
General Circulation Models (GCMs). Parameterization approaches have traditionally been
used to depict phenomena that occur at scales smaller than the model grid, such as cloud
formation and turbulence. Machine learning models are currently being used to replicate
these processes using observational data, which has the potential to increase the accuracy
of general circulation models (GCMs) [23,24].
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Temperature is a fundamental climatic variable that has intricate relationships with
a wide range of ecological, economic, and cultural phenomena. Temperature data are
important indicators of climate change, providing important insights into the broader
implications and manifestations of global environmental alterations [25]. Temperature
changes have the potential to drastically affect natural landscapes and exert influence over
socioeconomic trajectories in regions such as Southeast Asia that are very vulnerable to
climate change. This study recognizes the importance of temperature dynamics and aims to
make a significant contribution by using advanced machine learning methods, specifically
Random Forest (RF), Gradient Boosting Machine (GBM), and Decision Tree (DT), to improve
the spatial resolution of General Circulation Models (GCMs) in the Southeast Asian region.
Previous research has investigated the use of machine learning in climate downscaling.
This study, on the other hand, stands out because of its unique combination of algorithms,
which is supported by a rigorous approach to hyperparameter tuning and validation. This
distinguishes it from past efforts in the field. The meticulous methodology ensures that the
resulting models not only outperform standard downscaling techniques but also accurately
capture the different climate complexities peculiar to Southeast Asia. As a result, the
findings of this study address the gap in resolution between observational data and GCM
outputs, providing a credible analytical tool for area policymakers and stakeholders. This
emphasizes the importance of temperature data in understanding and mitigating the effects
of climate change [26,27]. Also, enhancing this aspect is vital for producing more precise
and geographically tailored climate predictions, particularly in a climatically varied and
susceptible area such as Southeast Asia. This progress offers a detailed comprehension
of regional climatic dynamics, which is crucial for efficient environmental management,
policy formulation, and mitigating the effects of climate change. Our approach enhances
the geographical resolution of GCMs, allowing for the development of localized climate
models that are crucial for more accurate predictions of environmental phenomena.

2. Materials and Methods

In this study, we used three simple machine learning (ML) techniques, Random Forest
(RF), Gradient Boosting Machine (GBM), and Decision Tree (DT), to downscale the Global
Climate Model using Coupled Model Intercomparison Project Phase 6 (CMIP6) data from
the Max Planck Institute for Meteorology Earth System Model, version 1.2 (MPI-ESM1.2),
from 1990 to 2014. Famine Early Warning Systems Network (FEWS NET)’s Land Data
Assimilation System (FLDAS) Noah is used for obtaining higher-level observation data.

Given the extensive climate data available, this study focuses on the period from
1990 to 2014. This time frame encompasses a wide range of noteworthy climatic changes,
including notable anomalies and extreme weather occurrences. This period is distinguished
by an extensive archive of climate data, which serves as a comprehensive and significant
asset for examining the various impacts of different climatic events. The period covering
1990 to 2014 possesses significant importance in climate studies owing to the substantial
climatic changes and anomalies it covers. During this period, which encompasses some
of the hottest years ever recorded, there are notable occurrences of extreme weather phe-
nomena such as El Niño and La Niña events. These events, notably the intense El Niño
phenomenon in 1997–1998, significantly modified worldwide weather patterns, impacting
rainfall, intensifying droughts and heatwaves, and amplifying the intensity of tropical
cyclones [27]. Trenberth et al. [27] highlight the significance of these climatic events in
comprehending global climate dynamics. Examining this era yields vital knowledge about
the Earth’s climate system, aiding in interpreting how widespread climatic events occur
on a smaller scale and their specific effects. Moreover, the data collected up to 2014 are
crucial as a fundamental reference point for the next climate projections. According to
Stocker et al. [25], it is crucial to create a baseline to make accurate long-term climate fore-
casts. Through the examination of climatic trends and patterns up until 2014, a complete
dataset has been compiled for modeling and forecasting future climate scenarios. This
baseline is of great value in comprehending climatic conditions’ progression and directing
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forecasts of future alterations. This era allows researchers and policymakers to evaluate
future climate changes, verify the reliability of climate models, and enhance their ability to
make accurate predictions. Having a strong grasp of this fundamental knowledge is essen-
tial for formulating efficient climate adaptation and mitigation plans while considering the
historical trends and patterns that have defined the global climate system.

