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Abstract: The digital twin (DT) concept has been developed for a single function in previous studies.
This study aims to empower DTs with a layered integration of multifunctional models in the built
environment. It develops a framework of DT modules in three hierarchical tiers: region, asset, and sys-
tem; defines a new concept of the degree of digital twinning (DODT) to the real world by the number
of models enabled by a common DT platform; and enables spatiotemporal analysis in multiple scales
to couple nonstructural with structural building components and connect the built environment
to planning constructions. While the asset and system DTs focus on the lifecycle management of
buildings and infrastructure systems, the region DT addresses diverse modeling approaches for
a comprehensive management of the built environment as demonstrated on a university campus.
The DODT allows the value-driven digital replication of a physical twin at different levels. For the
campus case study, the DODT is eight, for building and infrastructure planning, condition assessment
of building envelopes, construction management for efficiency and quality, damage/cost scenario
studies under earthquake events, energy harvesting efficiency, environmental planning for flood zone
susceptibility, master planning for green space development, and security protocol development.

Keywords: smart cities; digital twin; degree of digital twinning; remote sensing; asset lifecycle
management; cyber–physical–social system

1. Introduction

Building and civil infrastructure assets have been managed using a database since 1970
and with the aid of Building Information Modeling (BIM) since 1992 for value engineering
and as-built information. The imperative for embracing digital twinning becomes evident
in the aftermath of the 2007 Minneapolis Interstate 35W Bridge Collapse, a catastrophic
event that claimed 13 lives and injured 145. This tragic incident underscores the critical
need for spatiotemporal analysis and societal impact studies, highlighting deficiencies not
only in extracting overlooked design information from BIM but also in the incapacity of
BIM alone to assess the adequacy of bridge members. The urgency to adopt the digital twin
(DT) model is amplified as the nation’s infrastructure is aging, demanding more frequent
condition assessment and maintenance, particularly in the face of accelerating climate
changes and increasing natural disasters.

The idea of DTs under the name of “Mirror Worlds” was first envisioned in the
1991 book Mirror Worlds by David Gelernter [1]. The DT model was introduced in 2002
under the name of the virtual twin by Michael Grieves as a concept of Product Lifecycle
Management (PLM) [2]. The model was finally referred to as a DT by John Vickers in the
2010 National Aeronautics and Space Administration (NASA) Roadmap Report [3]. The
early development of DTs and their applications in PLM and aerospace engineering [4],
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mainly for monitoring purposes, was extended to the areas of design and production
engineering [5] and architecture, engineering, construction, and facility management [6].
In these extended areas, DTs began to be connected to societies and built environments [7].

In 2017, the United Kingdom (UK) National Infrastructure Commission launched a
national DT initiative as envisioned in their Data for the Public Good report [8]. During the
evolution of their DT initiative, the UK construction industry alone saved USD 1.1 billion
in 2014 just by sharing information. Ever since, the concept and development of DTs has
been significantly advanced worldwide, as demonstrated by an increase in publications
(that mentioned “digital twin” in their titles) to more than 1,200 since 2018 [9]. The value
delivery of digital twins for smart cities was summarized in the first book Digital Twin
Technologies and Smart Cities [10]. The second book Digital Twins in the Built Environment:
Fundamentals, Principles, and Applications [9] provides a holistic view of DTs from an asset
level to a city level.

Most, if not all, of prior studies on DTs have concentrated on a single function, either
computational or informational, within a specific discipline such as civil engineering or
architecture. For example, DTs have been viewed as a computational platforms for finite
element models updating in a probabilistic context [11], and as information platforms
for BIM updating [12]. While these advancements in their respective research fields are
intriguing, the broader impact of these isolated applications of DTs is likely constrained.

The goal of this study is to empower DTs with a layered integration of multifunctional
models in the built environment, creating a cyber–physical–social (CPS) system encompass-
ing buildings, infrastructure, and the associated community. Depending on the specific
value-driven use cases of interest, a DT can be tailored through various facets and phases
of a physical twin with the following specific objectives:

1. Develop a rapidly implementable framework of DT modules in hierarchical tiers
tailored for a campus-like environment;

2. Enable a digital duplication of real-world construction of partially completed build-
ings with spatiotemporal analysis in multiple scales;

3. Integrate computational and informational models into a CPS system for asset
lifecycle management;

4. Evaluate the structural and nonstructural behavior of buildings under earthquake
loads to address post-earthquake resilience of the affected community;

5. Demonstrate and quantify the values of a DT through a straightforward indicator that
is easy to determine.

This paper is an extension of the early version published in the proceedings of the
14th International Workshop of Structural Health Monitoring [13], Stanford, California
on 12–14 September 2023. The rest of the paper is organized as follows. In Section 2,
an in-depth exploration of the proposed DT framework within the built environment is
presented. This section critically examines its role within the realms of PLM and asset
lifecycle management (ALM). Upon identifying existing limitations, a novel definition
for the concept of DT in the context of ALM is introduced, along with a new concept of
the degree of digital twinning (DODT) to quantify DT values. The spatial and temporal
hierarchy and architecture within modulated DTs at regional, asset, and system levels are
presented. Section 3 outlines the necessity of a novel approach to DTs, emphasizing the
enhancement of infrastructure management at the asset level through the hybridization of
various models. Moving to Section 4, the paper demonstrates how a DT can be effectively
utilized to realize potential benefits and bring transformative impacts on asset management
and regional planning. A campus environment serves as a case study, and numerous
concrete examples of DODTs are provided. Finally, Section 5 wraps up the study by
addressing limitations and offering insights into prospects.
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2. DT Framework in the Built Environment
2.1. DT in the Context of PLM and ALM

