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Abstract: The nonlinear sloshing of an incompressible fluid with irrotational flow in a complicated-
shape tank due to horizontal excitation is studied with a semi-analytical method proposed in this
study. In this method, the velocity potential function of a liquid in a complicated-shape tank is
estimated by using an approximate analytical transformation function from a complicated-shape
region to a rectangular region. This function is obtained through Schwarz–Christoffel mapping
and polynomial fitting. Nonlinear dynamic equations for the fluid–structure coupled system are
developed based on the Hamilton–Ostrogradskiy principle. Nonlinear kinematic equations for the
fluid–structure coupled system are derived based on the relationship between the liquid velocity and
the free-surface equation. The Galerkin method is used to convert partial differential equations into
ordinary differential equations. When tank movement is given, nonlinear models for the coupled
system can be reduced to simple ones for liquid sloshing. Natural frequencies for the coupled system
and liquid sloshing are analyzed, and the semi-analytical results agree with the numerical ones
calculated with the software DampSlosh. Hydrodynamic forces and moments are also analyzed, and
the semi-analytical results agree well with the numerical ones calculated with the Flow3D v10.1.1.

Keywords: Schwarz–Christoffel transformation; liquid sloshing; complicated-shape tank; natural
frequency; hydrodynamic force; hydrodynamic moment

1. Introduction

Sloshing is the motion of a liquid in a partially filled container with an unrestrained
free surface due to external excitation. Understanding this complicated dynamic behavior
is of practical significance, especially when the liquid contributes a non-negligible por-
tion to the total mass, because liquid sloshing is observed in a wide range of engineering
applications, such as heavy-duty road tankers, oceangoing vessels, oil tankers, rockets,
and aerospace transportation vehicles [1–5]. The primary challenge in sloshing analysis lies
in accurately estimating the natural frequencies, hydrodynamic forces, and moments of liq-
uid sloshing. If the excitation frequency is close to natural frequencies, especially the lowest
ones, resonance may occur and result in catastrophic consequences. The hydrodynamic
forces and moments of sloshing applied to a container may also lead to uncontrollability
and structural damage. Furthermore, the containers used in engineering applications
are of various shapes, and each individual container shape requires a dedicated applied
mathematical and physical study.

Numerous researchers have studied the problem of liquid sloshing, and their research
approaches are generally classified as analytical, numerical, and experimental. For an-
alytical approaches, variational formation based on Hamilton’s principle is regarded as
the most powerful tool for developing fluid field equations, and the velocity potential
function is a key factor in the analytical process. If the fluid motion is irrotational and
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incompressible, the velocity potential function should satisfy Laplace’s equation. Rect-
angular coordinates are used to solve Laplace’s equation and the boundary condition on
the wetted tank surface for rectangular tanks [6–9]. Similarly, cylindrical, bipolar, toroidal,
and spherical coordinates are used to solve velocity potential functions for upright cylindri-
cal, horizontal cylindrical, annular cylindrical, and spherical tanks, respectively [10–15].
However, velocity potential functions can be obtained directly by solving Laplace’s equa-
tion and the boundary condition for a limited number of tank shapes only. Conformal
mapping can be used to estimate velocity potential functions for other tank shapes because
the velocity potential function of liquid sloshing is harmonic. Nevertheless, conformal
mapping is mainly applied to only a few tank shapes, such as half-full horizontal elliptical,
horizontal circular, horizontal cylindrical, and spherical, to determine the velocity function
of fluid [16–21]. The nonconformal transformation technique and the variational modal ap-
proach have been developed for circular conical and prolate spheroidal tanks; one scheme
employs a projective approach, and the other is adopted for spectral problems [22–24].
To the knowledge of the authors, the applications of conformal mapping and nonconformal
transformation have not been extended to more complicated tank shapes because coor-
dinate transformation from a complicated shape to a simple one is difficult. Numerical
and experimental approaches are used to analyze the dynamics of liquid sloshing in tanks
with highly complicated shapes [25–28]. However, long-term simulations using numerical
approaches yield unrealistic flows and cannot describe steady-state motions. Meanwhile,
experimentation is expensive. Therefore, analytical or semi-analytical approaches should
be further developed to describe fluid sloshing in tanks with complicated shapes.