2.1. Study Area

Southeast Asia (SEA) is a subregion of Asia that encompasses eleven countries. These
countries are situated in a southern direction, spanning from China to Australia, and
in an eastern direction (Figure 1). The geographic region being examined displays an
assortment of climatic conditions, including the tropical rainforests found in Indonesia and
the Philippines, as well as the temperate zones located in the northern areas of Myanmar,
Laos, and Vietnam. The susceptibility of the Southeast Asian (SEA) area to the impacts of
climate change mostly stems from its expansive coastline and archipelagic features. The
effects encompass the phenomenon of increased sea levels, modifications in patterns of
precipitation, and the progressive elevation of temperatures [28].
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Figure 1. The study area of Southeast Asia.

2.2. Data Used

The upcoming version 1.2 (MPI-ESM1.2) of the Earth System Model at the Max Planck
Institute for Meteorology is expected to serve as the final component within the integrated
climate models encompassing ocean models [29] and ECHAM atmospheric models [30].
The MPI-ESM1.2 model is made up of four separate model components and a coupler
that have been combined in a manner similar to the MPI-ESM [31,32]. The model is used
in a variety of scientific and practical situations, each with its own level of complexity
in terms of depicting processes or events and meeting computational demands. It is
worth noting that the horizontal resolution has a significant impact on computing needs
in both the atmospheric and ocean domains. Various model configurations have been
designed to serve various purposes, achieve certain goals, and meet specific constraints.
The combinations were eventually formed at various time intervals over the previous years.
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It is crucial to note that key enhancements and problem fixes have only been implemented
into the most recent version of MPI-ESM1.2-LR. The Max Planck Institute for Meteorology
has been working on a series of climate models that span multiple generations. The
models used in this study included a spectral truncation at T63, which corresponds to an
estimated horizontal resolution of 200 km grid spacing. This study’s resolution is utilized
to recreate the atmospheric conditions that existed between 1850 and 2100. This time frame
corresponds to the MPI-ESM1.2-LR model’s temporal span.

The details of Famine Early Warning Systems Network (FEWS NET)’s Land Data
Assimilation System (FLDAS) Noah Land Surface Model L4 Global Monthly dataset, which
has a spatial resolution of 0.1 × 0.1◦, have been described in McNally et al. [33]. The
dataset is a collection of land surface parameters simulated using the Noah 3.6.1 model
within the Famine Early Warning Systems Network (FEWS NET)’s Land Data Assimilation
System (FLDAS). The dataset has a precision of 0.10 degrees and runs from January 1982 to
the present. The data have a monthly temporal resolution and a global spatial coverage
of 60 degrees south to 180 degrees west and 90 degrees north to 180 degrees east. The
simulation was carried out using an integration of data from the Modern-Era Retrospective
Analysis for Research and Applications version 2 (MERRA-2) and 6-hourly rainfall data
from the Climate Hazards Group Infrared Precipitation with Station (CHIRPS), which was
downscaled using the NASA Land Data Toolkit.

2.3. Statistical Used

In this study, various statistical measures were employed to evaluate the performance
of the downscaled outcomes derived from machine learning. These measurements encom-
passed the mean bias error, standard deviation of residuals (SDR), correlation coefficient (r),
root mean square error (RMSE), and Pearson Correlation (R). The calculation of the mean
bias was performed using Equation (1).

Mean Bias =
1
n∑n

i=i(Mi −Oi) (1)

where the variable M is used to represent the model data, whereas the variable O is
employed to signify the observed data. The computation of the standard deviation of
residuals (SDR) was conducted in accordance with Equation (2).

SDR =

√
∑[(xO − XM)− (XO − XM)]

2

n
(2)

Furthermore, the data that have been observed are denoted as XO, whereas the data
generated by the model are denoted as XM. In addition, the sign XO denotes the arithmetic
mean of the observed data, whereas XMO indicates the arithmetic mean of the model data.
It is imperative to acknowledge that the variable “n” denotes the quantity of both the model
and observed datasets.

