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Abstract: In recent years, research has aimed to enhance the environmental friendliness of activated
carbon by modifying its surface properties to effectively capture specific harmful gases. This study’s
primary goal is to swiftly introduce oxygen functional groups to activated carbon surfaces using
microwave and plasma techniques and evaluate their characteristics. In the microwave method, we
varied nitric acid concentrations and treatment durations for surface modification. Additionally,
plasma treatment was used to introduce oxygen functional groups for comparative purposes. Surface
characteristics were assessed through SEM, BET, XPS, and FT-IR analyses. The results indicate that
in the microwave method, the quantity of oxygen functional groups increased with longer reaction
times. Specifically, the sample treated for 20 min with 8 moles of nitric acid displayed an oxygen
content of 14.11 at%, and higher nitric acid concentrations led to a reduced specific surface area. In
the case of plasma treatment, higher oxygen flow rates resulted in an O1s content of 17.1 at%, and an
increase in oxygen flow rate introduced more oxygen functional groups but decreased the specific
surface area.
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1. Introduction

Volatile Organic Compounds (VOCs) are recognized as a significant contributor to
environmental pollution, emanating from diverse industrial processes [1]. Possessing
intrinsic harmful properties, VOCs, when present in the atmosphere alongside nitrogen
compounds, can catalyze photochemical reactions, leading to secondary pollution such as
ozone formation [2,3]. Various methodologies have been used for VOC removal, encom-
passing thermal combustion, catalysis, adsorption, recovery, absorption, and biological
filtration [4]. Among these, adsorption stands out as a highly efficient technique due to its
simplicity and low energy consumption. Activated carbon is widely utilized in industries
for adsorbing detrimental gases such as VOCs, leveraging its porous carbonaceous struc-
ture with a substantial internal surface area and numerous micropores, making it suitable
for applications in air purification and solvent recovery.

One prominent application of activated carbons is in air purification systems. The
exceptional adsorption capabilities of activated carbons enable them to effectively capture
and remove airborne pollutants, odors, and harmful gases. This makes them an essential
component in air filtration technologies, contributing to improved indoor air quality [5].
Activated carbons are also extensively used in solvent recovery processes. Their ability
to adsorb and recover solvents from gaseous or liquid mixtures makes them integral
to industries where solvent recycling is crucial for cost-effectiveness and environmental
sustainability [6]. Moreover, activated carbons play a pivotal role in water treatment
applications. Their porous structure allows for the effective removal of impurities, organic
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contaminants, and even certain heavy metals from water sources. This makes them valuable
in ensuring access to clean and potable water [7]. Beyond environmental applications,
activated carbons are utilized in various medical and pharmaceutical processes. Their
adsorption properties make them valuable in the purification of pharmaceutical products,
the removal of toxins from bodily fluids, and even in certain medical treatments [8]. In the
realm of energy storage, activated carbons serve as key components in supercapacitors and
batteries. Their high surface area provides ample space for the adsorption and storage of
ions, contributing to enhanced energy storage capacities [9].

