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Abstract: Ceramic sherds from approximately 20 samples of lead-glazed tableware, recovered from
diverse archaeological sites, including three repurposed storage pits transformed into dumpsters
within the medieval city of Santarém (13th–14th century), underwent a meticulous examination. This
investigation utilised techniques such as micro-Raman, ground-state diffuse reflectance absorption,
and X-ray fluorescence spectroscopies, in addition to X-ray diffraction and stereomicroscopy. A
parallel study was conducted on contemporaneous European ceramics (glazed sherds) sourced from
archaeological sites dating back to the 13th–15th centuries in Saintonge (France), Ardenne, Zomergem,
and Bruges (Belgium), as well as Surrey–Hampshire, Kingston, and Cheam (England). The first
premise for comparing the Santarem samples with European production locations was their frequent
commercial relations with Portugal and the frequency of these productions being found in Portugal.
The colour of the ceramic bodies is predominantly white or whitish, with a few exhibiting a vivid red
hue. Analyses of the fabric, mineralogical, and elemental composition of the sherds suggest that the
majority of Santarém’s glazed ceramics were locally or regionally produced, potentially derived from
a Pliocene kaolin-rich sand formation. However, this conclusion is not supported by the absence of
discovered lead glaze kilns or workshops in Santarém for the late Middle Ages.

Keywords: medieval ceramics; Santarém; micro-Raman; GSDR; XRD; XRF; SM

1. Introduction

Santarém was one of the most important cities in late Medieval Portugal. This impor-
tance needs to be observed from many different perspectives. One of the most important
was related to its cereal production capacity, which granted this urban centre the nickname
of “Portugal’s barn”. Santarém could produce large quantities of cereal and its location
less than 100 km from Lisbon and close to the Tagus River made it fundamental in the
wider Portuguese urban strategy [1,2]. The centralisation of cereal in communal barns only
started to happen in the late 16th century [3]. Until then, cereals were kept underground in
pits excavated into the bed rock. These can be found in many shapes but the most common
were excavated shaped like a bag [4], and some of them date back to the Muslim occupation
of the city (8th–12th centuries). Archaeological information obtained from many parts of
the country reveals that these were located inside houses as much as on open fields. When
these underground structures were out of use, independently of the reason behind this, they
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were filled with garbage either obtained from demolitions or just domestic refuse. Their
abandonment occurred for many reasons but when some areas of the city were refurbished
(construction of new roads or buildings), large areas of these storage pits were filled with
domestic garbage. Although ceramics are the most abundant, all types of domestic refuse
are frequently found inside.

The ceramics studied in this paper were found in some of these storage pits during
an archaeological intervention carried out in Santarém in 2014, and they distinguish them-
selves from most other pottery objects due to their surfaces covered in glaze. These are what
we can consider tableware. Their shapes correspond essentially to pitchers used to serve
wine and can be dated (through information retrieved from archaeological stratigraphy
and style) to the 13th and 14th centuries.

Although lead-glazed ceramics were common during the Muslim occupation and used
in the majority of Santarém households [5–7] and other places where Muslim communities
were, these tended to disappear from the set of household ceramics in the following
centuries. In 1147, the city of Santarém was conquered by Christian forces, together with
many other towns in the Tagus Valley. Although political and military elites disappeared,
the local population continued to live there, including potters. This continuity can be seen
in their production with the continuation of the use of similar shapes and decorations.
Local production of redwares is confirmed by the existence of kilns dated to the 12th and
13th centuries [8–10]. However, this did not occur with glazed wares, which seemed to
disappear completely in the second half of the 12th century and the first half of the 13th
century. Nevertheless, these started to reappear in the archaeological context in the second
half of the 13th century, although in small amounts.

The lack of published evidence of any kiln producing lead-glazed wares in the Tagus
region in the 13th and 14th centuries made us believe initially that all these vessels were
imported from Northern Europe, an area with whom the Portuguese kingdom had commer-
cial relations [11]. These glazed vessels have been identified in many parts of the country
but are seldom published [12–14] and demonstrate a relationship between Portugal and
the Northern European markets.

Building upon the premise that these objects are imported, this paper will initially
analyse a collection of such vessels unearthed in Santarém and juxtapose them with lead-
glazed ceramics confidently crafted in Northern European workshops.

A detailed comparison of both ceramic bodies and glazes originating from Santarém
and from the different coeval kilns in different European countries (countries with which
Portugal had frequent commercial relations) aims to clarify the local or imported origin of
all the earthenware samples under study. Upon noting substantial compositional disparities
between the two sets of sherds under scrutiny, the proposal is to ascertain a plausible local
or regional geological source for the clay deposits that provided the raw materials.

2. Geological Framework

The Santarém region is situated in Cenozoic formations, with ages ranging from
ancient Miocene to modern Quaternary. Geomorphologically, the region is characterised
by two Miocene–Pliocene plateaus with horizontally stratified layers and extensive lateral
extent. These plateaus confine the Tagus River and its respective floodplains and river
terraces. Detrital rocks, ranging from clayey sediments to large rounded pebbles, prevail,
but locally, there are lithotypes of carbonate composition or transitional nature. Various
geological resources exist in the region, particularly some clayey or sandy formations with
suitability for the ceramic industry, continuing in use until recent times [15,16].

Kaolinite-bearing formations are less common but can be found in the Pliocene com-
plex at various points along the Lisbon to Santarém railway line. Primarily used for
ceramics (whitish bodies), they have led to exploitation at the site called Fonte da Pipa,
west of the Vale de Santarém railway station. Clays used to produce tiles and bricks (red
bodies) are also present at various points in the region.
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The provenance of ceramic raw materials and the ceramic technology employed was
studied in a recent publication [17], focused on the analysis of Islamic ceramics from
the Alcáçova of Santarém. The authors collected samples from locations with historical
records or of a more recent exploitation, as previously referenced for Miocene and Pliocene
formations. In some cases, the authors conducted purification of the collected clays and
sandy materials, providing detailed chemical and mineralogical characterisation to establish
the local or external origin of those Islamic ceramics. The composition of those materials is
mainly quartz, illite/muscovite, and minor feldspars (K feldspars and plagioclase). Calcite
and chlorite can be also present in some layers. Based on various indicators, these authors
concluded that both local production and imported objects existed in the Alcáçova of
Santarém. Given the highly sandy-silt (siliceous) composition prevalence, they conclude
that all raw materials were treated before use. This information is, therefore, highly relevant
to the present study, which seeks to investigate whether there is temporal continuity in
ceramic production, based on local mineral resources and marked stylistic similarities, or
whether, conversely, medieval materials originate from European production centres.