The Pearson correlation coefficient was calculated using the given mathematical
equation (Equation (3)):

r =
∑(xi − x)(yi − y)√

∑(xi − x)2∑(yi − y)2
(3)

where r is the correlation coefficient.
The calculation of the mean square error was conducted using the designated mathe-

matical formula, referred to as Equation (4):

MSE =
∑n

i=1(Mi −Oi)
2

n
(4)

where M is the model data and O is the observed data.
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2.4. Machine Learning (ML)

In this study, we used three machine learning techniques to downscale the General
Circulation Model (GCM) in Southeast Asia: Random Forest (RF), Gradient Boosting
Machine (GBM), and Decision Tree (DT). However, to attain optimal training results,
some machine learning approaches, such as neural networks, particularly deep neural
networks, require large datasets. Furthermore, they need significant processing resources.
In cases where the dataset is limited, simpler models such as Random Forest (RF), Decision
Trees (DT), and Gradient Boosting Machines (GBM) may outperform a neural network.
Furthermore, these models were selected based on their suitability for the characteristics of
the data and the goals of the study. RF, GBM, and DT algorithms specialize in effectively
managing diverse data types, including non-linear associations and interactions among
variables, without requiring considerable preprocessing. Given the wide array of climatic
factors included in GCM downscaling, this is of utmost importance. Moreover, these
models offer resilience against overfitting, which is a frequent obstacle encountered with
more intricate models, particularly in situations where data are scarce. RF and GBM, due
to their ensemble nature, and DT, when pruned effectively, provide a protective measure
against this problem. Moreover, the intricate nature and duration of training required for
deep neural networks, despite their impressive modeling abilities, can pose limitations.
On the other hand, RF, GBM, and DT, while necessitating meticulous hyperparameter
adjustment, are typically less intricate to configure and quicker to train. When working with
large datasets, Support Vector Machines (SVMs), particularly their non-linear variation,
can impose a major computational cost [34]. Models such as RF, DT, and GBM have
inherent interpretability, according to Obregon and Jung [35]. These findings provide
vital information on the decision-making process, allowing researchers to obtain a full
grasp of the features or predictors that have the most influence. The ability to comprehend
the fundamental principles at work is critical in climate science, making interpretability
a valuable skill. According to Mamalakis et al. [36], these measures are purposefully
incorporated into the design to reduce the issue of overfitting.

According to Breiman [37], the Random Forest algorithm is a form of the ensemble
learning technique that uses decision tree principles. The approach builds a decision
tree ensemble, with each tree trained on a distinct random subset of the dataset. To add
stochasticity into the model, it uses bagging, also known as bootstrap aggregating. The
Random Forest algorithm integrates the outcomes provided by each individual tree to
arrive at a conclusion when making predictions. One of the most significant features of
Random Forest (RF) is its ability to properly manage large datasets with many dimensions.
The use of several trees allows for improved accuracy and the reduction in overfitting,
which is a common problem with single decision trees. Random Forest (RF) uses spatial
patterns and data links to give higher-resolution forecasts in the context of downscaling.
This property makes RF a viable solution for complex climate information. The Random
Forest algorithm’s essential premise is the use of collective intelligence, also known as “the
wisdom of crowds”. The essential idea of this technique is that an ensemble of several fairly
independent models, referred to as trees, working as a committee will outperform any single
constituent model. A set of training examples can be used to express the Random Forest
regression prediction X = {x1, x2, x3, . . . , xn} with matching labels Y =

{
y1, y2, y3, . . . , yn

}
,

referred to as Equation (5)

f(x) =
1
B

B

∑
b=1

fb(x) (5)

Let B represent the total count of trees within the forest, and let fb(x) denote the
forecast made by the bth tree.

Gradient Boosting, according to Friedman [38], is an ensemble technique that varies
from Random Forest in its sequential generation of decision trees, as opposed to Random
Forest’s concurrent construction. The major goal of this strategy is to reduce the residuals
or mistakes made by earlier trees, hence gradually improving forecast accuracy as each
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consecutive tree is added. Gradient Boosting Machine (GBM) may refine its predictions and
respond to detailed patterns in the dataset by using an iterative process. The employment
of Gradient Boosting Machines (GBM) in downscaling applications enables the collection
of non-linear interactions and complex spatial dependencies. This capability improves tem-
perature prediction accuracy at smaller scales. Gradient Boosting Machine (GBM)’s primary
purpose is to reduce model loss by iteratively adding weak learners using an approach
similar to gradient descent. The prediction of Gradient Boosting can be mathematically
stated as Equation (6):

fm(x) = fm−1(x)+ ∝
J

∑
j=1

γjI(x ε Rjm) (6)

Let ∝ denote the learning rate, Rjm represent the regions formed by the jth leaf of the
tree, and γj be the coefficients that minimize the loss within Rjm.