Recent studies have focused on enhancing the adsorption capacity of activated car-
bon by introducing functional groups onto its surface through various modification pro-
cesses [10,11]. Oxygen functional groups enable the modulation of the surface properties
of activated carbon, allowing for selective adsorption of substances. The introduction of
oxygen functionality enhances the chemical interactions between substances. Consequently,
research exploring the effective introduction of oxygen functional groups on activated
carbon surfaces has gained attention, aiming to improve air purification and VOC removal
technologies. Within this realm of research, various methods for introducing oxygen func-
tional groups on the surface of activated carbon are being explored. There is a growing
focus on methods that effectively impart fine surface adjustments and introduce diverse
oxygen-active functionalities. Oxygen-containing functional groups, including carboxyl,
lactone, phenol, carbonyl, pyrone, chromene, quinone, and ether groups, are known to
augment the gas adsorption capacity of activated carbon [12]. The effectiveness of surface-
modified activated carbon in adsorbing VOCs and similar harmful gases primarily depends
on factors such as pore size, pore volume, and the characteristics of the introduced surface
functional groups. Surface modification of activated carbon for improved VOC adsorption
is categorized into wet and dry methods [13]. Wet methods involve chemical treatments
with solutions like H3PO4, ZnCl2, NaOH, and KOH [14,15], while dry methods encompass
gas-phase treatments under oxidative or inert atmospheres, such as gas-phase oxidation,
electroplating [16], fluorination [17], and plasma treatments [18,19]. However, wet methods
often entail prolonged reaction times and pose secondary environmental concerns during
post-treatment washing processes, limiting their applicability in continuous processes [20].
In addressing these limitations, this study uses microwave-assisted surface modification,
utilizing microwave energy to induce rapid dipole rotation and ionic conduction [21,22].
This approach enables the efficient introduction of surface functional groups to both the
surface and interior of the sample, reaching elevated temperatures within seconds. Dry
methods, particularly plasma surface modification, are extensively utilized for introducing
functional groups onto activated carbon surfaces. Plasma treatment is a straightforward
process that creates active sites on the material’s surface, offering the ability to introduce var-
ious functional groups rapidly, depending on the type and quantity of gas introduced [23].
Notably, the use of oxygen gas results in oxygen functional groups (C-OX) forming on
the surface, while nitrogen gas introduces nitrogen-based functional groups (C-NX and
N-C-O) [24–26]. Plasma is recognized as a powerful tool for introducing functional groups
by generating various compounds in a high-energy gas state and introducing them onto
surfaces. Surface treatment using plasma introduces atoms and radicals such as oxygen
and nitrogen onto the surface of activated carbon, forming new compounds and enhancing
the functionality of activated carbon [27]. This treatment induces the coupling of polymers,
creating a finely porous structure on the surface, allowing for the increased adsorption of
various compounds [28]. Microwaves are also a useful means of improving the surface of
materials. Microwave energy effectively penetrates the interior of substances, inducing
high power and efficient thermochemical reactions [29]. Through this process, proteins,
cells, organic substances, etc., on the surface of activated carbon can be removed, or atoms
such as oxygen and nitrogen can be introduced to enhance the surface characteristics of
activated carbon [30]. Additionally, microwaves provide selective specificity for various
substances, making them effective for the introduction of specific compounds.
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The primary objective of this research is to efficiently introduce oxygen functional
groups to activated carbon surfaces using microwave and plasma radiation methods and
analyze the resulting characteristics. For the microwave method, variations in nitric acid
concentration and treatment duration were used, while plasma treatment with oxygen gas
was performed for comparison. These methods facilitated the introduction of oxygen func-
tional groups to the activated carbon surface, and subsequent changes in surface properties,
specific surface area, surface pore morphology, and adsorption characteristics under vari-
ous conditions were analyzed and discussed. The introduction of surface functional groups
using plasma and microwave radiation offers high precision and efficiency compared to
conventional methods. This research explores the applicability of these techniques in the
environmental protection and gas adsorption fields. Through such studies, we anticipate a
contribution to the development of highly efficient functionalized activated carbon and its
industrial applications in the future.

2. Materials and Methods

In this experimental study, palm-based granular activated carbon (Handok Carbon Co.,
Ltd., Hwaseong-si, Republic of Korea) of 12 × 40 mesh (0.42 to 1.70 mm) size, containing
1400 mg of iodine, was used. For the surface treatment of activated carbon using the
microwave method, nitric acid (Samchun Chemicals, 60.0%) was utilized, while ultra-
high purity oxygen gas (purity: 99.999%) was used for the surface treatment using the
plasma method.

To introduce surface functional groups on the activated carbon, a vacuum plasma
apparatus (FEMTO SCIENCE, Model: Covance, Hwaseong-si, Republic of Korea) was
used. Two grams of activated carbon were evenly spread in a Petri dish and introduced
into the plasma equipment. Initially, it underwent a 10 min treatment under an oxygen
atmosphere, followed by shaking to ensure even Plasma treatment. Subsequently, another
10 min surface modification was performed, with variations in flow rates set at 50, 100, 150,
and 200 cc/min. The output settings of the plasma equipment were kept constant at 150 W
and 50 KHz.

A microwave reactor was used for the introduction of functional groups on the acti-
vated carbon surface. One hundred milliliters of nitric acid and 2 g of activated carbon were
placed in a specially designed bottle, and a reflux device was connected. Microwave energy
at 1000 W was applied for 10 and 20 min at concentrations of 1, 2, 4, and 8 M. After reflux,
the surface-modified activated carbon underwent filtration using a vacuum pump, with
washing continuing until its pH reached 7. Subsequently, the surface-modified activated
carbon was dried for over 2 h in a vacuum oven at 80 ◦C.