The DT concept originated from the modeling of PLM that handles a product as it
moves through the stages of its life. The lifecycle of a product starts when a product is
introduced to consumers into the market and ends when it is removed from the shelves.
Due to the availability of commercial products in large quantities and short term at relatively
low costs, the integration of multiple products into a new system product can easily be
viewed as an intended physical prototype. The DT of the system is used to ensure all
component products fit together before investing a new system product line in a physical
factory. This is a valuable design attribute of DTs in the era of digital manufacturing in
addition to real-time monitoring as envisioned originally.

On the other hand, ALM for large-scale buildings and infrastructure works differ-
ently. A set of strategies (e.g., maintenance, rehabilitation, and replacement) is organized
and implemented with the intent of preserving and extending the service life of public
infrastructure assets, such as roads, bridges, and railways. Unlike commercial products, in-
frastructure assets are often unique for both esthetical and functional purposes and require
capital investment over a long time. As such, the attractive attribute of DTs for product as-
sembly in manufacturing may have no equivalence in infrastructure asset management. For
buildings and infrastructure management, computational mechanics modeling is desirable,
as their physical and functional conditions affect the decision-making in asset management
strategies. In addition, using sensing data alone to assess their conditions is costly due to
their large scale, and may even be impossible for assessing hidden deterioration. Model up-
dating with limited sensor data is one of the effective ways to provide the needed condition
assessment capability.

The above difference between PLM and ALM determines the way in which DTs are
applied effectively in the built environment. To start with, the definition of DTs must be
modified from those targeted at applications in manufacturing. In the past decade, 29 def-
initions of DTs were used in academia, industry, government, and software sources [14].
In the built environment, the term DT has been used mainly in three ways [15]: (1) mod-
ifying the original definition of DT to reflect a realistic digital representation of assets,
processes, or systems; (2) extending BIM to enable real-world data capture and feedback
or completely replacing BIM; and (3) formulating a closed-loop digital–physical system
for built asset delivery and operation. In general, a DT differs from BIM in two distinctive
ways: (1) two-way digital threads between a DT and its represented physical asset; and
(2) focus on operation and maintenance instead of the entire lifecycle of an asset as BIM
encompasses with an emphasis on design and construction. The BIM implementation
for operation is also different from a DT’s. While the DT supports the operation of built
assets, BIM for facility management focuses on compiling information of the delivered built
asset to support inventory and space management, general upkeep, and building services
maintenance, which does not result in an accurate replica of the condition and performance
of the asset. In other words, BIM is a static representation of a structure that shows how
it was designed and built. It does not reflect the temporal changes that take place after
its construction. On the other hand, the DT is a dynamic imitation that is continuously
updated to reflect the current condition, rate of deterioration, effect of restoration, etc.

2.2. Novel DT Definition in the Context of ALM

This study consolidates the three uses of the term DT in the literature to propose a novel
definition. In this context, a multidimensional DT is defined as a synergetic, multifunctional,
value-added, realistic digital representation of an intended or actual real-world asset, system, or
process—a physical twin in the built environment. As schematically shown in Figure 1, the
DT interacts with the physical twin in a closed loop with two digital threads. In the
physical-to-digital thread, sensing data and monitoring information obtained from the
physical twin can be used to update the digital representation. In the digital-to-physical
thread, intervening strategies developed and optimized through scenario studies on the
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DT can help understand the outcomes of multi-faceted decision-making before they are
implemented on the physical twin. On the digital platform, the collected multimodal
data from sensors and tests will be fused and evaluated to detect, locate, and quantify
abnormalities as well as to predict the remaining life of the physical twin using advanced
deep learning-based data analytics [16].
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2.3. Degree of Digital Twinning (DODT)

The state-of-the-art developments in DT technology are primarily focused on digital
and physical twinning in computational mechanics or information only. Our value-added
solution expands the current single function paradigm to multiple functions. To quantify
the values of a DT, the cost saving enabled by the DT is the most widely used indicator.
However, this indicator requires the collection and use of a wealth of information that is
difficult to acquire. In this study, a new concept of DODT is introduced as a revolutionary
metric to simplify the estimation of the value of a DT by the number of digital models
and feature mappings enabled and shared by the common DT platform to address societal
needs in multiple disciplines, such as engineering, architecture, security, and social and
political sciences. In the context of determining DODT, digital models are defined as a
three-dimensional (3D) representation of agents (e.g., person or vehicle) and structures
(e.g., buildings and infrastructure), including structural and nonstructural components.
Concrete examples of DODTs are elaborated on in Section 4, with a focus on campus-scale
digital twin applications.