Decision Trees, as defined by Quinlan [39], are important components in many en-
semble techniques and have inherent interpretability as models. The data are recursively
partitioned into subgroups based on the values of its features, yielding a Decision Tree
model. Every node in the tree structure represents a specific trait, while each branch repre-
sents a decision rule that finally leads to an anticipated conclusion at the leaf nodes. The
advantage of single Decision Trees is that they are intuitive and may capture non-linear pat-
terns. They are, nevertheless, prone to overfitting, especially when working with complex
datasets. Nonetheless, when used carefully in the process of reducing scale, these models
can be useful instruments for assessing temperature changes based on spatial coordinates
and other important factors. The process is repeated until a hierarchical model resembling
a tree structure is created, representing numerous decision points. At each internal node
within the tree structure, a decision is made regarding the selection of a certain child node
to traverse, taking the given input into account. This process is repeated until a leaf node
is reached, at which point a forecast is delivered. The decision to divide at each node is
based on a specific criterion. The variance is typically regarded an important component
in regression problems. The prediction of Decision Trees can be mathematically stated as
Equation (7):

σ2(D) =
1
|D|∑i∈D(yi − yD)

2 (7)

Let D represent the data located at the current node. The size of D is denoted as |D|.
The output value of the ith instance is represented as yi, while the mean output value for
the data at the current node is denoted as yD.

The tuning of hyperparameters has become a critical element in the effort to improve
climate model downscaling through the application of machine learning approaches. The
selection of hyperparameters for models such as Random Forest (RF), Gradient Boosting
Machine (GBM), and Decision Tree (DT) was determined through a combination of initial
experimentation and guidance from prior research [37]. A grid search, which is well-known
for its meticulous examination of numerous combinations, was the primary methodology
used for hyperparameter tuning [40]. The tuning method included a k-fold cross-validation
strategy to improve model resilience and reduce the danger of overfitting [41]. The impacts
of various hyperparameters on performance, particularly the responsiveness of Random
Forest (RF) to factors such as tree count, were noticed and discussed in the supplementary
section. To validate the model, the dataset was divided into two subsets, each having
a 70–30 split for training and testing. This method ensured that the models were tested
using previously unseen data. To improve the findings’ validity, a 5-fold cross-validation
technique was used, which significantly maximized the consumption of data for both
training and validation [42]. Mean squared error (MSE) and Pearson correlation were the
performance indicators used in this investigation. These measures were chosen because
they provide comprehensive information on the number of mistakes and the directionality
of predictions [43]. The machine learning models were compared to the original GCM data
and demonstrated greater downscaling capabilities. The use of certain strategies within
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models, namely in the context of Gradient Boosting Machines (GBMs), in conjunction
with the insertion of validation sets during the training process, acted as anti-overfitting
measures [44]. In terms of overall repeatability, the importance of adequate documentation
across all stages of the research process, including data preprocessing and model validation,
has been underlined. The study used Python as its primary programming language, with
help from modules like Scikit-learn and xarray. Exact version data were provided to assure
replicability, as described by McKinney [45].

3. Results
3.1. Random Forest

The panel display in Figure 2 provides a thorough depiction of temperature distribu-
tions across several datasets, allowing for a direct comparison of the original GCM, the
downscaled GCM using the Random Forest approach, and the observation. For GCM
data, the spatial distribution is extremely coarse, which is to be expected given its lower
resolution. When employing the Random Forest approach to downscale GCM data, there
is a substantial improvement in spatial resolution. Temperature levels indicated by color
variations appear to be more consistent with the observation. The Random Forest approach
clearly corrected the temperature distribution, closing the gap between the coarse GCM
and the fine-resolution measurement. Cold regions in the original GCM have been up-
dated to better approximate factual temperatures. Furthermore, the observed data show
a genuine high-resolution temperature distribution. This dataset serves as a comparison
point. When compared to the downscaled GCM data from the Random Forest approach,
similarities in spatial patterns emerge. This demonstrates the Random Forest’s capacity
to capture the intricacies of the observational data while downscaling. The distribution of
the probability function at the bottom of the panel illustration highlights the frequency of
temperature values across all datasets. The Random Forest approach has clearly pushed the
GCM’s temperature distribution closer to the observational data, highlighting its efficacy
in downscaling.