3. The Ceramic Sample Set—Selection Methodology
3.1. Archaeological Context

In 2014/2013, a large archaeological campaign was carried out in Santarém, taking
advantage of the replacement of water and electricity infrastructures. Being a historical
city, it is legally mandatory that an archaeological survey is performed. During the work
developed both in Travessa das Capuchas—Largo António Monteiro, 22 abandoned under-
ground storage pits were found. In Largo Pedro Alvares Cabral, that number was 20. Not
all of them were filled with domestic waste and that process occurred in the 13th and 14th
centuries. In the Capuchas area, this certainly happened before 1415, when the Hospital
dos Inocentes was built, and in Largo Pedro Alvares Cabral, this action was most likely
related to the construction of Igreja da Graça that started to be built in the 1380s [18].

The commercial nature of the archaeological excavation did not allow excavation of
these underground structures, except for three cases that were only partially excavated.
They presented different dimensions from small, just over 1 m deep, to large, almost 3 m
deep. Still, this allowed the recovery of hundreds of ceramic objects, most of them unglazed
red earthenwares produced locally. In addition to the ceramic evidence, a large quantity of
food remains were also recovered, demonstrating that these abandoned storage pits were
used for domestic refusal deposits.

In considering the significance of these storage pits within the Medieval Santarém
cultural frame, it becomes evident that they not only served utilitarian functions but also
embodied symbolic meanings within the social manufacture of the city and the social
construction of space. Their presence in urban spaces reveals aspects of the organisation of
domestic life, the management of resources, and the interconnectedness of economic, social,
and cultural spaces. These archaeological findings within the pits can thus be contextualised
and inserted into broader historical narratives, gaining a richer understanding of medieval
Santarém and its inhabitants’ daily experiences and practices. As one of the most productive
areas of the kingdom of Portugal, Santarém had many wealthy inhabitants. Historical
documents attest to that social reality [2] and when looking at the pottery used in tables,
when compared to the other Portuguese cities mentioned below, the consumption of pottery
reveals the same reality.

3.2. Samples

Figure 1 presents 20 sherds recovered from two underground cereal storage pits
transformed into dumpsters excavated in Santarém and dated to the late medieval period
(13th–14th-century archaeological context). Only glazed ceramics were selected for the
archaeometric analyses presented in this paper.
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Figure 1. Glazed ceramic sherds collected from two storage pits, dated to the 13th–14th centuries, 
Santarém. S stands for Santarém. Scale bar: 10 mm. 

As Figure 1 shows, green glazes are predominant, but some sherds exhibit amber or 
light brown glazes. In some cases, all sherd surfaces are glazed, but there is no pigment in 
some areas, and the glaze simply covers the ceramic body. As it is possible to observe 
through the sherd’s images, the samples can be considered quite heterogenous. Samples 
S1 and S2 are particularly interesting since they belonged to jugs decorated with green 
grapes in the S1 sample and black �grapes’ in the case of S2. S1 exhibits a red ceramic body, 
while all the other Santarém samples exhibit a whitish paste. All sherds are small, not 
exceeding about 10 cm in the longest dimension. The exception is sherd S1, which is about 
15 cm high and 10 cm long. 

Previous compositional studies of pottery ceramic pastes and clay raw materials from 
the region of Lisbon enabled us to establish a limited number of clay sources and 
formulations being used in the Lisbon workshops, where most of the ceramic production 
in the country was located [19–22]. Pliocene ceramic pastes (highly siliceous) or Miocene 
ceramic pastes (with a high content of calcium carbonate) were detected [23]. Potters 
settled preferentially in vicinity areas with clayey soils. We have to say, however, that 
there is no evidence of kilns producing lead-glazed pottery in the 13th and 14th centuries 
in the Tagus Valley (where Santarém is located). The production of glazed ceramics existed 
in the Muslim period until the 12th century and it was again proven from the 15th century 
onwards [24]. 

Figure 1. Glazed ceramic sherds collected from two storage pits, dated to the 13th–14th centuries,
Santarém. S stands for Santarém. Scale bar: 10 mm.

As Figure 1 shows, green glazes are predominant, but some sherds exhibit amber or
light brown glazes. In some cases, all sherd surfaces are glazed, but there is no pigment
in some areas, and the glaze simply covers the ceramic body. As it is possible to observe
through the sherd’s images, the samples can be considered quite heterogenous. Samples S1
and S2 are particularly interesting since they belonged to jugs decorated with green grapes
in the S1 sample and black ‘grapes’ in the case of S2. S1 exhibits a red ceramic body, while
all the other Santarém samples exhibit a whitish paste. All sherds are small, not exceeding
about 10 cm in the longest dimension. The exception is sherd S1, which is about 15 cm high
and 10 cm long.

Previous compositional studies of pottery ceramic pastes and clay raw materials
from the region of Lisbon enabled us to establish a limited number of clay sources and
formulations being used in the Lisbon workshops, where most of the ceramic production
in the country was located [19–22]. Pliocene ceramic pastes (highly siliceous) or Miocene
ceramic pastes (with a high content of calcium carbonate) were detected [23]. Potters settled
preferentially in vicinity areas with clayey soils. We have to say, however, that there is
no evidence of kilns producing lead-glazed pottery in the 13th and 14th centuries in the
Tagus Valley (where Santarém is located). The production of glazed ceramics existed in
the Muslim period until the 12th century and it was again proven from the 15th century
onwards [24].
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One should emphasise that in the Lisbon region, Miocene clays can be found in
the North and South of the Tagus River, while Pliocene clays only exist on the South
bank [16,21–23]. In the region of Santarém, Pliocene formations exhibit a more diversified
composition, including predominantly illitic clayey facies, occasionally with calcretes
(calcite-bearing formations) [17]. The only kaoliniferous formation referenced is the P1
level of kaolin sands [16].