2.4. Connections, Hierarchy, and Architecture of Modulated DTs

The CPS infrastructure concept stands as an innovative and emerging paradigm
poised to revolutionize the built environment through the delivery of innovative services. It
embodies a comprehensive framework that seamlessly integrates three pivotal components:
cyber, physical, and social, as detailed in Table 1. The cyber system provides services to
promote economic development and improve the quality of life and human wellbeing. The
physical system includes an engineering-to-operation process to ensure safety, functionality,
and resilience. The social system describes common traditions, cultures, patterns, and
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beliefs present in a population group. The main component, key function, and performance
evaluation criteria of the three systems are described in Table 1.

Table 1. Characteristics of the three components in the built environment.

System Main Component Key Function Performance Evaluation Criteria

Cyber

Internet of Things
Enable people and objects to exchange data
via wireless communication and store data
in the cloud

Integration tool, security management,
endpoint management

Software Provide computational modeling
and intelligence User interaction and support services

Virtual reality Create the virtual representation of the real
world integrated with high-fidelity models

Latency, cybersickness, sense of
presence, and technological advances

Physical

Load bearing components Support service and extreme loads to
provide living/working spaces or functions

Vulnerability, design consistency and
optimization of elements

Non-load bearing components
Provide utility facilities and
communication infrastructure
including computers

Function and security of workspace,
economic considerations

Social
Economics Estimate cost–benefit ratio of major projects Maintenance costs, strategy

development, and profitability

Social work Alleviate conditions of people in need of
help or welfare

Social and emotional needs, an
environment of respect and rapport

A DT in the built environment can be hierarchically structured in a simplified form
as shown in Figure 2, extending from the regional level down to asset and system levels.
Depending on the security demand, the infrastructure at the asset level can be clustered
into two segments: (1) an open-sourced segment catering to public buildings and standard
infrastructure; and (2) a secured segment designed for information-sensitive buildings and
critical infrastructure. Furthermore, the hierarchal asset and system structure undergoes
evolution throughout the planning, design, construction, and operational phases.
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Much of the current DT research has been focused on information construct [17]. In
the built environment, however, damage assessment of existing infrastructure and design
options of new infrastructure are important in the lifecycle management of region assets.
Unlike the production application strategy in manufacturing [15], a creation application
strategy is thus needed for buildings and infrastructure.

Table 2 presents the system architecture of DTs. It consists of five layers: data acquisi-
tion, data transmission, model analysis, feature mapping, and users’ collaboration. First,
multimodal data are acquired from remote sensing, in situ sensing, and nondestructive
testing. Subsequently, the collected data are transmitted to a DT curation and storage
facility in the region. Following this, the received data are analyzed using informational
and computational models. Subsequent to the analysis, the features of interest in asset man-
agement and regional planning are extracted and presented in mapping formats in the DTs.
Finally, the processed features are communicated with end users through visualizations,
dashboards, and interfaces to assist in collaboration and informed decision-making.

Table 2. Five layers in the architecture of a DT.

Layer Key Function

Data Acquisition Collection of data from remote sensing, in situ sensing, and nondestructive testing

Data Transmission Secure transferring of the acquired data from sensors and tests to the DT platform

Model Analysis
Data cleansing and integration to create the virtual representation (or model) of a real world, model
analysis to transform raw data into meaningful insights and patterns, and predictive models that
facilitate a deep understanding of an object or a system’s behaviors

Feature Mapping Feature extractions and their geospatial distribution in a 3D platform of the DTs

Users Collaboration Visualizations, dashboards, and interfaces that help multiple users at various security levels connect
with each other and navigate the DT for controlled data access and manipulation

To exemplify the impact of enhanced DTs at the asset level, Section 3 presents the two
foundational computation platforms that couple information and computation modeling
as well as experimental and computational simulation. Section 4 presents a case study
conducted on a campus scale. This case study serves as a tangible demonstration of the
practical application of DT principles within conventional infrastructure. By focusing on a
specific campus environment, this study showcases how DTs can be effectively employed
to realize potential benefits and bring about transformative impacts on system, asset, and
regional levels.

3. DT in the Built Environment at Asset and System Levels

While employing computational models is crucial for addressing structural safety
concerns, the information modeling of nonstructural components becomes necessary for
comprehending the functionalities of a building system. This is underscored by the fact that
the integrity of structural components significantly influences the operations of nonstruc-
tural elements. Consequently, the synergy of computational and informational modeling is
essential for the efficient and effective management of building and infrastructure assets,
with updates occurring nearly in real time. As a result, the establishment of two founda-
tional computation platforms is imperative to facilitate the implementation of DTs for both
computational and informational modeling:

1. Spatial connection of structural and nonstructural components. Current computational
and informational modeling tasks are performed by two completely isolated techni-
cal communities using different approaches. For the development of DTs, the two
modeling techniques are transformed into one simple yet effective computational
and informational engine to meet the multiple needs in performance evaluation as
summarized in Table 1.
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2. Temporal connection between a built facility/environment and a new facility/environment
to be built in part or entirety. This platform plays a critical role in bridging planning,
design, construction, and operation of a physical building and infrastructure system.