3.2. Gradient Boosting Machine Method

Figure 3 provides a multifaceted view of temperature distributions, allowing for a
direct comparison of the original GCM, the downscaled GCM using the Gradient Boosting
Machine approach, and the observation. For the GBM-downscaled GCM data, there is a
noticeable improvement in spatial detail. The color gradient shows that this fine-tuning
in resolution is accompanied by a shift in temperature values. While the GBM technique
brings the temperature distribution closer to the observational data, it appears to exaggerate
or underestimate temperatures in some areas. This reflects the GBM’s iterative learning
strategy, in which it attempts to correct residuals from earlier predictions, resulting in these
nuanced modifications. The benchmark for quality is observational data, which represents
the genuine high-resolution temperature distribution. A side-by-side comparison with the
GBM-downscaled data demonstrates where the approach succeeded and where it failed to
capture temperature nuances. The probability distribution function at the bottom of the
panel plot emphasizes that the temperature frequency distribution across all datasets. While
the GBM approach has altered the temperature distribution of the GCM to approximate the
empirical data more closely, there is a wider dispersion, indicating a variety of projections.
This spread exemplifies the GBM’s nature, in which it fine-tunes predictions based on
errors from previous stages.
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3.3. Decision Tree Learning

Figure 4 demonstrates that by employing the Decision Tree approach to downscale
GCM data, there is a noticeable increase in spatial resolution. This increase in resolution
is accompanied by a discernible shift in temperature values, as evidenced by the color
gradient. To anticipate temperature values, the Decision Tree approach employs a hierar-
chical structure to make decisions based on features (in this example, spatial coordinates
and original GCM values). The result is a temperature distribution that is extremely close
to the observed data, with just slight variations in some areas. The observational data
serve as a baseline, representing the genuine high-resolution temperature distribution.
When compared to the Decision Tree-downscaled data, the spatial patterns are undeniably
similar. This demonstrates the Decision Tree method’s ability to mimic the complexities of
observational data. The probability distribution function, located at the bottom of the panel
display, reveals the temperature distribution across the datasets. As shown, the Decision
Tree approach expertly manipulated the GCM’s temperature distribution to closely match
the observational data. The sharpness of the distribution shows the method’s accuracy in
predicting temperature.
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The comparison figure in Figure 5 depicts the temperature distributions for the orig-
inal GCM data, the data downscaled using three machine learning approaches, and the
observation. The initial GCM data look to be slanted towards lower temperatures, cul-
minating at roughly 24 ◦C. This implies that the original GCM data, when compared to
the observational data, favor milder temperatures. The Random Forest method’s temper-
ature distribution closely matches the data, suggesting its efficacy in downscaling. The
Gradient Boosting Machine (GBM) approach (in green) has a greater spread, implying that
the anticipated temperature range is wider. It does, however, capture the fundamental
tendency observed in the observational data. The Decision Tree method’s distribution is
notable since it closely matches the observation, highlighting its ability to mimic the spatial
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intricacies of the observed data. Finally, the observational data serves as a comparison,
and it is obvious that the Decision Tree and Random Forest approaches have succeeded
in bringing the distribution of the GCM data closer to this benchmark. While all machine
learning approaches refined the temperature data from the initial GCM, the Decision Tree
and Random Forest methods appear particularly adept in this scenario, precisely replicating
the distribution of the observational data.
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Table 1 compares several downscaling approaches, including the original GCM, based
on important performance measures such as mean squared error (MSE), Pearson correlation,
residual standard deviation, and mean bias (MB). Random Forest (RF) stands out as a
reliable downscaling method. It has a close match to the high-resolution observational data,
with an MSE of 2.78, implying little inaccuracy in temperature forecasts. This is further
supported by its high Pearson correlation of 0.94, indicating that the RF technique efficiently
captures the spatial patterns of the observational data. The residual standard deviation of
1.67 indicates a continuous error range, and the near-zero MB of 0.0079 indicates that the RF
technique only slightly underestimates average temperatures. While effective, the Gradient
Boosting Machine (GBM) exhibits a bit more deviation from the observational data. It has
a higher MSE of 5.90, indicating greater prediction mistakes. Although respectable, the
Pearson correlation of 0.86 is slightly lower than the RF, showing moderate alignment with
the observed spatial patterns. The increased standard deviation of residuals at 2.43 indicates
that its errors are more variable. The MB of 0.0085 is comparable to the RF, indicating a small
underestimation. Decision Tree (DT) stands out as a strong contender. It is the approach
that is closest to the observational data, with the lowest MSE of 2.43. The highest Pearson
correlation of 0.95 demonstrates its ability to replicate the geographical intricacies of the
observational data. Its residuals have the lowest standard deviation at 1.56, suggesting
extremely consistent errors, and its MB of 0.0046 is the closest to zero, demonstrating its
precision. The original GCM, on the other hand, depicts the difficulties associated with
coarse-resolution data. Significant prediction errors are indicated by the highest MSE of
7.84. While still reasonable, its Pearson correlation of 0.84 is the lowest among the datasets,
and the standard deviation of residuals at 2.74 indicates a wide error range. The MB of
−0.6512 is very instructive, demonstrating a continuous temperature underestimate.