The surface state and microstructure changes of the surface-modified activated carbon
were observed using a scanning electron microscope (SEM, SU3900, Hitachi Co., Tokyo,
Japan). Surface characteristics, including specific surface area, pore volume, and pore size,
were compared using the Brunauer, Emmett, and Teller (BET, Micromeritics Instrument Co.,
ASAP-2020, Norcross, GA, USA) method. The adsorption data of samples were obtained in
a relative pressure, P/Po, range of 10–5 to 1. The surface area of micropores was determined
using the t-plot method. The t-plot method uses the carbon black STSA equation to calculate
the external surface area including medium and large pores from the slope in each range.
Then, it calculates the surface area of micropores by subtracting the external specific surface
area from the BET-specific surface area. The micropore volume was calculated using the
intercept of the t-plot line. The total pore volume (Vt) and the pore size distribution (PSD)
were calculated using the nonlocal density functional theory (NLDFT). The average pore
width was derived by assuming a cylindrical morphology of pores based on the BET surface
area and pore volume, wherein d = 4Vt/SBET.

Fourier Transform Infrared Spectroscopy (FT-IR, solariX XR™ system, Bruker Dal-
tonics, Billerica, MA, USA) was used to examine the chemical composition, distribution,
density of specific elements, and the presence of hydrophilic oxygen functional groups
on the surface of the powder-activated carbon. For a more detailed analysis of chemical
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groups, X-ray photoelectron spectroscopy (XPS, NEXSA, ThermoFisher Scientific, Waltham,
MA, USA) was utilized.

3. Results and Discussion
3.1. Surface Characteristic Analysis

To observe the structural differences in activated carbon modified using the plasma and
microwave methods, the surface was analyzed using SEM, and the results are presented
in Figures 1 and 2. The surface of activated carbon treated with plasma is shown in
Figure 1. The experiments were conducted at different oxygen flow rates of 50, 100, 150,
and 200 cc/min, and it was observed that there was little change in the surface of activated
carbon with varying flow rates.
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The surface of activated carbon modified with nitric acid using microwaves is depicted
in Figure 2. When treated with 1 M nitric acid, there was no significant difference between
10 min and 20 min of microwave treatment. However, as the concentration of nitric acid
increased, a noticeable change in the surface structure of activated carbon was observed.
Surface modifications at concentrations of 2 M or higher resulted in evident structural
changes on the activated carbon surface, especially at 8 M, and clear structural changes
were observed over time. This phenomenon is attributed to surface etching due to the
concentration of nitric acid and longer reaction times. Depending on the degree of etching,
the activated carbon surface exhibited a smoother transformation. It is assumed that such
changes would also influence the specific surface area and pore structure of activated
carbon with varying nitric acid concentrations and treatment times. To gain a clearer
insight into the pore structure characteristics, BET analysis was conducted.

3.2. Specific Surface Area Analysis According to Plasma and Microwave Radiation Surface
Modification Method

To examine the pore structure of plasma and microwave radiation-treated activated
carbon, BET analysis was performed to determine specific surface area, pore volume, and
pore size. The IUPAC-standard adsorption isotherm type was examined, and all the surface-
treated activated carbons exhibited Type I isotherms. Type I isotherms indicate the presence
of many micropores below 2 nm involved in adsorption [31]. For the plasma-treated
samples, results are shown in Figure 3 and Table 1. While there were no significant changes
in the surface according to SEM analysis for plasma-treated activated carbon, specific
conditions led to an increase in specific surface area. Generally, the specific surface area
of activated carbon decreased from 1562 m2/g to 1503 m2/g as the oxygen gas treatment
flow rate increased. However, in the case of 50 cc/min, both specific surface area and
pore volume increased, likely due to the complex pore structure formed because of the
introduction of various oxygen functional groups. Additionally, the average pore size
decreased to 1.78 nm for this specific sample. In other samples, the specific surface area
generally decreased beyond a certain flow rate, which is attributed to the introduction of
oxygen functional groups.
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Figure 3. Nitrogen isotherms of the plasma-treated activated carbon.

For the microwave-treated activated carbon, the surface characteristics with varying
concentrations and times are presented in Figure 4 and Table 2. As the concentration of
nitric acid increased from 1 M to 2 M, 4 M, and 8 M and the reaction time extended from
10 min to 20 min, the specific surface area of activated carbon decreased from 1562 m2/g to
a minimum of 1347 m2/g. The pore volume also decreased from 0.89 cm3/g to 0.79 cm3/g.
Notably, activated carbon treated at 8 M for 20 min rapidly decreased to 1347 m2/g, and
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both the total pore volume and micropore volume reduced to 0.79 cm3/g and 0.77 cm3/g,
respectively, which is consistent with the SEM results. In cases where specific surface area
increased compared to raw material, this can be attributed to the effects of increased pore
formation and the introduction of functional groups.

Table 1. BET surface properties of plasma-treated activated carbon.