As previously mentioned, the forefront of DT technology advancement predominantly
centers on digital and physical twinning within a single model, such as computational
mechanics or information-only domains. To enhance infrastructure lifecycle management
at the asset level, it is crucial to integrate computational, informational, and other rele-
vant models. The following two subsections offer practical examples that illustrate the
integration of these models. Section 3.1 focuses on the integration of computational and
informational models, while Section 3.2 centers on the integration of experimental and
computational models.

3.1. Coupling of Computational and Informational Models

A building consists of structural components that primarily resist loading and non-
structural components that support building operation. The nonstructural components
are further divided into two groups: A and B. Group A includes the pipeline system,
hydraulic elevator system, and beams in the ceiling system, which interact significantly
with their supporting structural components. Group B consists of the non-beam ceiling
system, glazing system, and drywall partitions, which have negligible interaction with
structural components.

Figure 3 shows a workflow diagram of the coupled computational and informational
modeling to determine the probability of damage states and item costs in structural and
nonstructural components. The computational and informational models are integrated
into a seamless platform of fiber elements to address both mechanical behaviors (i.e., stress
and strain at material levels) using OpenSees computational software, and functional value
properties (i.e., integrity and cost at component or system levels) using informational
interrelation. To maintain simplicity and efficiency, macro-scale models are introduced
for nonstructural components and meso-scale models are used for structural components.
Specifically, the structural components and Group A nonstructural components are rep-
resented by fiber elements in a finite element model (FEM) and analyzed under external
loading (earthquake) to evaluate the building responses and damage states. Group B
nonstructural components are represented by their informational model for lumped ef-
fects to estimate their damage states from respective fragility curves based on the overall
performance of the building.
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nonstructural components.

In Group A nonstructural components, the pipeline system was meticulously modeled
to reflect the pinching behavior of joints along with their supporting hangers and wire
restrainers. Similarly, the hydraulic elevator system was modeled to capture primary types
of damage that potentially affect the performance of chassis, cabin, and main supporting
cylinder. The beams in the ceiling system were modeled to account for their stiffness
and strength effects on the building responses. In Group B nonstructural components,
the non-beam ceiling system was modeled in a lumped sum for various failure modes
such as the dislodgement of ceiling tiles, loss of connections along the edges, and vertical
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movement. These types of damage were comprehensively assessed and quantified through
the utilization of fragility curves. The informational model for Group B nonstructural
components and the size information of the computational model for Group A nonstruc-
tural components and structural components include the material data for each component
that was used to estimate CO2 emissions resulting from producing these materials. This
quantification was finally employed to determine the component costs under scenario
damage states. Overall, the coupled computational and informational model offers a com-
prehensive dataset detailing the post-earthquake condition of building components and
the environmental impact of the materials utilized in the construction of the building.

To have a reference case for comparison, a code-conforming, four-story, benchmark RC
moment-frame building in Los Angeles [18] is considered as an illustrative example. The
building consists of four RC moment-resisting frames along the four sides of its perimeter
to resist lateral loads in two orthogonal directions. The building has four bays in the
north-south direction and six bays in the east-west direction. Each bay is 9.14 m (30 ft)
long. Each floor of the four-story building is a solid 203 mm (8 in)-deep slab with a #13 (#4)
post-tensioned reinforcement bar per foot. All columns rest on footings that are designed
based on the bearing strength of the soil. The benchmark building supports pipelines,
ceilings, drywall partitions, hydraulic elevators, and glazing system. For example, the
piping system consists of 683 m (2241 ft) on the first floor and 737 m (2418 ft) on each
floor above. It includes two different diameters of pipe: 102 mm (4 in) for the main pipes
and 25 mm (1 in) for other pipes. The pipeline is supported on the floors through vertical
hangers, each 559 mm (22 in) long and 9.5 mm (3/8 in) in diameter, and is restrained
laterally and longitudinally by a bracing system. In this study, the nonlinear behaviors of
concrete and steel materials are modeled. The piping system is considered as nonstructural
component A while the ceiling system is nonstructural component B.

Three computational FEMs were developed and compared with the model in the
reference paper [18] to understand the effect of changes in analysis scale on the accuracy
of results. The first model was a 2D model for the moment-resisting frame to make it
comparable with the model in [18]. The second model was a 3D model of structural com-
ponents only, without including nonstructural components. The third model takes into
consideration both structural and group A of nonstructural components (pipeline system,
hydraulic system, and beams in ceiling system) to understand the effect of modeling the
nonstructural components in the pushover analysis. Figure 4 presents the base shear as
a function of the roof drift ratio. The variance in outcomes between the model proposed
by [18] and the 2D structure model employed in this study is relatively minor concerning
drift and maximum base shear. Specifically, the difference in maximum base shear amounts
to 3.9%. In contrast, the difference between the 2D and 3D structure models is notably
substantial. This discrepancy is attributed to the influence of slab stiffness on the building’s
performance. The comprehensive 3D model that involved structural and group A non-
structural components diverges significantly from the second model in terms of long-range
ductility due to the enhanced redundancy level within the model, coupled with the ceiling
system’s role in facilitating partial bracing development.