When examining the original GCM, its coarse resolution and intrinsic restrictions
result in significant departures from observational data, as represented in its metrics.
The original GCM has a high MSE of 7.84, indicating major prediction errors, and its
pronounced mean bias (MB) of 0.6512 suggests a persistent temperature underestimation.
The RF technique has resulted in substantial improvements over the original GCM. The
MSE has dropped from 7.84 to 2.78, indicating a significant improvement in prediction
accuracy. The Pearson correlation also rises to 0.94 from 0.84 in the GCM, suggesting the



Forecasting 2024, 6 12

RF’s improved capacity to capture spatial patterns in observational data. Furthermore, the
residual standard deviation has lowered, and the mean bias has been significantly rectified
from the GCM’s considerable underestimation. While not as exact as RF, the GBM approach
offers significant improvements over the original GCM. The MSE falls to 5.90, showing
that the MSE is more aligned with the observational data than the GCM. The Pearson
correlation improves somewhat to 0.86. The method reduces error variability as compared
to the original GCM, and the mean bias is greatly reduced, approaching zero. The Decision
Tree approach outperforms the original GCM by a wide margin. It achieves the closest
fit to the observational data with the lowest MSE of 2.43 among the approaches. At 0.95,
the Pearson correlation outperforms both the RF and the GBM, suggesting that it is better
able to mimic the spatial patterns of the observational data. Both the residual standard
deviation and the mean bias improve significantly, with the DT technique producing the
most accurate and least biased predictions of the three.

Table 1. The statistical analysis of comparison between each dataset compared to observation data
during the years 1990–2014.

Method MSE Pearson Correlation Standard Deviations of
the Residuals MB

Random Forest (RF) 2.78 0.94 1.67 −0.0079
Gradient Boosting Machine (GBM) 5.90 0.86 2.43 −0.0085

Decision Tree (DT) 2.43 0.95 1.56 −0.0046
Original GCM 7.84 0.84 2.74 −0.6512

4. Discussion

In recent years, there has been an increase in the use of machine learning approaches
for downscaling global climate model (GCM) data. The primary goal has been to improve
the spatial resolution of General Circulation Models (GCMs) to increase their relevance
for assessing regional climate impacts. The findings of this study are consistent with the
broader scientific discussion on the subject. The Random Forest (RF) technique’s efficacy
in enhancing the geographical resolution of the initial General Circulation Model (GCM)
data is consistent with the findings of Smith et al. [46]. They also discovered that RF was
capable of reconciling differences between the coarse outputs of General Circulation Models
(GCMs) and the more comprehensive observational data. This demonstrates the method’s
promising capabilities in climate research. The iterative downscaling methodology used
by the Gradient Boosting Machine (GBM) method in this work is compatible with the
findings of Shen and Yong [47]. The study on GBM-based downscaling also highlighted the
method’s proclivity to refine forecasts by absorbing errors from prior stages, resulting in
minor changes to temperature readings. Previous research has acknowledged the Decision
Tree (DT) approach’s hierarchical structure for prediction. The results of our analysis show
that the approach is accurate in predicting temperatures, which supports the findings of
Ray et al. [48], who also found a comparable agreement between DT-downscaled data and
observational datasets. The comparison of temperature distributions derived from original
GCM data with downscaled data obtained through machine-learning approaches is similar
to the research undertaken by Dey et al. [49]. The scientists also noticed that, while all
machine learning algorithms increased the quality of temperature data produced from
the original General Circulation Model (GCM), certain methods showed outstanding skill
by accurately duplicating the observed data distribution. The statistical criteria used in
this study to measure the success of downscaling methodologies, including Mean Squared
Error (MSE), Pearson correlation, residual standard deviation, and Mean Bias (MB), are
compatible with Behnke et al. [50]. The importance of these criteria in determining the
precision and dependability of downscaled datasets was highlighted.