With regard to fluid–structure coupled dynamics, a common approach is to model
liquid sloshing by using computational fluid dynamics, i.e., using numerical methods such
as the ALE method and SPH method, when dealing with a sloshing fluid in a container
with an arbitrary shape [29–31]. However, these methods do not always produce reliable
results, especially when the sloshing motion is complex [32]. The traditional approach
models a sloshing liquid by using an equivalent mechanical model, such as an equivalent
pendulum model or an equivalent mass–spring model, which is linear or nonlinear with
cubic stiffness; however, nonlinear sloshing is more complicated than these equivalent
models, so this method does not consider nonlinear interactions between fluid and structure
dynamics and among various slosh modes [33]. Another approach is to model the entire
fluid–structure coupled system by adopting the variational principle, in which the liquid is
assumed to be inviscid, incompressible, and irrotational. This approach considers nonlinear
interactions between liquid and structure dynamics and among various slosh modes
but has only been applied to fluid–structure coupled systems with rectangular, cylindrical,
and spherical containers [34–36]. The main objective of extending these approaches to other
fluid–structure coupled systems with complicated-shape tanks is to describe the fluid field
by using an analytic function, that is, to determine the velocity potential function in tanks
with complicated shapes.

In this study, a theoretical analysis of nonlinear liquid sloshing and fluid–structure
coupled dynamics is performed for tanks with complicated shapes. If the movement of a
rigid tank is given, a fluid–structure coupled dynamic model can be reduced to a model
that describes only the nonlinear dynamics of liquid sloshing. Therefore, a fluid–structure
coupled dynamic model is derived in this study, and natural frequencies, hydrodynamic
forces, and moments are analyzed. The main contribution of this study is twofold. First,
a semi-analytical method is proposed to estimate the velocity potential function in tanks
with complicated shapes. The approximate analytical transformation function from a
complicated-shape region to a rectangular region is obtained by Schwarz–Christoffel map-
ping and polynomial fitting. Second, a nonlinear fluid–structure coupled system model is
developed based on the Hamilton–Ostrogradskiy principle and the relationship between
the liquid velocity and the free-surface equation. The semi-analytical results of natural
frequencies, hydrodynamic forces, and moments are validated by a numerical approach.
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The rest of this paper is organized as follows. Section 2 introduces a semi-analytical
method for estimating the velocity potential function and wave height function of a liquid
in a tank with a complicated shape. Section 3 shows the derivation of the nonlinear fluid–
structure coupled system model and an analysis of the natural frequencies of the coupled
system, the natural frequencies of the sloshing liquid, and the hydrodynamic forces and
moments. Section 4 presents the application of the method to a Cassini-section-shaped
tank with different liquid depths. The two walls of the tank are vertical, and the bottom
is a semicircle. The semi-analytical results are validated through numerical simulations.
Section 5 provides a summary of the investigation.

2. Materials and Methods

A semi-analytical method is proposed to calculate the velocity potential function of
a liquid in a tank with a complicated shape. The key point is determining the analytical
conformal mapping function from a complicated-shape region to a rectangular region. First,
point mapping is performed by using the Schwarz–Christoffel transformation twice; that
is, an upper half-plane is mapped to a complicated-shape region and a rectangular region.
Second, the polynomial fitting method is adopted to obtain the final approximate analytical
mapping function. The velocity potential function of the liquid is harmonic. Thus, by using
the approximate analytical mapping function, the velocity potential function of a liquid in
a rectangular tank can be mapped as that of a liquid in a complicated-shape tank.

2.1. Analytical Mapping Function

In complex analyses, the Schwarz–Christoffel transformation is a conformal transformation
of the upper half-plane to the interior of a simple polygon. The upper half-plane can be mapped
to complicated-shape and rectangular regions via Schwarz–Christoffel transformation.

The equation that represents the transformation by which the upper half-plane is
mapped to the complicated-shape polygon region is

z = fz(h) = Az

∫ h

0
(p − p1)

θ1
π (p − p2)

θ2
π · · · (p − pn−1)

θn−1
π dp + Bz, (1)

where z = x + yi; the x-axis is the real axis, and the y-axis is the imaginary axis on the
z-plane; θ1, θ2, · · · , θn are the internal angles of the polygon; fz(h) is a complex function;
Az and Bz are constants; and p1, p2, · · · , pn−1 are the coordinates of points P1, P2, · · · , Pn−1
on the real axis of the h-plane, which are the preimages of angular points z1, z2, · · · , zn−1
of the polygon on the z-plane. (−∞, 0) and (+∞, 0) on the real axis of the h-plane are the
preimages of zn, as shown in Figure 1.