3.2. Hybridization of Experimental and Computational Models

Buildings and civil infrastructure are commonly instrumented with accelerometers
for monitoring structural behavior. However, this method has two notable drawbacks.
Firstly, the extensive processing of acceleration measurements is required to derive data
related to structural behavior, such as crack width and steel mass loss. This intricate
mathematical process often serves as a barrier to the widespread adoption of sensing
technologies. Secondly, the deployment of accelerometers relies on the configuration of
an entire structure, making it unsuitable for adaptability to partially erected structures or
entirely new constructions.



Smart Cities 2024, 7 844
Smart Cities 2024, 7, FOR PEER REVIEW  9 
 

 
Figure 4. Comparative pushover analysis of the benchmark building using four models. Reference 
model as per [18]. 

3.2. Hybridization of Experimental and Computational Models 
Buildings and civil infrastructure are commonly instrumented with accelerometers 

for monitoring structural behavior. However, this method has two notable drawbacks. 
Firstly, the extensive processing of acceleration measurements is required to derive data 
related to structural behavior, such as crack width and steel mass loss. This intricate math-
ematical process often serves as a barrier to the widespread adoption of sensing technol-
ogies. Secondly, the deployment of accelerometers relies on the configuration of an entire 
structure, making it unsuitable for adaptability to partially erected structures or entirely 
new constructions. 

In practice, all stories of a building are typically built with the same materials using 
the same erection process of prefabricated components during construction. The first 
story, resting on a rigid base, is often subjected to a larger drift than the second and above. 
Thus, a novel strategy of hybridizing experimental and computational modeling is pro-
posed in this study, as shown in Figure 5. A structure is divided into two groups: experi-
mental members in the first story and computational members above the first story. The 
experimental members are modeled by fiber elements and instrumented to measure the 
load-displacement response of the first story. The material properties extracted from the 
load-displacement curve are transferred in real time to update the FEM modeling and 
evaluation of the above stories using computational simulations. This hybrid experi-
mental and computational treatment is compatible with the sequence of construction of a 
new building. This hybrid modeling strategy bridging existing to new constructions is 
also more accurate than conventional models. For a four-story, two-bay steel building 
structure, the hybrid treatment proved to be at least 25% more accurate than those simu-
lations, even from a post-earthquake calibrated model [19].  

Figure 4. Comparative pushover analysis of the benchmark building using four models. Reference
model as per [18].

In practice, all stories of a building are typically built with the same materials using
the same erection process of prefabricated components during construction. The first
story, resting on a rigid base, is often subjected to a larger drift than the second and
above. Thus, a novel strategy of hybridizing experimental and computational modeling
is proposed in this study, as shown in Figure 5. A structure is divided into two groups:
experimental members in the first story and computational members above the first story.
The experimental members are modeled by fiber elements and instrumented to measure
the load-displacement response of the first story. The material properties extracted from
the load-displacement curve are transferred in real time to update the FEM modeling and
evaluation of the above stories using computational simulations. This hybrid experimental
and computational treatment is compatible with the sequence of construction of a new
building. This hybrid modeling strategy bridging existing to new constructions is also
more accurate than conventional models. For a four-story, two-bay steel building structure,
the hybrid treatment proved to be at least 25% more accurate than those simulations, even
from a post-earthquake calibrated model [19].
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As highlighted in Sections 3.1 and 3.2, the coupling of models facilitates the creation of
two foundational platforms. Combining computational and informational models results
in a streamlined and powerful computational and informational engine that addresses
diverse requirements, offering a spatial connection between structural and nonstructural
components. Similarly, integrating experimental and computational models establishes
a temporal connection between an existing facility and a new facility under construction.
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Ultimately, the hybridization of these models produces outcomes that surpass initial expec-
tations when compared to the use of separate models, substantiating the effectiveness of
the DT approach proposed in this study.

4. DT in the Built Environment at the Region Level

The Missouri University of Science and Technology (S&T) campus serves as a case
study for implementing a DT to unlock potential benefits and create transformative impacts
on asset management and regional planning. Covering over 1,214,000 m2 (300 acres) of
land, the main campus spans ten streets in the north-south direction and another ten streets
in the east-west direction. The campus has both existing buildings and new buildings
under construction as well as one pedestrian concrete bridge. Its surrounding area has four
steel-girder highway bridges and one steel truss pedestrian bridge.