In order to clarify this issue, many glazed (and some nonglazed) sherds from coeval
European workshops were studied, and 20 samples are presented in Figure 2.
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Figure 2. Glazed ceramic sherds collected from several European archaeological sites dated to
the 13th–14th centuries. St—Saintonge; A—Ardenne; Z—Zomergem; B—Bruges; SH—Surrey–
Hampshire; K—Kingston; and C—Cheam. Scale bar: 10 mm.

The suspicion that Santarém ceramics originated from different parts of Northern
Europe is related to several factors: (a) 13th- and 14th-century ceramic productions are not
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that well known in Portugal, and lead-glazed wares are proportionally rare in medieval
collections; (b) the majority of these ceramics correspond to shapes and glazes which are
very similar to Northern European productions; (c) Northern European glazed ceramics
have been found in other archaeological contexts in Portugal and medieval lead-glazed
ceramic production has never been confirmed—Figure 3. When observing some of the
lead-glazed ceramics found in Portugal, these objects are very similar to Saintonge, Bruges,
and English productions. It is known that ceramics previously identified as Northern
European ceramics in 15th-century contexts were after all produced in Portugal [25]. The
Santarém contexts are earlier and, thus far, no kiln before the 15th century is known to have
produced any type of glazed ceramics.
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Figure 3. Map with Santarém and European archaeological sites where all samples were collected.

The sherds analysed as comparative productions in this paper were obtained from
different excavations in different parts of Northern Europe in sites possible to date to the
13th to the 15th century. The Saintonge, Surrey–Hampshire, Kingston, and Cheam types
were all found in unstratified contexts in the greater London area and were classified
by pottery specialists. As for the remaining types, these were obtained in the Ardenne,
Zomergem, and Bruges areas. They were found associated with kilns and pottery wasters,
and are thus considered local productions [26,27]. The choice of these areas as comparative
productions was based on two basic premises. First, this area had frequent commercial
relations with Portugal in the 13th and 14th centuries [11], and second, ceramics produced
in this area are frequent finds in Portugal [12,13].
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The Saintonge productions tend to present a light buff fabric glazed either green or
dark yellow and are among the most widely distributed medieval glazed ceramics in
Northern Europe [28]. The red fabric objects are usually glazed in green and are believed to
be produced in the Bruges area (or the Netherlands) [29,30]. Finally, there are some objects
that, by their characteristics, seem to have been produced in Britain [31].

Our archaeometric study of the glazed pottery found in the archaeological sites of
medieval Santarém dated to the 13th to 14th centuries are, in this context, the first ones for
such medieval glazed ceramics, and it is particularly interesting to determine whether they
were locally produced or imported pottery.

4. Experimental Techniques under Use

Micro-Raman and ground-state diffuse reflectance absorption spectra spectroscopy
(GSDR), stereomicroscopy (SM), and X-ray fluorescence (XRF) are non-invasive spectro-
scopies for glazes, while X-ray diffraction (XRD) analyses of the ceramic bodies involve
the removal of ca. 10 to 15 mg of powder from each sherd. The use of powdered samples
was mandatory for the equipment under use (described in the experimental section). The
same powder was used for the X-ray fluorescence (XRF) experiments, enabling us to obtain
results from more homogenous samples. This amount of 10 to 15 mg of powder is negli-
gible since all sherds’ weights vary between 5 and 75 g, and these two techniques can be
considered as quasi-non-invasive methodologies for the study of ceramic bodies.

Micro-Raman investigations were carried out employing Renishaw InVia Confocal Ra-
man equipment (manufacturer: Renishaw, London, UK), in a back-scattering configuration,
using a 532 nm laser excitation.

GSDR experiments were conducted employing a home-built diffuse reflectance set-up,
using an ICCD as a detector and a W-Hal lamp as the excitation source. Three standards,
Spectralon white and grey disks and barium sulphate powder, were used to obtain the
reflectance curves, and from them, the remission function was calculated.

For elemental composition information, XRF analyses were performed using a Niton
XL3T GOLDD spectrometer from Thermo Scientific (manufacturer: ThermoFisher Scientific,
London, UK).

To study the mineralogical and phase composition of the ceramic bodies of the sherds,
XRD analyses were conducted utilising a Panalytical X’ PERT PRO (Malvern Panalytical
Ltd., Malvern, UK) diffractometer system equipped with a copper source.

The analysis conditions for the four methodologies under use were the same as in
the references provided. Diffractograms were performed only one time for most samples
as they were quite similar, as discussed in the text. However, in the cases where some
differences were noted, they were repeated once or twice. All the other experiments were
repeated at least three times.

In the stereomicroscopy (SM) experiments, tile sections’ were observed using a Nikon
SMZ645 stereomicroscope and representative images were acquired using a Moticam
10.0 MP digital camera.

XRF spectroscopy provides the elemental compositions of both ceramic bodies and
glazes, diffractograms provide the mineralogical composition of pastes, and GSDR absorp-
tion spectra provide the colour characterisation. Finally, stereomicroscopy allowed us to
perform a detailed comparison of cross-sections, which distinctly revealed that the fabric of
light-coloured pastes in Santarém was quite distinct from the foreign fabrics.

Further details regarding all these techniques were previously described in [20–22].

5. Results and Discussion
5.1. Micro-Raman Studies

Micro-Raman spectroscopy is an excellent technique to identify the pigments used to
decorate the surface of the glazed ceramic and to characterise the glaze itself [32]. All the
white paste ceramics were made with highly siliceous clays; therefore, quartz was detected
in many samples. In the white pastes, most samples exhibited anatase (TiO2) and carbon
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black on the darker surfaces. As expected, the red pastes were rich in hematite, as will be
further demonstrated.

As previously referred to, sherd S1 has dimensions of about 15 cm × 10 cm and
belonged to a wine jar, common in medieval pottery. Both the body of the jar and the
grapes are covered with a green glaze, and it is interesting to point out that no specific
copper signature (Cu2+) was detected in the Raman spectrum of S1. The green colour of the
lead-based glaze was certainly obtained with the use of copper oxide, as XRF data presented
later in this paper for glazes will show. However, no Raman signature was detected because
Cu2+ was dissolved in the matrix, as pointed out in previous publications [33,34].