Similarly, the equation that represents the transformation by which the upper half-
plane is mapped to the rectangular region is

w = fw(h) = Aw

∫ h

0
(q − q1)

1
2 (q − q2)

1
2 (q − q3)

1
2 dq + Bw, (2)

where w = u + vi; the u-axis is the real axis, and the v-axis is the imaginary axis on the
w-plane; fw(h) is a complex function; Aw and Bw are constants; and q1, q2, and q3 are
the coordinates of points Q1, Q2, and Q3 on the real axis of the h-plane corresponding to
angular points w1, w2, and w3 of the rectangle on the w-plane, respectively. (−∞, 0) and
(+∞, 0) on the real axis of the h-plane are the preimages of w4, as shown in Figure 1.

In sloshing problems, zk and zk+1 correspond to the two end points of the hydrostatic
surface in a complicated-shape tank, and w1 and w2 correspond to the two end points of
the hydrostatic surface in a rectangular tank (Figure 1). Therefore, on the h-plane, points Q1
and Q2 should coincide with points Pk and Pk+1, respectively. As a result, z = fz[ f−1

w (w)]
and w = fw[ f−1

z (z)], which means that the complicated-shape region is mapped to a rect-
angular region. The mapping of the upper half-plane to a simple triangular domain cannot
be evaluated with exact formulas but can be addressed through a numerical approximation.
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For highly complicated polygons, the evaluations of Schwarz–Christoffel integrals fz and
fw in (1) and (2) are almost invariably beyond the scope of exact formulas and should be
considered through numerical approaches. Several numerical algorithms based on New-
ton’s method and Gauss–Jacobi quadrature for solving the Schwarz–Christoffel integrals
fz and fw are presented in [37]. Then, discrete mapping of any point z(x, y) within the
complicated-shape domain onto point w(u, v) within the rectangular domain can be real-
ized. After one-to-one mapping is performed between the interior points of a complicated
shape and those of a rectangle, the polynomial fitting method is adopted to generate the
approximate analytical expression as follows:

u = fu(x, y) =
∞

∑
n=0

n

∑
j=0

αnjxn−jyj,

v = fv(x, y) =
∞

∑
n=0

n

∑
j=0

βnjxn−jyj. (3)

where fu(x, y) and fv(x, y) are real functions.

Figure 1. The upper half-plane is mapped to the interior of a polygon and a rectangle.

The most important application of the Schwarz–Christoffel transformation is the
construction of a one-to-one mapping function carrying the upper half-plane to the interior
of a given polygon. Once curved boundaries are contained in the complicated shape,
circumscribed polygons are substituted for the curves.
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2.2. Velocity Potential and Wave Height Functions

If a flow is assumed to be irrotational, then the velocity of a liquid in a stationary tank
can be expressed as v = ∇ϕ, where ϕ is the velocity potential function. Simultaneously, if a
flow is incompressible, then ϕ is harmonic, i.e., ∇2ϕ = 0. The normal derivative of ϕ is zero,
i.e., ∂ϕ/∂n = 0, where n is the normal axis perpendicular to the boundary. A harmonic
function ϕ that satisfies the boundary condition ∂ϕ/∂n = 0 for a complicated-shape tank
can be obtained based on the one for a simple-shape tank by using conformal mapping.
The liquid velocity potential function in a complicated-shape tank can be calculated by sub-
stituting approximate analytical mapping functions fu(x, y) and fv(x, y) into the existing
liquid velocity potential function in a rectangular tank as follows:

ϕ =
∞

∑
n=1

un(t)ψn(x, y),

ψn(x, y) =
cosh[kn( fv(x, y) + a)]

kn sinh kna
cos kn

(
fu(x, y) +

b
2

)
, (4)

where un(t) is a time-dependent coefficient; kn = nπ
b ; and a and b are the width and height

of the rectangle, respectively.
The wave function of a liquid in a complicated-shape tank can be determined by

ξ =
∞

∑
n=1

vn(t)ξn(x),

ξn(x) =
∂ψn(x, y)

∂y

∣∣∣∣
y=y0

, (5)

where ξ is the wave height function; vn(t) is a time-dependent coefficient; and y0 is the
coordinate of the hydrostatic surface in the complicated-shape tank.