The DT development team has collected campus data biweekly since 19 March 2023,
using three heavy-duty drones: Headwall M600, Geodetics M600, and Missouri S&T
Octocopter. The Headwall M600 Pro Drone is equipped with a dual-sensor infrared
camera (FLIR: Duo Pro R 640 × 512), a hyperspectral camera (Headwall: Naon-Hyperspec®

VNIR), and a Light Detection And Ranging (LiDAR) scanner (Velodyne: Puck Lite). The
Geodetics M600 Pro Drone is equipped with a 4k camera (Sony: A6000) and a LiDAR
scanner (Velodyne: VLP-32C). The Missouri S&T octocopter is equipped with a three-axis
magnetometer (STL: DM-50). The RGB image gives general features of the campus. The
thermal image shows the temperature distribution around various buildings, offering
valuable insights into their energy efficiency and insulation effectiveness. It can also be
useful for detecting subsurface defects on roofs and roads. The LiDAR points with 3D
coordinates allow a 3D reconstruction of building elevation models as a common DT
platform for the visualization and presentation of features of interest, as shown in Figure 6.
This can provide useful information to monitor the progress of any ongoing construction or
other structural changes taking place on the campus. The hyperspectral image sheds light
on the health condition of campus landscapes and the types of construction materials. The
magnetic field allows aerial navigation study for magnetic interference and underground
exploration for metal structures. The magnetometer can be conveniently substituted with
any other subsurface imaging system, such as ground penetrating radar and impact echo,
without any loss of generality.
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DT modules.

In this study, the DT expands beyond individual building assets to encompass the
entire campus, including buildings, green areas, underground utilities, and other compo-
nents. This broader scope is termed the DT at the regional level, emphasizing the scale of
analysis. However, a closer examination indicates that the DT modules for buildings are at
the asset level, while drainage systems can be categorized at the system level. This inter-
connectedness illustrates the hierarchical relationship between various levels of analysis as
illustrated in Figure 2.
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4.1. Workflow to Realize Multiple DODTs and Values

As indicated in Table 2, the workflow of creating a digital twin of the Missouri S&T
campus is shown in Figure 7. It starts with gathering data from various sources such as
LiDAR, cameras (infrared (IR), hyperspectral, HiFi RGB), IoT sensors, and GIS databases
to ensure a comprehensive and accurate representation. These data are then securely
transmitted through robust protocols to a centralized or cloud-based storage platform on
which the campus DT is hosted. The LiDAR data are used to generate a digital elevation
model (DEM) and a digital surface model (DSM), representing terrain and surface features,
including buildings. The process of developing DEM and DSM is explained in Section 4.7.
Building extraction is then performed to isolate structures and their features from the DSM.
Subsequently, these extracted building footprints are transformed into 3D models using
various modeling techniques in the GIS platform. These 3D models are carefully integrated,
georeferenced, and aligned within the campus DT, ensuring spatial accuracy and seamless
integration. The models are continuously refined and enriched with real-time data to keep
it up to date with the changing campus. Features relevant to the built environment are
carefully defined within this model. These defined features enable detailed analysis and
scenario simulations, presented as DODT, to support campus planning and sustainable
decision-making. The created features encompass a broad array of domains, including
infrastructural planning, building envelope diagnosis, construction management, responses
to extreme events (earthquakes and floods), energy usage, development of green spaces,
and security. The insights obtained from these features are thoughtfully disseminated
through intuitive user interfaces, enabling stakeholders to navigate and interrogate the
campus DT. Furthermore, creating a collaborative environment is crucial, encouraging the
active involvement of various stakeholders and experts to embrace diverse perspectives
and expertise, optimizing the campus environment’s functionality.
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It is evident from Figure 7 that the data acquired from an individual sensor are
utilized to achieve multiple DODTs. Furthermore, some DODTs are developed using a
combination of data from various sensors. Although each sensor’s data are initially used
independently, the spatial-enabled nature of the multilayer data makes it straightforward to
fuse multiple datasets. Combining these fused data with fresh sensor data has the potential
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to create new DODTs. Additionally, given that those data are collected biweekly to update
the DT, the time series data can track changes and utilize artificial intelligence (AI) and
machine learning (ML) algorithms to forecast the future. This foresight enables predictive
maintenance, which represents another novel DODT.

Figure 7 also demonstrates the specific values of the campus-scale DT. These values
are realized through digital modeling and analysis. The output of each model and analysis
provides a distinct value and is thus considered one DODT. A total of eight (first to eighth)
DODTs are presented in Figure 7. The numbering of the DODTs does not denote any
particular order or hierarchy; instead, they are listed in alphabetical order of their values as
presented below:

1. Building and infrastructure planning;
2. Condition assessment of building envelopes;
3. Construction management for efficiency and quality;
4. Damage/cost scenario studies under earthquake events;
5. Energy harvesting efficiency;
6. Environmental planning for flood zone susceptibility;
7. Master planning for green space development;
8. Security protocol development.

4.2. First DODT: Building and Infrastructure Planning

The accurate 3D representation of the campus, where all buildings align with their
precise geolocations as depicted in Figure 6, becomes a powerful tool for meticulous plan-
ning and execution of infrastructure projects, encompassing both existing and forthcoming
structures within the campus. For existing structures, historic buildings in the campus
DT often have no archival information or engineering drawings to track down for engi-
neering project development. For efficient and effective renovations and maintenance, a
digital library of the buildings, as shown in Figure 6, can be created from a realistic 3D
representation of aging buildings. Both the outside and inside of buildings can be scanned
and replicated in the 3D representation from which future projects can be developed and
documented to save project costs.