Sherd S2 was probably also from a wine jug, in this case decorated with black grapes.
Large amounts of hematite (Fe2O3) and magnetite (Fe3O4) were detected in that black
decoration, as the micro-Raman spectra of Figure 4a show. The presence of a red paste
beneath the substrate, covering the white paste, justifies the obtained results (see also
Figure S1).
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In samples S2 and S4 from Santarém, a clear signature of anatase was detected, show-
ing that this mineral is dispersed in the glaze layer that covers the surface of the pottery.
Anatase and quartz were also detected in most Santarém Raman spectra of the ceramic
bodies, as Figure 4b shows.

One should also mention that, in all samples, there was a remarkable absence of
calcium carbonate, as shown in Figures 4 and 5. The only exception was Santarém S6
white paste, although the amount of CaCO3 (peaking at 1087 cm−1) was certainly very
low. The residual presence of calcite can be attributed to secondary calcite formed during
burial, through impregnation or alteration of primary ceramic components, with the latter
hypothesis being less likely, as will be shown subsequently using other methodologies.
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Figure 5. Micro-Raman spectra from the most significant glazed surfaces from the European sherds.
Quartz (Q), anatase (A), c arbon black (CB), stretching (υ) and bending (δ) of Raman envelopes.

Micro-Raman spectroscopy was also used to obtain information about the nature of
the glaze, even establishing correlations with the firing temperature of the kiln. Quartz is a
crystalline form of SiO2 and, in glassy structures, part of the covalent bonds between the
SiO4 tetrahedra is destroyed. The ratio of the stretching (i.e., ~1000 cm−1) and bending
(~500 cm−1) Raman envelopes can be correlated to the temperature of the kiln, the glaze
composition, and the different fluxing agents. Colomban introduced a quantification using
a ratio of band areas Ip = A500/A1000, where Ip is the polymerisation index [32]. Santarém
glass types are lead-rich glazes with Ip ~0.1 to 0.2, pointing to kiln firing temperatures
below 700 ◦C.
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The maximum wavenumber of the Si-O stretching bands (υmax) for the Santarém
glazes lies in the 935 to 960 cm−1 range, a value typical of lead-rich glazes [32].

Figure 4b shows the Raman spectra found for most ceramic bodies for the Santarém
sherds. Large amounts of anatase, quartz, and carbon black were detected.

A similar study was performed for the sherds of the European coeval production
centres, and some significant cases are shown in Figure 5.

A striking similarity is observed in the micro-Raman spectra of the glazes depicted
in Figures 4a and 5. Additionally, the Ip parameter exhibits slight variations, ranging
from approximately 0.1 to 0.2. Consequently, discerning distinctive features indicative
of different production centres proves challenging through this spectroscopic technique
alone. No Raman spectra are presented for the ceramic bodies of the European sherds
because the results are basically the same as those presented in Figure 4b. To ascertain the
origins of Santarém pottery conclusively, we will proceed by presenting results derived
from alternative spectroscopic and visual methods or techniques.

5.2. GSDR Studies

Ground-state diffuse reflectance absorption spectra for all coloured sherds in Figures 1
and 2 are presented in Figures 6 and 7, where the remission function is the ordinate and
the wavelength in nm is the abscissa. Figure 6a shows the absorption spectra of sample S2,
the one with black grapes. The green glaze presents two maxima, one at about 380 nm
and the other in the visible region, maximising at ca. 700 nm. The absorption in the red
region produces the observed green colour (the complementary colour of the red). The
black grapes are characterised by a high value of the remission function both in the UV
and visible regions of the spectrum. By contrast, the ceramic body absorbs primarily in the
UV region.
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Figure 6. GSDR absorption spectra of S2 Santarém green and black glaze and ceramic body (a) and
S3 Santarém amber glaze and ceramic body (b).

Figure 6b refers to the amber colour of sample S3. An absorption band maximising
at about 470 nm is compatible with a higher concentration of iron oxide, as described
in [33,34].

The GSDR absorption spectra of Figure 7 are like the ones presented in Figure 6,
regarding the green and greenish glazes. The brown glaze of sherd Z1 is characterised by
a broad absorption band, spreading from the UV to all visible regions and maximising
at about 420 nm. The K2 sherd exhibits yellow and green spots, and the absorption
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bands reflect blue and red absorptions. Finally, the yellow glaze of sample St3 exhibits an
absorption, in the blue region, at about 380 nm, while the creamy glaze of the A2 sample
absorbs in the UV region and has a small broad band in the visible region.
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Figure 7. GSDR absorption spectra of European sherds: (a) St1—Saintonge green glaze; St3—Saintonge
yellow glaze; A2—Ardenne cream glaze; Z1—Zomergem brown glaze; (b) B1—Bruges green glaze;
SH2—Surrey–Hampshire greenish glaze; K2—Kingston cream glaze; C1—Cheam brownish glaze.

Again, the similarity of the GSDR absorption spectra for the glazes presented for the
Santarém and European sherds is remarkable, and no clear differences in the production
centres can be established using this spectroscopic technique.

5.3. XRD Studies

The ceramic bodies retrieved from both the Santarém pits and European archaeo-
logical sites underwent comprehensive analysis using X-ray diffraction (XRD powder
method). As illustrated in Figure 8 (limited to whitish pastes), the striking resemblance
between the two groups outweighs any noticeable distinctions. All pastes were crafted
from siliceous raw materials, resulting in pronounced quartz (Q) signatures. Alongside
amorphous/nanocrystalline phases, which XRD cannot fully characterise, a select num-
ber of minor minerals were identified, including muscovite, rutile, anatase, microcline,
and plagioclase. Hematite was found only in the red pastes. Furthermore, the pres-
ence of muscovite or illite/muscovite thermal-derived phases was observed (see Table 1).
This temperature-dependent phenomenon, primarily governed by dihydroxylation, is
discernible in XRD pattern modifications, particularly evident in characteristic reflections
at 2θ = 8.9 and 2θ = 19.8. These modifications facilitate the assessment of minimum kiln
temperatures [22].