Sample SBET
(m2/g)

Total Pore Volume
(cm3/g)

Micropore Volume
(cm3/g)

Average Pore
Diameter (nm)

Raw 1562 0.89 0.729 1.85
50 cc/min 1639 0.86 0.70 1.78

100 cc/min 1546 0.81 0.67 1.81
150 cc/min 1590 0.83 0.71 1.80
200 cc/min 1503 0.79 0.64 1.79
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20 min.

Table 2. BET surface properties of microwave-treated activated carbon.

Sample Sbet (m2/g)
Total Pore Volume

(cm2/g)
Micropore Volume

(cm2/g)
Average Pore

Diameter (nm)

RAW 1562 0.89 0.68 1.85
1 M 10 min 1542 0.82 0.67 1.85
2 M 10 min 1628 0.84 0.72 1.86
4 M 10 min 1573 0.83 0.69 1.87
8 M 10 min 1527 0.83 0.68 1.91
1 M 20 min 1608 0.87 0.71 1.86
2 M 20 min 1527 0.82 0.67 1.86
4 M 20 min 1531 0.81 0.68 1.89
8 M 20 min 1347 0.77 0.61 1.93

The overall pore volume of untreated activated carbon was observed to be higher than
that of radiation-treated activated carbon. Consequently, improved specific surface areas
were observed under certain conditions. This phenomenon is attributed to the effect of
plasma treatment, where high-energy oxygen radicals generated from oxygen molecules
under the influence of high energy during plasma treatment etch the surface of activated
carbon, creating smaller-sized pores [32].

The oxygen functional groups introduced on the surface of activated carbon exhibit a
relatively higher electronegativity than carbon, resulting in a negative charge [33]. Addi-
tionally, due to the high electronegativity of oxygen atoms, carbon atoms in most carbon
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compounds, such as VOCs, tend to carry a relatively positive charge, acting as weak Lewis
acids [32]. Consequently, it is known that oxygen functional groups and VOC molecules
form chemical bonds through electrostatic interactions, making them advantageous for
various adsorbent applications [34].

The PSD data of the activated carbon samples were meticulously compared, as illus-
trated in Figure 5. The samples exhibited the development of micropores and mesopores
within the range of 0.5–50 nm. Micropores with pore width peaks at 0.5 to 2 nm, along
with mesopores exhibiting a large peak at 5 to 10 nm, contribute to gas molecule adsorp-
tion, playing a crucial role in the harmful gas application. The pore structure was mostly
reduced depending on the degree of surface chemical treatment, but it was confirmed that
the micropores did not collapse to the extent of losing the adsorption properties.
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Figure 5. Pore size distribution of the plasma-treated and microwave-treated activated carbon;
(a) plasma-treated, (b) microwave- 10 min and (c) treated 20 min.

3.3. Surface Element Analysis of Activated Carbon

The FT-IR spectra of activated carbon surface modified using microwave and plasma
methods are shown in Figures 6 and 7. For the activated carbon surface modified using
the plasma method, common peak values around 776 cm−1, 1489 cm−1, 2850 cm−1, and
2910 cm−1 were observed in all samples, indicating the inherent structure of activated
carbon, as depicted in Figure 6. These bands are related to C=C, C-H, and C=C functional
groups. Additionally, for the activated carbon treated with plasma at different oxygen
flow rates, strong peaks were observed around 1041 cm−1 (C-O), 1312 cm−1 (COO-), and
1572 cm−1 (C=O), which are attributed to oxygen functional groups generated by the
plasma effect and vary according to the oxygen flow rate.

In the case of activated carbon surface modified using the microwave method, common
bands at 2962 cm−1, 1625 cm−1, 2320 cm−1, and 1000 cm−1 were observed, as indicated in
Figure 7. These bands are related to -CH, C=C aromatic stretching, hydrogen-bonded OH,
and C-O functional groups. It was found that activated carbon treated with microwaves
for 10 min and 20 min exhibited hydrophilic oxygen functional groups. The FT-IR results
suggest that the surfaces of activated carbon treated with microwave and plasma methods
have introduced oxygen functional groups that are conducive to adsorbing harmful gases.
Furthermore, the extent of introduction of these functional groups varies depending on the
specific conditions of treatment.