3. Results

Using the velocity potential function of the liquid partially filling the complicated-
shape tank that is derived by the semi-analytical method, the nonlinear dynamics caused
by horizontal excitation can be studied.

Potential flow theory is applied, and the main assumptions are as follows: the fluid
is incompressible and the flow within the tank is irrotational, the fluid is inviscid and the
flow is non-turbulent, the liquid surface does not overturn or break, and the amplitude of
the sloshing waves is small compared to the dimensions of the tank. The nonlinear fluid–
structure coupled dynamic equations are derived based on the Hamilton–Ostrogradskiy
principle. The nonlinear kinetic equations are deduced based on the relationship between
the liquid velocity and the disturbed liquid surface equation. The partial differential
equations are converted into ordinary ones by substituting the obtained velocity potential
and wave functions and using the Galerkin method. The natural frequencies of liquid
sloshing and the fluid–structure coupled system, as well as hydrodynamic forces and
moments, are analyzed.

3.1. Nonlinear System Model

The surface tension of the liquid is disregarded, and the tank is assumed to be rigid.
The liquid domain, the disturbed liquid surface, and the container are denoted by τ, S f ,
and Sw, respectively. The OXY coordinate system represents an inertial frame of reference,
and its axes are fixed. The moving coordinate system oxy is fixed in the tank; its axes
translate with respect to the inertial frame OXY due to horizontal excitation, and the x-axis
coincides with the undisturbed liquid surface S0, as shown in Figure 2.
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Figure 2. Coordinate systems.

The system’s kinetic energy is the sum of the kinetic energies of the tank and liquid,
that is,

T =
1
2

MẊ2 +
ρ

2

∫
τ
(∇Φ)2dτ, (6)

where M is the mass of the tank; X is the horizontal displacement of the tank; ρ is the
liquid density; and Φ is the liquid velocity potential function under moving boundary
conditions. Φ satisfies ∇2Φ = 0 and ∂Φ

∂x = Ẋ, so it can be expressed as Φ = ϕ + xẊ, where
ϕ is the liquid velocity potential function under static boundary conditions calculated with
Equation (4) for a complicated-shape tank.

The tank movement is translated along the horizontal direction, and the liquid surface
tension is disregarded. Consequently, the potential energy of the system contains only the
gravitational potential energy of the liquid, that is,

Π =
1
2

ρg
∫

S f

ξ2dS, (7)

where g is the acceleration of gravity.
The Hamilton–Ostrogradskiy principle indicates that∫ t1

t0

(
δT − δΠ + FδX +

∫
τ

pdivδrdτ

)
dt = 0, (8)

where F is the force exerted on the rigid tank along the X-axis direction; p is the internal
pressure of the liquid; and r denotes the relative position vector of liquid particles observed
from the oxy coordinate system. The nonlinear fluid–structure coupled dynamic equations
can then be obtained as (see Appendix A for details)

MẌ +
d
dt

(
ρ
∫

τ
∇Φdτ

)
− F = 0

∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + gξ = 0. (9)

The free surface of the liquid can be expressed as Ff = ξ(x, t)− y = 0. Then, one has

d̃Ff

dt
=

∂Ff

∂t
+

∂Ff

∂x
∂x
∂t

+
∂Ff

∂y
∂y
∂t

= 0. (10)

Due to

∂Ff

∂t
=

∂ξ

∂t
,

∂x
∂t

=
∂ϕ

∂x
,

∂y
∂t

=
∂ϕ

∂y
, (11)

the nonlinear kinetic sloshing equation can be obtained as
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∂ξ

∂t
= −∇ϕ · ∇Ff . (12)

u = [uX , 0] is defined as the velocity of the tank, and uX = Ẋ. In the following part, the
wave height ξ and velocity potential function ϕ in Equations (4) and (5) are truncated at the
third order. ξ and ϕ are substituted into Equations (9) and (12), and the Garlerkin method
is used. Coupling ordinary differential equations with square and cubic nonlinear terms
can be obtained as follows:

u̇X +
3

∑
i=1

u̇i

(
λi +

3

∑
j=1

κijvj +
2

∑
j=0

2−j

∑
k=0

γijkl |(l=2−j−k)v
j
1vk

2v2−j−k
3

)
+

3

∑
i=1

3

∑
j=1

v̇iuj

(
σij +

3

∑
k=1

ϖijkvk

)
+ γxFx = 0,

3

∑
j=1

aiju̇j + aiX u̇X +
2

∑
j=0

2−j

∑
k=0

bijkl |(l=2−j−k)u
j
1uk

2u2−j−k
3 +

3

∑
j=1

vj

(
cij+

3

∑
k=1

dijku̇k +
2

∑
k=0

2−j

∑
r=0

eijkrl |(l=2−k−r)u
k
1ur

2u2−k−r
3

)
= 0, i = 1, 2, 3,

3

∑
j=1

fijv̇j +
3

∑
j=1

uj

(
− fij +

3

∑
k=1

hijvk+

2

∑
k=0

2−k

∑
r=0

mijkrl |(l=2−k−r)v
k
1vr

2v2−k−r
3

)
= 0, i = 1, 2, 3, (13)

where λi, κij, γijkl , σij, ϖijk, γx, aij, aiX , bijkl , cij, dijk, eijkrl , fij, hij, and mijkrl are constants.

3.2. Natural Frequencies

If the tank movement along the horizontal direction matches a given time-varying
pattern, then the control force exerted on the tank can be calculated by the first equation,
and the natural frequencies of liquid sloshing can be obtained by the second and third
equations of (13). If the control force matches a given time-varying pattern, then the natural
frequencies of the fluid–structure coupled system can be computed by all three equations
of (13).

3.2.1. Natural Frequencies of Liquid Sloshing

In this case, the tank movement along the horizontal direction varies only with time
and is unaffected by liquid sloshing; moreover, the time variation is given. Thus, in light of
liquid sloshing, u̇X can be considered the excitation related to time. Mass matrix M and
stiffness matrix K are

M =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

, K =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

. (14)

The eigenvalue equation can then be written as∣∣∣K − Mω2
∣∣∣ = 0. (15)

The positive roots of ω2 for Equation (15) are the first three orders of natural frequencies of
liquid sloshing in complicated-shape tanks.
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3.2.2. Natural Frequencies of the Fluid–Structure Coupled System

In this case, the variation in control force Fx with time during the entire movement is
given, where Fx is exerted on the tank along the horizontal direction. Therefore, the tank
movement is related to liquid sloshing; i.e., the motions of the liquid and the tank are
coupled. Mass matrix M̃ and stiffness matrix K̃ are

M̃ =

 a11 − a1Xλ1 a12 − a1Xλ2 a13 − a1Xλ3
a21 − a2Xλ1 a22 − a2Xλ2 a23 − a2Xλ3
a31 − a3Xλ1 a32 − a3Xλ2 a33 − a3Xλ3

,

K̃ =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

. (16)

The eigenvalue equation can then be written as∣∣∣K̃ − M̃ω2
∣∣∣ = 0. (17)

The positive roots of ω2 for Equation (17) are the first three orders of natural frequencies of
the fluid–structure coupled system in complicated-shape tanks.

3.3. Slosh Forces and Moments

The forces and moments of liquid sloshing on the tank are the results of the integral of
the pressure on the boundary. The pressure p of the liquid in the tank can be expressed in
terms of velocity potential by using the Cauchy–Lagrange integral equation,

p = −ρ

[
gξ +

∂Φ
∂t

+
1
2
(∇ϕ)2 + c(t)

]
, (18)

where c(t) is an arbitrary time-dependent function. Considering that the surface tension of
the liquid is disregarded, one has c(t) = − p0(t)

ρ , where p0(t) is the pressure gas above the
liquid surface; p0(t) can be omitted, i.e., c(t) = 0, because the entire system is submerged
in the air with gas pressure, which is the same at each point.

The z-axis is defined along the normal direction of the x-y plane and completes the
right-handed system. A 2D sloshing problem is considered in this study, and Fx and Mz
are involved.

Fx =
∫

Sw
pcos(n, x)dS,

Mz =
∫

Sw
p[xcos(n, y)− ycos(n, x)]dS, (19)

where n is the unit vector along the normal direction at the point on Sw. The slosh moment
is about the origin o of the moving coordinate system oxy fixed on the tank.

4. Discussion

The liquid sloshing problem in the Cassini-section-shape tank is analyzed with the
proposed semi-analytical method, in which a fourth-order polynomial is adopted to fit the
approximate analytical function. With regard to the case wherein the tank movement is
given, the analysis results of natural frequencies, slosh forces, and moments are compared
with the results of numerical simulations.