Table 1. Main XRD peaks used to identify the minerals in the diffractograms of all ceramic bodies.

Quartz—Q, SiO2, 2θ0 = 21.0, 26.7, 36.7, 46.0, 50.2, 60.0, 64.1, 68.2,
Microcline—Mic, K Al Si3O8, 2θ0 = 20.9, 25.7, 27.5, 42.0, 50.8,
Muscovite—M, KAl2(Si3Al)O10(OH)2, 2θ0 = 8.9, 17.8, 19.8, 25.7,
Illite—I (K, H3O)(Al, Mg, Fe)2(Si, Al)4O10(OH)2) 2θ0 = 8.8, 17.8, 19.8, 25.7,
Rutile—R, TiO2, 2θ0 = 27.3, 36.1, 54.3,
Anatase—A, TiO2, 2θ0 = 25.3, 307.1, 47.9,
Hematite—H, α−Fe2O3, 2θ0 = 24.4, 35.7. 49.6, 54.2, 57.4
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Figure 8. Representative XRD patterns for ceramic bodies of sherds from Santarém medieval archaeo-
logical site, all non-carbonaceous silicious-type pastes. XRD peaks: quartz (Q), anatase (A), rutile
(R), muscovite (M), and microcline (Mic). (All diffractograms were normalised to the quartz peak at
2θ0 = 21.0 (constant intensity), to allow comparisons of the relative amounts of all the other minerals).

5.4. XRF Studies
5.4.1. Ceramic Bodies

The XRF results achieved for the ceramic bodies of sherds from the Santarém ar-
chaeological site are presented in Table 2, and Table 3 presents similar data for the Euro-
pean sherds.

The data included in Tables 2 and 3 allow for establishing various types of ratios,
commonly used for comparative analyses between materials. After an exploratory analysis
of these data, it is found that one of the main ratios with discriminatory capacity among the
samples under study is based on the concentration of the two main oxides, SiO2 and Al2O3,
with which K2O, CaO, and Fe2O3 can be associated. The observed differences/trends will
be directly correlated with the original formulation of the paste, where, alongside the clay
components and quartz, the aforementioned accessory minerals occur. Thus, Figure 9 was
selected, elaborated on with the ratios of Al/Si vs. Ca/Si, to chemically describe all the
samples under study.
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Table 2. Chemical composition of the powdered ceramic bodies of the Santarém sherds, obtained by
XRF. Data are presented as wt.% for major and minor constituents and ppm for trace elements. (nd:
not detected; nq: not quantified).

Samples MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 Mn Rb Sr Zr Nb R (*)

Sa
nt

ar
ém

S1 1.41 12.44 73.66 3.47 0.67 1.05 7.26 nd/nq 67 70 266 22 134
S2 nd/nq 27.13 63.10 3.11 1.08 2.84 2.71 nd/nq 62 122 224 29 87
S3 nd/nq 25.45 66.70 2.18 0.70 1.36 3.61 nd/nq 55 22 66 19 135
S4 nd/nq 22.89 68.64 2.10 0.77 1.38 4.21 nd/nq 28 18 66 10 122
S5 nd/nq 21.09 70.40 2.67 0.70 1.38 3.75 nd/nq 37 21 86 13 135
S6 nd/nq 24.11 64.03 5.30 0.90 1.92 3.71 nd/nq 148 48 240 36 104
S7 nd/nq 22.08 70.32 2.18 0.45 1.33 3.61 nd/nq 78 28 94 23 210
S8 nd/nq 25.37 66.00 2.41 0.52 1.51 4.16 nd/nq 94 52 210 37 182
S9 1.29 25.77 62.18 2.70 1.55 1.43 5.06 nd/nq 69 52 119 23 58

S10 nd/nq 27.35 63.84 2.34 0.48 1.61 4.34 nd/nq 98 59 243 40 194
S11 nd/nq 26.39 63.73 2.77 1.40 1.48 4.21 nd/nq 81 46 154 30 67
S12 nd/nq 25.13 65.02 2.88 1.12 1.48 4.34 nd/nq 73 49 135 26 83
S13 nd/nq 27.88 62.47 2.39 1.24 1.31 4.67 nd/nq 81 54 90 28 75
S14 nd/nq 24.28 64.88 3.15 1.69 1.61 4.36 nd/nq 90 69 200 32 55
S15 nd/nq 26.18 64.74 2.64 1.17 1.41 3.84 nd/nq 75 30 87 24 80
S16 nd/nq 23.99 65.04 2.98 2.21 1.54 4.21 nd/nq 75 66 183 30 42
S17 nd/nq 25.57 64.05 2.24 1.37 1.33 5.41 nd/nq 84 68 151 30 67
S18 nd/nq 22.20 69.27 2.52 0.69 1.23 4.06 nd/nq 81 56 178 31 135
S19 1.45 21.74 68.14 2.34 0.90 1.20 4.19 nd/nq 79 59 200 32 102
S20 nd/nq 26.58 65.06 2.31 0.75 1.29 3.97 352 47 nd/nq nd/nq 20 126

(The estimated error for major elements (Si and Al) was ≤ 3%, for minor elements (K, Ca and Fe) ≤ 4% and for
trace elements ≤ 8%). (*) Ratio R = (SiO2 + Al2O3 + K2O)/CaO.

Table 3. Chemical composition of the powdered ceramic bodies of European sherds, obtained by XRF.
St, Saintonge; A, Ardenne; Z, Zomergem; B, Bruges; SH, Surrey- Hampshire; K, Kingston; C, Cheam.
Data are presented as wt.% for major and minor constituents and ppm for trace elements. (nd: not
detected; nq: not quantified).