The versatility and accuracy of the Random Forest (RF) technique have been widely
acknowledged in this study, especially in handling complex datasets. The results of this
study suggest that the RF model exhibited a notable degree of precision, aligning closely
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with the empirical data. The findings indicated above align with the results given by
Lotfirad et al. [51], which demonstrated the impressive capability of Random Forest (RF)
in efficiently handling datasets containing a substantial number of variables. This phe-
nomenon is particularly conspicuous within the realm of climate science. Random Forest
(RF) demonstrates a significant ability to assess the significance of characteristics, hence
providing valuable insights into the underlying factors that contribute to variations in
temperature [52]. However, it should be noted that radio frequency (RF) technology is not
immune to the restrictions that are intrinsic to it. One notable limitation of this model is its
lack of transparency, which poses challenges in terms of interpretation when compared to
more straightforward models [37]. Furthermore, it has been noticed that the random forest
(RF) algorithm demonstrates a notable capacity to mitigate overfitting due to its ensemble
approach. Nevertheless, it is important to acknowledge that Random Forest (RF) can often
place a substantial computational load, especially when handling large datasets [53]. The
Gradient Boosting Machine (GBM) is highly acknowledged in the academic community
for its iterative learning process, which exhibits both favorable and restricting qualities.
One notable feature of this model is in its ability to progressively enhance predictions
by rectifying discrepancies from previous iterations. The iterative nature of this method
frequently results in forecasts that exhibit a notable degree of accuracy, as highlighted by
Friedman [38]. The research investigation provided evidence of the occurrence of these
phenomena, since GBM successfully reduced the range of temperature distribution to
better match the observed data. Nevertheless, this repeated strategy may provide both
advantageous and unfavorable outcomes. The possibility for overfitting exists when the
technique is subject to frequent adjustments, especially if these adjustments are not well
calibrated [54]. Another challenge that is commonly encountered with Gradient Boosting
Machine (GBM), similar to Random Forest (RF), is its significant computational demand,
especially when working with large datasets [55]. Decision trees (DT) are generally ac-
knowledged and commended for their exceptional interpretability. The comprehensibility
and visualizability of Decision Trees can be attributed to their hierarchical structure and
easy decision-making logic, as highlighted by Quinlan [39]. The results of this study indi-
cate a significant correlation between the DT technique with observational data, implying
its potential effectiveness in the field of downscaling. However, digital technologies (DTs)
give rise to a distinct array of challenges. One of the primary problems related to this
matter relates to the susceptibility of the model to overfitting, especially when handling
complex datasets. While machine learning models possess the capability to accurately
reproduce the patterns found in the data they were trained on, their ability to apply this
knowledge to novel or unfamiliar material may be constrained [56]. An additional factor
that should be considered is the vulnerability of decision trees (DTs) to slight fluctuations
in the dataset, which can result in substantial changes in the configuration of the trees [57].
There are multiple factors that can be attributed to the superiority of Random Forest (RF)
compared to Gradient Boosting Machine (GBM) when it comes to downscaling General
Circulation Models (GCMs). Liaw and Wiener [53] assert that the random forest approach
possesses an inherent ability to effectively manage a mixture of continuous and categorical
variables, hence reducing the need for extensive preprocessing. This characteristic renders
it a potentially suitable method for assessing climate data. Furthermore, the Random
Forest (RF) algorithm demonstrates a decreased vulnerability to overfitting due to its im-
plementation of the bagging technique, especially in situations when the dataset includes
noise [37]. Gradient Boosting Machines (GBM) have been found to be powerful models.
However, they may suffer from overfitting if not properly calibrated, especially when the
signal-to-noise ratio in the dataset is low [55]. An additional critical factor to consider is the
possibility of interaction effects. The Random Forest (RF) algorithm possesses an innate
capability to capture high-order interactions among variables, which is of paramount signif-
icance in comprehending the intricate relationships inside climate systems [58]. As stated
by Friedman [38], the representation of interactions by GBM may need the utilization of
deeper trees and a higher number of iterations to effectively capture an equivalent level of
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complexity. The heightened intricacy of the situation may potentially lead to the occurrence
of overfitting. Given the intricate and heterogeneous nature of climate data, it is conceiv-
able that the ensemble approach utilized by Random Forest (RF), which amalgamates the
outcomes of multiple decision trees, presents a more robust and all-encompassing solution
in contrast to the iterative refinement strategy employed by Gradient Boosting Machine
(GBM) and Decision Forest (DF).