4.1. Approximate Mapping Function

Figure 3 shows the Cassini section shape with walls that are vertical and a bottom
that is a semicircle, which is the liquid-filled and nearby areas of the full, closed container.
As an example, we suppose that the width of the liquid surface is b = 4 m, the radius of
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the semicircle is R = b
2 , the depth of the liquid along the two walls is h, and h is set at 0, 0.5,

1, and 1.5 m for four different cases. The liquid density is ρ = 1000 kg/m3, and the mass of
the tank is set at M = 600 kg.

Figure 3. Cassini shape tank.

The curved boundary, i.e., the semicircle in this case, is contained in the Cassini shape,
and a sixteen-sided polygon is used to substitute for the semicircle. The approximate
expressions can be obtained based on Schwarz–Christoffel mapping and polynomial fit-
ting, and the specified coefficients αij and βij in Equation (3) for different h are given in
Tables A1 and A2 (Appendix B). The rest of the αij and βij values that are not listed in
Tables A1 and A2 are all equal to zero.

4.2. Analysis and Comparison

The ordinary differential equations can be obtained for fluid–structure coupled dynamics
with the Cassini-section-shaped tank by substituting the above fourth-order approximate
analytical mapping functions into the velocity potential and wave height functions (4) and (5),
substituting ϕ and ξ into the dynamic and kinetic Equations (9) and (12), and using the
Garlerkin method. The natural frequencies of liquid sloshing and the fluid–structure coupled
systems can be calculated for different h by using Equations (15) and (16). Table 1 shows
that the first-order and third-order natural frequencies for the fluid–structure coupled system
are larger than those for liquid sloshing, especially for the first order, and the maximum
difference is 30%; however, the second-order natural frequencies for these two cases are
almost equal. Simultaneously, natural frequencies are analyzed with the numerical software
DampSlosh, but only the ones for liquid sloshing can be analyzed. Therefore, comparisons
of theoretical and numerical results are only conducted for the natural frequencies of liquid
sloshing. The results agree well. The maximum relative error is about 5%, as shown in
Figure 4.

Figure 4. Comparisons of theoretical and numerical natural frequencies.
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Table 1. Natural frequencies for different h.

h (m)
Frequencies for Liquid Sloshing (rad/s) Frequencies for Coupled System (rad/s)

1st Order 2nd Order 3rd Order 1st Order 2nd Order 3rd Order

0 2.586 3.671 4.525 3.350 3.671 4.562

0.5 2.678 4.095 5.070 3.355 4.095 5.153

1 2.719 3.868 4.761 3.233 3.868 4.807

1.5 2.724 3.851 4.7291 3.184 3.851 4.762

The slosh forces and moments were obtained with Equations (18) and (19) and an-
alyzed with the numerical software Flow3D. Only the case wherein the tank movement
is given can be analyzed with Flow3D, so comparisons of theoretical and numerical re-
sults were only conducted for this case. The tank movement is given by X = A sin(Ωt),
where A = 0.005 m, and Ω is chosen as ωi, i = 1, 2, 3, which denotes the i-th order natural
frequency. The slosh forces, slosh moments, and wave function coefficients for the first third-
order modes with different wave heights, where h = 0, 0.5, 1, 1.5, are shown in Figures 5–8.
By adopting the proposed semi-analytical method, regardless of which ωi is selected as
the excitation frequency, both sloshing forces and moments are in good agreement with
the ones simulated with Flow3D for all cases with different h. A large wave height h leads
to large sloshing forces and moments because the liquid mass increases with h. Sloshing
forces and moments are the most violent when Ω = ω1, followed by Ω = ω3 and Ω = ω2,
as shown in Figures 5–8. All order modes of the liquid are activated simultaneously due to
the nonlinear coupling terms in the dynamics, unlike the phenomenon in linear systems.
In particular, for the case of Ω = ω2, although it is excited at the second-order natural
frequency, the amplitudes of coefficients v1(t) and v3(t) for the first-order and third-order
modes are larger than the coefficient v2(t) for the second-order mode regardless of the
value of h, as shown in Figures 5–8. Therefore, the second-order mode is a minor one and
the odd-order modes are the major ones for liquid sloshing in the Cassini-section-shape
tank. According to the comparison with the numerical results calculated with numerical
software, the theoretical results obtained by the semi-analytical method are valid.

Figure 5. Slosh forces, moments, and coefficients of wave function at h = 0.
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Figure 6. Slosh forces, moments, and coefficients of wave function at h = 0.5.