Samples MgO Al2O3 SiO2 K2O CaO TiO2 Fe2O3 Mn Rb Sr Zr Nb R (*)

Saintonge

St1 nd/nq 23.07 67.51 2.91 0.92 1.73 3.82 nd/nq 64 63 170 21 101
St2 nd/nq 16.95 74.51 2.79 1.09 1.30 3.30 nd/nq 43 203 210 18 86
St3 nd/nq 18.42 72.03 4.24 0.83 1.74 2.71 nd/nq 46 55 149 20 115
St4 nd/nq 19.78 71.76 2.04 0.67 1.82 3.91 nd/nq 40 38 168 19 141

Ardenne
and

Zomergem

A1 nd/nq 22.22 69.61 1.12 0.90 2.69 3.42 nd/nq 38 87 273 46 104
A2 nd/nq 23.53 68.14 1.24 1.10 2.67 3.28 nd/nq 30 74 226 38 84
Z1 1.55 11.27 73.21 3.37 0.64 1.08 8.83 nd/nq 63 58 325 20 138
Z2 1.20 11.09 74.22 3.16 0.54 1.05 8.70 nd/nq 59 57 248 20 164

Bruges
B1 1.24 10.53 75.68 3.23 0.83 1.06 7.39 nd/nq 59 64 243 20 108
B2 1.54 13.46 69.70 4.23 1.34 1.25 8.42 nd/nq 82 114 268 25 65
B3 1.16 10.68 76.68 3.40 0.79 1.04 6.21 nd/nq 50 60 221 16 115

Surrey
Hampshire

SH1 nd/nq 19.90 70.51 3.41 0.95 1.35 3.84 nd/nq 37 222 142 15 99
SH2 nd/nq 15.19 73.69 2.63 2.89 0.92 4.58 360 46 162 87 13 32
SH3 1.14 18.66 71.11 3.00 0.95 1.22 3.85 nd/nq 67 382 348 29 98
SH4 1.28 15.98 73.63 2.87 0.80 1.09 4.27 nd/nq 46 383 165 18 115

Kingston

K1 nd/nq 12.45 80.03 2.00 0.18 0.88 4.43 nd/nq 35 22 125 11 531
K2 1.15 17.24 72.70 1.68 0.81 1.28 5.11 nd/nq 33 39 126 20 113
K3 1.17 15.93 74.62 2.35 0.71 1.05 4.14 nd/nq 34 39 178 17 131
K4 nd/nq 15.62 76.53 2.26 0.40 1.01 4.14 nd/nq 37 45 244 21 237

Cheam C1 nd/nq 18.67 71.99 2.53 0.91 1.40 4.48 nd/nq 45 76 217 24 102

(The estimated error for major elements (Si and Al) was ≤ 3%, for minor elements (K, Ca and Fe) ≤ 4% and for
trace elements ≤ 8%) (*) Ratio, R = (SiO2 + Al2O3 + K2O)/CaO.
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Figure 9. Scatterplot of Al/Si versus Ca/Si count ratios for the studied ceramic. The contents of
Al and Ca measured by XRF were normalised to the Si content [35]. Green ellipse—light coloured
pastes with lower quartz temper. Blue ellipse—light, reddish, and grey brownish pastes with higher
quartz temper.

The scatterplot for Al/Si versus Ca/Si (% wt ratio) for all sherds (Figure 9) reveals
two distinct clusters, with the upper one corresponding to Santarém samples and the lower
one to the European group. There are a few samples that slightly deviate from this general
clustering. The Santarém sample S1 (red paste), is positioned in the group of the blue ellipse,
the European one. Saintonge St1 and Ardenne A1 and A2 are included in the Santarém
green ellipse. Santarém samples exhibit a distinctly higher aluminium content, while the
majority of European ceramic bodies are more quartz-rich. The Ca/Si ratio shows little
variability as, in general, CaO contents are very low, and according to the XRD-identified
mineralogy, they can be correlated with the presence of Na-Ca plagioclase.

This finding represents the initial spectroscopic evidence definitively delineating
between Santarém and European samples. All preceding findings from Figure 9 gathered
with the data of Tables 2 and 3 reinforce the non-calcareous nature of the ceramic bodies,
with calcium contents less than 5% wt CaO [36,37], aligning with the Pliocene-like origin of
the clays used from the Lisbon region [19].

Tables 2 and 3 present R values. R is defined by R = (SiO2 + Al2O3 + K2O)/CaO and
was used in previous papers by our group [19–22] to quantify the relative amounts of
the structural components of the ceramic pastes (SiO2 + Al2O3 + K2O), related to calcium
fractions (CaO). As one could expect, all R values are characteristic of the Pliocene-like
clays [19], and no significant difference exists between Santarém and the European cases.

Figure 10 depicts samples S1 (red paste) from Santarém and Belgium (B1, B2, and
B3 from Bruges—red pastes and Z1 and Z2 from Zomergem—grey–brown pastes). These
pastes are represented in the lower section of Figure 10, exhibiting notably low Al/Si
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and Ca/Si ratios. All of them demonstrate a higher iron content (7–9% wt.). This aspect
clearly indicates that Belgian pastes have a markedly distinct formulation from the other
light-coloured pastes from Santarém. The similarity in chemical composition between
sample S1 and the other coloured paste samples suggests a common origin. This aspect
will be further evaluated by also considering the data from the ceramic’s fabric.
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Figure 10. Selection of representative Santarém (S1, Santarém), and European red (Bruges—Belgium
B1, B2, B3) and grey–brown (Zomergem Z1, Z2) fabric pastes. Scale bar: 1 mm.

5.4.2. Glazes

XRF results for glazes are presented in Tables 4 and 5. As mentioned before, all glazed
sherds possess transparent lead glazes [38], and, for most samples, the PbO content of
the Santarém samples (~50% wt.) is higher than the European ones (~40% wt.). The
PbO/SiO2 ratio is also different for the two groups, pointing to different technologies in
the glaze-manufacturing process.

Table 4. Chemical composition of the glazed surfaces of Santarém sherds obtained by XRF, wt.%. (nd:
not detected; nq: not quantified).