3.4. Surface Element Analysis of Activated Carbon

XPS analysis was conducted to identify the elements present on the surface of radiation-
treated activated carbon, and the results are presented in Figures 8 and 9 and Table 3. For
activated carbon surface-treated using the microwave method, it was observed that as
the concentration of nitric acid solution increased and the reaction time extended, more
hydrophilic oxygen elements were introduced, as evident from the O1s peak in Table 3
Generally, the composition of oxygen species, as differentiated by the binding energies of
the O1s peak, can be categorized into C-O (532.5 eV) and H-O-C (534.4 eV). It is known that
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as the overall elemental content increases, the ratio of these oxygen species also increases.
When comparing with the raw sample, clear differences can be observed. In the case of the
raw sample, the oxygen content is 4.87 at%, while the activated carbon surface treated with
the highest nitric acid concentration of 8 M for 20 min shows an increase in oxygen content
up to 14.11 at%. This result suggests that the introduction of various oxygen species to the
activated carbon surface occurred due to the high nitric acid concentration and extended
reaction time.
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plasma treatment.

For activated carbon surface-treated with the plasma method, it was found that as the
oxygen gas flow rate increased from 50 to 200 cc/min, the oxygen content, as confirmed
by the O1s value, significantly increased from 4.97 at% to 37.25 at%. This outcome is
attributed to the ionization of oxygen atoms during the plasma reaction, which, as the
flow rate increased, maintained a saturated state, and introduced various oxygen species
to the activated carbon surface. However, it is worth noting that in some conditions (100
and 200 cc/min), there was a reduction in the oxygen content. This is believed to be a
phenomenon resulting from the strong plasma energy causing ionized oxygen atoms to
repetitively introduce and detach from the activated carbon surface. Additionally, we
observed an additional N1s peak in plasma-treated activated carbon. This is attributed to
the pre-treatment process with nitrogen gas, during which some nitrogen molecules are
adsorbed onto the activated carbon surface, introducing nitrogen functional groups.
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Table 3. XPS elemental composition of samples.

Sample Name
XPS Peaks

C1s O1s N1s

Raw 94.82 4.76 0.41

Microwave

1 M
10 min 92.51 7.49 -

20 min 90.46 9.54 -

2 M
10 min 89.89 10.41 -

20 min 90.48 9.53 -

4 M
10 min 90.27 9.73 -

20 min 88.79 11.21 -

8 M
10 min 86.47 13.53 -

20 min 85.89 14.11 -

Plasma

50 cc/min 64.08 34.14 1.78

100 cc/min 71.51 26.97 1.51

150 cc/min 60.64 35.64 3.22

200 cc/min 77.06 21.24 1.69
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The combined findings from FT-IR and XPS analyses offer a holistic view of the
complex dynamics governing functional groups and elemental composition throughout the
surface modification process. The nuanced impact of microwave and plasma treatments on
activated carbon surfaces becomes evident as these conditions intricately shape the nature
and abundance of oxygen species. This detailed exploration enhances our comprehension
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of the precisely tailored functionalization of activated carbon surfaces, elucidating the
pivotal role of specific treatment conditions in achieving desired surface properties. Such
insights hold significant implications for optimizing applications related to gas adsorption
and environmental remediation, where the fine-tuning of surface characteristics plays a
crucial role in enhancing material performance.

4. Conclusions

In this study, we investigated the surface modification of conventional powdered
activated carbon using plasma and microwave treatment methods to examine the surface
changes and the attachment of oxygen functional groups to the activated carbon.

1. The plasma surface treatment method demonstrated the effective introduction of oxy-
gen functional groups onto the activated carbon surface, depending on the variation in
oxygen flow rates. However, contrary to expectations, when the oxygen flow rate was
increased, an irregular introduction of oxygen functional groups onto the activated
carbon surface was observed. These results are presumed to be a consequence of the
repetitive influx and detachment of ionized oxygen atoms on the activated carbon
surface induced by strong plasma energy.

2. The microwave treatment method shows a decrease in specific surface area and total
pore volume of activated carbon with prolonged surface chemical reaction time or
higher concentrations of nitric acid. These results are attributed to the etching effect
induced by the high concentration of nitric acid solution and intense microwave
energy, leading to the surface modification of activated carbon. Additionally, the
introduction of oxygen functional groups contributes to the phenomenon of pore
blockage on the activated carbon surface.

3. The oxygen functional groups introduced onto the activated carbon surface in this
manner exhibit a higher electronegativity compared to carbon, resulting in a nega-
tive charge. Additionally, carbon atoms in most hydrocarbon compounds, such as
VOCs, tend to carry a positive charge when encountering oxygen atoms with high
electronegativity. Consequently, oxygen functional groups and VOC molecules are
anticipated to form chemical bonds through electrostatic interactions, contributing to
the adsorption process.

In the future, as further research results are obtained for activated carbon modified
using these radiation methods, it is expected that these materials will find applications in
various industries for the effective adsorption and removal of harmful gases generated in
several industrial settings.
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