Figure 7. Slosh forces, moments, and coefficients of wave function at h = 1.
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Figure 7. Slosh forces, moments, and coefficients of wave function at h = 1.

Figure 8. Slosh forces, moments, and coefficients of wave function at h = 1.5.

5. Conclusions

In this study, a semi-analytical method is proposed to solve the liquid sloshing prob-
lem in complicated-shape tanks with horizontal excitation. The difficulty of extending the
conformal mapping method to solve the sloshing problem in highly complicated-shape
tanks is determining the analytical mapping function between a complicated shape and a
simple one. In this method, the approximate analytical mapping function between a compli-
cated shape and a rectangle, which can be obtained by combining the Schwarz–Christoffel
transformation and polynomial fitting, is used. The Schwarz–Christoffel transformation is
utilized for point mapping, and the polynomial fitting method is adopted to obtain the final

Figure 8. Cont.
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Figure 8. Slosh forces, moments, and coefficients of wave function at h = 1.5.

5. Conclusions

In this study, a semi-analytical method is proposed to solve the liquid sloshing prob-
lem in complicated-shape tanks with horizontal excitation. The difficulty of extending the
conformal mapping method to solve the sloshing problem in highly complicated-shape
tanks is determining the analytical mapping function between a complicated shape and a
simple one. In this method, the approximate analytical mapping function between a compli-
cated shape and a rectangle, which can be obtained by combining the Schwarz–Christoffel
transformation and polynomial fitting, is used. The Schwarz–Christoffel transformation is
utilized for point mapping, and the polynomial fitting method is adopted to obtain the final
approximate analytical mapping function. Subsequently, dynamic and kinematic equations
are derived based on the Hamilton–Ostrogradskiy principle and the relationship between
the liquid velocity and the free-surface equation. Natural frequencies, hydrodynamic forces,
and moments are analyzed.

The liquid sloshing problem in a Cassini-section-shape tank was studied with the
proposed semi-analytical method. It was found that the first-order and third-order natural
frequencies for the fluid–structure coupled system are larger than those for liquid sloshing,
and the second-order natural frequencies for the two cases are almost equal. Sloshing forces
and moments are the most violently excited at the first-order natural frequency, followed
by the third-order frequency and second-order frequency. All order modes of the liquid
are activated due to the nonlinear coupling dynamics. Furthermore, the second-order
mode is a minor one and the odd-order modes are the major ones for liquid sloshing in the
Cassini-section-shape tank. The semi-analytical results agree well with the numerical ones
calculated with numerical software.

However, liquid sloshing analysis was studied only for 2D problems in this work.
An interesting topic for further research is the extension of the results to 3D sloshing prob-
lems. Another topic worthy of investigation is the in-depth analysis of nonlinear dynamics.
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Appendix A

If the liquid is incompressible, then divδr = 0. Given pdivδr = div(pδr)−∇p · δr, based
on Gauss’s law, one has

∫
τ div(pδr)dτ =

∫
S f +Sw

pδr · dS. The normal relative velocity is zero

at the wall and the bottom of the tank, i.e., n · δr = 0 on Sw; thus,
∫

τ div(pδr)dτ =
∫

S f
pn · δrdS,

where n is the unit vector along the normal direction at the point on Sw and S f . d
dt is defined

as the time derivative observed from the space-fixed coordinate system OXY, and d̃
dt is the

time derivative observed from the tank-fixed coordinate system oxy. Given ∇Φ = [Ẋ, 0] + ṙ,
one has

∫ t1

t0

(
δT − δΠ + FδX +

∫
τ

pdivδrdτ

)
dt

=
∫ t1

t0

[
MẊδẊ + ρ

∫
τ
∇Φ · δ(∇Φ)dτ − ρg

∫
S f

ξδξdS

+ FδX +
∫

S f

pn · δrdS −
∫

τ
∇p · δrdτ

]
dt

=
∫ t1

t0

[
MẊδẊ + ρ

∫
τ
∇ΦdτδẊ + ρ

∫
τ
∇Φ · δṙdτ

− ρg
∫

S f

ξδξdS + FδX +
∫

S f

pn · δrdS −
∫

τ
∇p · δrdτ

]
dt

=
∫ t1

t0

[ d
dt

(
MẊδX

)
− MẌδX +

d
dt

(
ρ
∫

τ
∇ΦdτδX

)
− d

dt

(
ρ
∫

τ
∇Φdτ

)
δX

+ ρ
∫

τ

d̃
dt

(∇Φ · δr)dτ − ρ
∫

τ

d̃
dt

(∇Φ) · δrdτ − ρg
∫

S f

ξδξdS

+ FδX +
∫

S f

pn · δrdS −
∫

τ
∇p · δrdτ

]
dt. (A1)