Samples Colours MgO Al2O3 SiO2 K2O CaO TiO2 MnO Fe2O3 NiO CuO ZnO As2O3 SnO2 PbO PbO/SiO2

Sa
nt

ar
ém

S1 Green nd/nq 7.03 20.20 0.42 nd/nq 0.28 0.28 1.13 0.05 3.76 0.51 6.33 0.15 59.87 3.0

S2
Green nd/nq 8.97 32.33 1.57 3.40 0.34 0.22 0.42 0.07 3.12 0.02 4.86 0.20 44.49 1.4
Black

(grape) nd/nq 9.48 34.50 1.17 1.92 0.30 0.24 1.21 0.06 2.60 0.02 5.50 0.15 42.85 1.2

S3
Amber nd/nq 9.31 20.68 0.35 nd/nq 0.05 0.28 4.40 0.07 0.03 0.02 6.51 nd/nq 58.31 2.8
Brown

(scratch) nd/nq 9.71 21.91 0.43 nd/nq nd/nq 0.28 4.54 0.12 0.09 nd/nq 5.37 nd/nq 57.56 2.6

S4
Amber nd/nq 9.72 23.58 0.51 nd/nq nd/nq 0.28 4.57 0.09 0.03 0.02 5.61 nd/nq 55.59 2.4
Brown

(scratch) 2.93 9.22 22.93 0.49 nd/nq 0.03 0.28 4.44 0.08 0.05 0.02 5.89 nd/nq 53.64 2.3
S5 Green nd/nq 9.70 34.83 1.26 1.63 0.07 0.24 0.57 0.07 2.95 0.02 5.19 nd/nq 43.48 1.2
S6 Green nd/nq 5.01 16.80 0.24 10.02 nd/nq 0.25 0.31 0.07 5.96 0.56 5.96 0.08 54.73 3.3
S8 Green nd/nq 9.35 29.46 0.77 nd/nq 0.06 0.31 0.77 0.11 1.96 nd/nq 5.45 nd/nq 51.76 1.8

S10 Green nd/nq 9.43 25.93 1.04 6.58 0.07 0.24 0.93 0.08 1.67 0.02 4.74 0.02 49.26 1.9
Brown 2.48 9.28 25.54 0.68 nd/nq 0.05 0.27 3.72 0.07 0.22 0.02 5.78 nd/nq 51.89 2.0

S19 Green nd/nq 7.64 49.33 1.17 4.49 0.06 0.20 0.67 0.08 2.42 0.02 3.65 0.04 30.25 0.6
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Figure 11 shows the correlation between the flux, PbO, and the SiO2 content, suggesting
a linear relation between them. Indeed, the flux content is higher in the Santarém samples
(the green triangles).

Some authors [39–41] referred to the use of Sb-based opacifiers in the studied glazes
(from Korchabad, Susa, Persepolis, and Tepe Rabat—8th and 6th centuries BC), present
as lead antimonate, calcium antimonate, and/or sodium antimonate. In some cases [39],
even no Pb was detected. This was not our case, because no Sb was detected in the samples
studied by us.

The colouring agent of green-coloured sherds was copper, as is common in ancient
coloured glazed ceramics [39,42,43], while brown and amber colours were obtained with
the use of iron oxide. The black grape of sample S2, apart from the iron compounds
revealed by the micro-Ramam spectrum, also presents the addition of copper, perhaps used
to reinforce the darkness [40].

Table 5. Chemical composition of the glazed surfaces of European sherds obtained by XRF, wt.% (nd:
not detected; nq: not quantified).

Samples Colours MgO Al2O3 SiO2 K2O CaO TiO2 MnO Fe2O3 NiO CuO ZnO As2O3 SnO2 PbO PbO/SiO2

Belgium
B1 Green nd/nq 11.57 35.46 0.42 nd/nq 0.25 0.35 1.41 0.09 2.77 0.57 5.91 0.05 41.15 1.2
B3 Yellow 1.91 19.19 29.67 1.78 nd/nq 0.09 0.23 1.19 0.08 nd/nq 0.02 5.10 0.13 40.60 1.4
A2 Creamy nd/nq 13.58 38.23 0.22 nd/nq 0.39 0.29 1.21 0.13 nd/nq 2.54 5.60 nd/nq 37.81 1.0
Z1 Brown 2.62 8.96 37.52 0.58 nd/nq 0.20 0.23 3.34 0.09 nd/nq 0.03 5.50 nd/nq 40.93 1.1

Saintonge

St1 Green nd/nq 8.13 38.16 0.30 nd/nq 0.21 0.27 0.94 0.08 3.25 0.46 6.04 0.17 41.98 1.1
St2 Green nd/nq 10.71 26.24 0.80 1.97 0.19 0.33 1.48 0.08 3.18 0.73 5.69 0.10 48.48 1.8

St3 Creamy nd/nq 11.93 45.68 0.73 nd/nq 0.26 0.25 0.99 0.08 0.60 0.02 5.77 nd/nq 33.69 0.7
Green nd/nq 11.91 38.88 0.86 0.64 0.23 0.25 0.99 0.09 1.84 0.00 5.75 nd/nq 38.57 1.0

St4 Green 2.38 13.23 35.16 0.52 2.90 0.37 0.28 1.64 0.06 2.43 0.03 5.36 nd/nq 35.64 1.0

Surrey-
Hampshire

SH1 Green 2.53 12.15 21.79 0.98 0.44 0.17 0.25 1.00 0.09 4.15 0.07 4.92 0.28 51.21 2.3
SH2 Green nd/nq 9.57 28.34 0.58 0.66 0.14 0.30 1.48 0.11 2.26 0.21 7.26 0.39 48.70 1.7
SH3 Green 2.11 14.28 29.77 1.36 1.95 0.22 0.21 0.99 0.08 3.17 0.02 4.79 0.03 41.02 1.4

Kingston

K1 Yellowish nd/nq 11.14 30.45 0.50 nd/nq 0.14 0.27 1.34 0.10 1.25 0.03 5.79 0.09 48.90 1.6

K2 Green 2.44 12.39 30.77 1.44 nd/nq 0.17 0.23 1.24 0.08 5.01 0.68 4.33 0.17 41.04 1.3
Yellowish 2.74 11.49 40.85 1.32 nd/nq 0.25 0.25 1.48 0.07 0.78 0.13 4.77 0.03 35.86 0.9

K3 Green 2.90 11.39 26.10 0.47 nd/nq 0.19 0.25 2.00 0.09 4.82 0.02 5.28 0.54 45.95 1.8
Colourless nd/nq 11.99 32.81 0.41 nd/nq 0.19 0.27 1.61 0.10 0.91 0.02 6.16 0.46 45.07 1.4

Cheam C1 Green nd/nq 8.59 28.57 0.52 1.05 0.16 0.28 1.67 0.08 3.56 0.26 5.79 0.59 48.88 1.7
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5.5. Optical Microscopy (OM)

Given the limited variability in X-ray diffraction (XRD) analyses of light-coloured
ceramic pastes, suggesting similarities in the components of raw materials and firing
conditions, a clear trend emerges regarding the proportion of these components. This
trend becomes more evident when considering major oxides (SiO2 and Al2O3) as stated
before. Despite previous evidence revealing a strong possibility of different origins for
the light clay samples from Santarém compared to European ones, a visual inspection of
their manufacturing was carried out, using various parameters, to validate this assumption.
Particular attention was given to European samples whose composition fell within the
domain of the Santarém group or vice versa, as well as to the group of coloured ceramics,
namely those made of red clay.