For forthcoming structures, integrating the 3D model of a new building into the
campus DT permits a comprehensive visualization of its potential impact on the existing
infrastructure from various perspectives. This detailed visual representation aids in eval-
uating potential alterations, assessing space utilization, optimizing resource allocation,
and ensuring a seamless integration of new constructions into the campus environment.
Such modeling facilitates informed decision-making and enables stakeholders to anticipate
and address infrastructure challenges proactively, fostering an efficient and sustainable
campus development. For example, the DSM can be used directly to determine the heights
of various buildings and landmarks. As such, it is a practical tool for enforcing city or
town regulations to preserve landmarks by limiting surrounding new constructions to a
maximum height in a city or a relative height in a part of the city.

For a large building inventory, two-task machine learning [20] can be used to automat-
ically classify roof type and material as shown in Figure 8. For the roof type segmentation
task, three classes are defined, namely Background, Slope Roof, and Flat Roof. For the
roof material segmentation task, six classes are defined, namely Background, Rubber Slate
Tile, Thermoplastic Membrane, Rubber Membrane, Metal, and Concrete. On 23 April 2023,
aerial images were taken over the rooftops of the buildings for the purpose of training the
machine learning model. The dataset gathered for this study comprises a total of 94 images
with a pixel resolution of 6000 × 4000, all meticulously annotated at a pixel level to ensure
accuracy in subsequent analysis. The labeling process was conducted using the Image
Labeler app in MATLAB, which offers a robust and efficient means of image annotation.
These annotated images were then divided into two distinct sets for the purpose of training
and testing. The training set encompassed 87 images, while the remaining images were
allocated to the testing set.
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As shown in Figure 8, the feature extractor, F(C×h×w) as a core convolutional neural
network (CNN), extracts all the common features that are used for the two tasks. The two
tasks are predicted through two coupled feature projections—segmentation branches. The
output from the roof material segmentation module is concatenated with the roof type
features to provide the roof type awareness to the material segmentation task, or vice versa.
The type features, fT , and the material features, fM, intertwined in F, are decomposed by
two projection modules. In both branches, the CNN downsamples the feature embedding
f (c×h×w) to become the class-specific feature map O(d×h×w) with the same number
of channels of defined classes in each branch. Obviously, the number of channels in fT
and fM is larger than that of OT and OM. The downsampled OT and OM are projected
into two separate score maps to obtain the predictions of roof type and material, PT and
PM, respectively. A total cross-entropy loss function of the two predictions in comparison
with their respective ground truths is calculated. The mean intersections of union (mIOU)
between the predictions and their ground truths are determined to be 83% and 89% for
roof material and type segmentations, respectively. Correspondingly, the accuracies of
the roof material and type predictions are 96% and 97%, respectively. It is important to
mention here that the above case study only demonstrates proof of concept. Knowing the
specific types of roof materials empowers accurate representation and simulation of how
different roofing materials behave under various conditions, enabling informed decisions
and optimal outcomes in future building and infrastructure projects within the DT. Indeed,
the method employed in this example can be expanded to include damage identification
and thus create a comprehensive system for assessing the structural condition. This new
function will be regarded as a different DODT, as its value differs from that of the current
DODT. Additionally, the same framework can be applied to inspect other types of structural
systems, including but not limited to walls, beams, columns, and window frames.

4.3. Second DODT: Condition Assessment of Building Envelopes

Building envelopes are one of the most critical components to support a building’s
functionality and energy efficiency. This enclosure is not a single element; rather, it con-
stitutes a combined system comprising foundations, roofs, walls, doors, and windows.
Utilizing infrared thermography, an imaging technique that translates thermal energy from
the infrared band into visible images, proved highly effective and reliable in identifying
surface defects such as moisture problems on building envelopes and air leakages in walls
or around windows or wall cavities [21]. Among these building components, special atten-
tion must be paid to the roof due to its constant exposure to harsh weather conditions. In
particular, flat roofs are susceptible to problems such as water infiltration when rain and
snow accumulate. An aerial inspection conducted with a high-sensitivity IR camera (FLIR:
Duo Pro R 640 × 512) attached to an unmanned aerial vehicle (UAV) swiftly and precisely
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detects wet insulation in flat roofs by leveraging temperature variations between dry and
moist areas.

Figure 9 presents the thermal imagery of the roof of Toomey Hall, a building rooftop
located at the campus center, along with its corresponding RGB image. The Headwall UAV
was utilized for aerial scanning of the campus. The infrared camera continuously streamed
real-time radiometric data directly to the ground control station during the flight. Images
were captured at a rate of one frame per second at an altitude of approximately 65 m above
the ground. Following image capture, a photogrammetric orthorectification process was
employed to correct geometric distortion and generate an accurate orthomosaic thermal
image. The predefined building footprints, intended for 3D building development, are
used to isolate the specific rooftop for enhanced visualization. The color patterns and
differences in intensity aid in a rapid condition assessment of the roof and early detection
and prevention of damage.
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4.4. Third DODT: Construction Management for Efficiency and Quality