Ẋ represents the tank movement, and it is irrelevant to x, y, and z. ∇(∇ϕ) · ∇ϕ =
1
2∇(∇ϕ · ∇ϕ) − ∇ϕ × (∇×∇ϕ), with ∇ ×∇ϕ = 0 for irrotational liquid, so ∇(∇ϕ) ·
∇ϕ = 1

2∇(∇ϕ · ∇ϕ). Therefore,

d̃(∇Φ)

dt
=

∂(∇Φ)

∂x
∂x
∂t

+
∂(∇Φ)

∂y
∂y
∂t

+
∂(∇Φ)

∂z
∂z
∂t

+
∂(∇Φ)

∂t

=
∂(∇ϕ)

∂x
∂x
∂t

+
∂(∇ϕ)

∂y
∂y
∂t

+
∂(∇ϕ)

∂z
∂z
∂t

+
∂(∇ϕ)

∂t

= ∇(∇ϕ) · ∇ϕ +
∂(∇Φ)

∂t

=
1
2
∇(∇ϕ · ∇ϕ) +

∂(∇ϕ)

∂t
. (A2)

Equation (A2) and n · δr = δξ on S f imply that Equation (A1) can be rewritten as

∫ t1

t0

(
δT − δΠ + FδX +

∫
τ

pdivδrdτ

)
dt

=
∫ t1

t0

{[
−MẌ − d

dt

(
ρ
∫

τ
∇Φdτ

)
+ F

]
δX − ρ

∫
τ
∇
(∂Φ

∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
· δrdτ − ρg

∫
S f

ξδξdS +
∫

S f

pδξdS

}
dt

+

[(
MẊ + ρ

∫
τ
∇Φdτ

)
δX + ρ

∫
τ
(∇Φ · δr)dτ

]∣∣∣∣t1

t0

. (A3)
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Similar to pdivδr = div(pδr)−∇p · δr, and divδr = 0 for incompressible liquid, one has

∇
(

∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
· δr

=div
[(

∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
δr
]
−

(
∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
divδr

=div
[(

∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
δr
]

. (A4)

Based on Gauss’s law, n · δr = 0 on Sw and n · δr = δξ on S f , one has

ρ
∫

τ
∇
(

∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
· δrdτ

=ρ
∫

S f +Sw

(
∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
n · δrdS

=ρ
∫

S f

(
∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + p

)
δξdS. (A5)

Furthermore, the integral conditions are δX = 0 and δr = 0 at t = t0 and t = t1, so
Equation (A3) can be rewritten as∫ t1

t0

(
δT − δΠ + FδX +

∫
τ

pdivδrdτ

)
dt

=
∫ t1

t0

{[
−MẌ − d

dt

(
ρ
∫

τ
∇Φdτ

)
+ F

]
δX

− ρ
∫

S f

(∂Φ
∂t

+
1
2
(∇ϕ · ∇ϕ) + gξ

)
δξdS

}
dt. (A6)

δX and δξ are independent, and the nonlinear fluid–structure coupled dynamic for-
mulas in Equation (9) can then be obtained.

Appendix B

Table A1. The coefficients αij for different h.

h α10 α21 α30 α32 α41 α43

0 1.012 0.136 −0.011 0.020 −0.090 0.063

0.5 0.814 −0.263 0.045 −0.429 −0.003 −0.101

1 0.903 −0.135 0.019 −0.194 −0.018 −0.025

1.5 0.957 −0.033 0.006 −0.052 −0.019 0.007

Table A2. The coefficients βij for different h.

h β00 β11 β20 β22 β31 β33 β40 β42 β44

0 −0.053 0.955 −0.009 −0.990 −0.012 −0.846 0.007 −0.173 −0.198

0.5 −0.010 0.539 0.082 −0.839 0.279 −0.566 −0.011 0.067 −0.109

1 −0.088 0.810 0.064 −0.516 0.121 −0.294 −0.009 −0.007 −0.044

1.5 −0.061 0.941 0.046 −0.230 0.035 −0.109 −0.009 −0.025 −0.011
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