Figures S1 and S2 (Supplementary Material) present cross-sections of Santarém samples
S1 to S20 and all European samples. Tables S1 and S2 summarise the fabric paste characteristics
of all samples used in this study.

The combination of chemical data (Tables 2 and 3) with the fabric analysis of the
light sherds, including sample Z1, observed through stereomicroscopy, is represented in
Figure 12. Alongside the Al/Si and Ca/Si values that determined the positioning of the
samples in the figure, two parallel vertical axes were placed, aiming to establish a corre-
spondence between the ceramic and the raw material that it originated from (clay–quartz
mixture) for a given value of Al/Si. Given the aluminous and siliceous composition of
the pastes, with a low content of K2O, hypotheses of kaolinite–quartz and illite–quartz
mixtures are considered based on their ideal chemical compositions. On the horizontal axis,
we placed the slight trend of enrichment in CaO instead of the Ca/Si parameter, which,
according to observations, is due to the presence of relic feldspar (Na-Ca plagioclase) in the
ceramic paste (e.g., sample S16).

From top to bottom, the samples exhibit a decreasing Al2O3/SiO2 ratio (indicating that
they are more quartzose or siliceous), and from left to right, they show a slight enrichment
in feldspar, possibly albite/oligoclase.

Visual analysis distinctly reveals that the manufacture of light-coloured pastes in San-
tarém is distinct from other foreign manufactures. Foreign light-coloured paste fabrics are
also distinct from each other. Only the samples from SH exhibit two distinct manufactures
(SH1, SH3, SH4 vs. SH2), revealing that they may have a different origin or formulation.
The remaining samples show a notable origin homogeneity in both chemical composition
and fabric.

In the formulation of pastes found in Santarém, it is evident that there is control over
the quantity of quartz in the paste formulation. The fabric is globally dominated by an
abundant plastic fraction, where the quartz temper is unimodal, tending to be fine, with
occasional coarse grains. Some small compositional differences are observed in the content
of muscovite and feldspar, still recognisable in XRD patterns and visual inspection. The
overall composition suggests that the paste results from a source rich in kaolinite, where
quartz is consistently present. Considering only quartz and kaolinite as paste constituents,
the quartz content of Santarém light pastes varies between 15 and 30%, which is in good
agreement with the visual analysis. The light colour of the pastes and the actual content of
quartz exclude the hypothesis of an illite-bearing source, as can be seen in Figure 12.

The gathered information suggests that the origin of the ceramics found in Santarém
are not of European import, as initially thought due to stylistic similarities. On the other
hand, there are geological formations in the local area capable of providing ceramic raw
materials, particularly a Pliocene or Pliocene-like formation rich in kaolinite (Pliocene sands
P1 with approximately 30% kaolinite) [16,17].
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Upon initial visual observation, the entirely red ceramics appear similar due to the
abundance of quartz and similarity in manufacturing. However, there is a noticeable trend
towards a greater predominance of fine and rounded quartz in the Bruges samples. Another
evident aspect, observed in the two selected pastes with red and white components, is that,
in the case of Santarém (S2), there is a very plastic and compact white paste, almost devoid
of quartz, onto which another very plastic red paste was added, the grape decoration. On
the other hand, in Bruges, there is a coarser red paste in the interior and a more plastic and
visibly porous white decorative layer—Figure 13.

Based on the comprehensive data collected, we can confidently assert that most identified
Santarém ceramic fragments are likely of local origin. The production of light-coloured
ceramics seems to have involved the utilisation of clay from Fonte da Pipa, specifically
from the Pliocene formation P1 [16], known for its kaolin-bearing sands. In the refinement
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process, the explored material underwent purification, with meticulous control over the
temper proportion tailored to meet the specific requirements dictated by the intended
function of each object. In contrast, the origins of the red ceramics appear more diverse,
reflecting the multiple possibilities suggested by historical records. In this case, a more
illite-bearing local clay is expected [17].
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6. Conclusions

A multiple analytical approach using micro-Raman, ground-state diffuse reflectance
absorption, and X-ray fluorescence spectroscopies, as well as the X-ray diffraction technique
and stereomicroscopy, allowed us to establish the mineralogical and elemental composition
of the Santarém and European coeval sherds. Most techniques did not allow us to determine
a distinction between the two groups.

However, biplots of XRF data, both for ceramic bodies and glazes, seem to indicate
that the majority of the Santarém ceramics were most probably produced locally. This
assumption is validated by the visual analysis of the paste’s fabric. Considering the results
obtained, it seems possible to infer that the raw material could have been obtained from
local or regional clay sources, particularly from the purification of kaolinitic siliceous sands
of the Pliocene type.
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Late medieval imported ceramics from Northern Europe have already been identified
in Porto and Lisbon. However, these were two of the most prominent cities in the kingdom
of Portugal whose economy was largely based on their Atlantic ports. Santarém had no
direct access to the sea and all trade was made by river navigation. This may have motivated
the production of objects resembling Northern European ceramics. The hypothesis that
some of these objects were produced locally opens very interesting paths of discussion in
terms of cultural influence. As aforementioned, several studies demonstrate that Muslim
potters did not abandon the city and redwares continued to be made following the 8th–
12th-century tradition. However, the same did not happen with lead-glazed wares. If made
in Santarém, these were made following the patterns and styles of Northern European
productions, revealing a confluence of influences and styles that permits us to conclude that,
while daily used objects such as pots and pans were produced according to old traditions,
glazed tableware production followed the most recent imported style.
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