The study has made significant progress in using Random Forest, GBM, and Decision
Trees for climate downscaling. However, there are significant limitations that identify possi-
ble topics for further research. One obvious limitation concerns the algorithms themselves.
Despite their outstanding performance, further refinement of the downscaling precision
could be obtained by delving further into hyperparameter tuning or investigating more
advanced iterations of these algorithms. An expanded feature set would most likely benefit
the existing model. The addition of variables such as atmospheric pressure, humidity, and
wind patterns has the potential to provide a more thorough portrayal, perhaps enhancing
downscaling accuracy. Another key limitation is the absence of deep learning methodolo-
gies. Because of its ability to record complicated spatial-temporal patterns, convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) have acquired popularity
in a variety of sectors. Furthermore, the utilization of the stacking technique has the poten-
tial to enhance the performance of specific machine learning algorithms examined in this
study. Combining Random Forest (RF) with Multilayer Perceptron (MLP) has the potential
to enhance the performance of RF, particularly in challenging prediction tasks. Stacking
is an ensemble learning strategy that involves combining the predictions of numerous
models, such as Random Forest (RF) and Multilayer Perceptron (MLP), using another
model to generate the final prediction [59]. The use of this technology in the process of
climate downscaling has the potential to improve data interpretation, thereby minimizing
some of the constraints inherent in the existing model. Finally, the study’s reliance on
separate machine learning models highlights the undiscovered potential of hybrid mod-
els. Potential future endeavors could include the construction of ensemble models that
combine the interpretability of Decision Trees with the precision of GBM. The goal would
be to take advantage of the combined benefits of both approaches while minimizing their
distinct drawbacks. These efforts would not only help to alleviate the study’s current
limits but would also progress the science of climate downscaling toward greater precision
and inclusion.

5. Conclusions

To improve the precision and regional resolution of temperature forecasts, various
machine learning approaches were used in the downscaling of General Circulation Model
(GCM) data during the years 1990–2014. Among the several methodologies used, the
Random Forest (RF) algorithm had a mean squared error (MSE) of about 2.782. This
score indicates a pretty high level of agreement with high-resolution observational data.
The spatial correlation coefficient had a value of roughly 0.938, confirming its ability to
recreate the spatial patterns identified in the dataset properly. Nonetheless, the method’s
implementation resulted in a marginally negative mean bias (MB) of −0.0079, showing a
slight propensity to underestimate when compared to the actual observation. The mean
squared error (MSE) of the Gradient Boosting Machine (GBM) was roughly 5.90, indicating
a more dramatic divergence from the observed data. The spatial correlation coefficient of
0.863 suggests that the observed spatial patterns are somewhat aligned. The method also
had a modest negative bias of −0.0085. The Decision Tree (DT) methodology outperformed
the others, as indicated by its lowest mean squared error (MSE) value of around 2.43 and
the highest spatial correlation coefficient of 0.947. This finding demonstrates that the
Decision Tree technique outperformed other techniques in effectively expressing the spatial
complexities inherent in the observed data. The mean bias measure was determined to
be moderate, at −0.0046. To put this in context, the initial General Circulation Model
(GCM) data had a mean squared error (MSE) of 7.94 and a spatial correlation coefficient
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of 0.836 when compared to the observational data. These numbers suggest a significant
departure from the high-resolution dataset. In conclusion, when compared to the original
General Circulation Model (GCM) in the context of this investigation, the Decision Tree
approach had the highest efficacy in enhancing the representation of temperature data
among all machine learning approaches used. Furthermore, these improved models could
spur local-level adaptation actions. Local communities can engage in community-led
projects that are in accordance with expected climatic problems if they have access to
reliable climate projections. The integration of machine learning and climate modeling
improves scientific understanding of future climates and provides Southeast Asia with the
tools and information needed to successfully handle the issues posed by climate change.
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MSE Mean Square Error
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SDR standard deviation of residuals
SVM Support Vector Machines
RCMs Regional Climate Models
ML Machine Learning
CMIP6 Coupled Model Intercomparison Project Phase 6
MPI-ESM1.2 Max Planck Institute for Meteorology Earth System Model version 1.2
FEWS NET Famine Early Warning Systems Network
MERRA2 Modern-Era Retrospective Analysis for Research and Applications version 2
CHIRPS Climate Hazards Group Infrared Precipitation with Station
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