A rapid and reliable detection of change in construction sites is paramount in the
construction industry due to its significant economic implications. Three-dimensional
change detection is especially critical, considering that construction often occurs primarily
in the vertical direction, necessitating accurate quantification and comparison against
pre-existing design models for effective progression assessment. Figure 10 shows a flow
diagram to extract the excavation data over time at the Innovation Lab Building on Missouri
S&T campus. Two elevation raster images of LiDAR data (DSM) at different times are
subtracted to determine the change of elevation at the project site. The excavation along
a particular path on the ground is shown as an example. This difference in DSM can
be used to help manage construction projects in terms of progress evaluation and future
task scheduling to optimize construction performance. Furthermore, understanding the
progress of two independent crews on the same project also allows an early detection of
misalignment in parts and elements during construction. This early identification is crucial
for timely corrective actions, ensuring that the project proceeds smoothly and in alignment
with the intended design and construction plan.
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4.5. Fourth DODT: Damage/Cost Scenario Studies under Earthquake Events

The integrated informational, computational, and experimental modeling platform
enables scenario studies under extreme loads to understand and improve community
resilience through targeted planning activities. For example, it is invaluable for emergency
planning to support the new construction of critical facilities, such as hospitals, police
stations, and fire stations. The coupled computational and informational modeling allows a
rapid estimation of the damage to existing buildings and their associated costs in the wake
of an earthquake event, which is insightful for post-event emergency response, evacuation,
and recovery.

Consider the four-story, benchmark RC moment-frame building [18] as a new con-
struction project on the Missouri S&T campus. Figure 11 summarizes the percentage of the
building damage in four states and component costs (~USD 2.5 total) at respective damage
levels under earthquake excitations (i.e., the 1994 Northridge earthquake ground motions).
In the case of RC columns and beams, a damage index was applied to establish a unified
measure for flexural curvature and shear distortion [22]. This quantitative damage index
enabled the estimation of repair costs for varying levels of damage. Similarly, the Group
A nonstructural components (i.e., pipeline systems, ceiling beams, and hydraulic elevator
systems) were evaluated for damage based on the rotation in joints and stresses within
the supporting framework [23]. Conversely, the damage states of Group B nonstructural
elements were determined from fragility curves at respective damage levels. Repair costs
were calculated using the FEMA methodology [24], which incorporates the dispersion
and uncertainty of the unit repair cost. Initial costs were sourced from the literature and
adjusted to accommodate inflationary factors. As seen in Figure 11a, more than 50% of the
non-beam supported ceilings and hydraulic elevators experience severe damage. Note that
the ceiling (others) and ceiling (beam section) in Figure 11a are combined and presented as
a single category (ceiling system) in Figure 11b. RC beams and columns constitute 46.15%
of repair costs associated with the damage.

4.6. Fifth DODT: Energy Harvesting Efficiency

Incoming solar radiation (insolation), with a continual input of 170 billion megawatts
to the Earth, is the primary driver for our planet’s physical and biological processes.
Understanding of the insolation at local locations is desirable for designing energy-efficient
buildings, sustainable landscapes, and renewable energy systems. On a global scale, the
latitudinal gradients of solar radiation caused by the geometry of Earth’s rotation and
revolution around the sun are well known. On the local scale, topography is the major
factor modifying the distribution of insolation. Variability in elevation, surface orientation
(slope and aspect), and shadows cast by topographic features create strong local gradients
of insolation [25]. This leads to high spatial and temporal heterogeneity in local energy,
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which determines the possible solar radiation to be received and harnessed for the built
environment and microenvironmental factors such as soil moisture, and light available for
photosynthesis. The DSM processed from LiDAR provides high-resolution topographical
information of the campus including the slope and aspect of the building rooftops.
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The total solar radiation on the Earth surface is composed of three parts: direct, diffuse,
and reflected. Direct radiation reaches the surface in a straight line from the sun without
obstruction. Diffuse radiation scatters due to atmospheric elements such as clouds and
dust. Reflected radiation bounces off surface features. Unless the ground is covered by
heavy snow, the reflected radiation from the ground is negligible. Consequently, total
solar radiation is often considered as the sum of direct and diffuse radiation. In this study,
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an analysis tool based on the algorithms in [26] is utilized to compute the overall solar
radiation across individual rooftops on the campus. Figure 12 illustrates the process of
insolation calculation. The viewshed indicates, through a search in various directions,
the visible or concealed areas of the sky due to topography or nearby structures, when
observed from a specific point. Upward-facing hemispherical viewsheds are computed
for each cell in the input DSM. A sun map is a raster representation that depicts the sun’s
apparent path as it changes throughout the hours of the day and days of the year. On
the other hand, a sky map portrays a hemispherical view of the entire sky divided into
distinct sky sectors. Overlaying the viewshed with the sun map and the sky map provides
direct and diffuse radiations, respectively. The combined solar radiation, representing the
total radiation received by the campus rooftops (depicted in Figure 12), is instrumental in
estimating solar energy production and determining the optimal placement of solar panels.
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4.7. Sixth DODT: Environmental Planning for Flood Zone Susceptibility

A crucial component in the accurate development of a flood model is a high-resolution
DEM, which represents the Earth’s topographic surface. This DEM is vital as it governs the
direction and speed of water flow [27]. Figure 13 demonstrates the process of generating
both the DEM and DSM, which encompass elevations of the Earth’s surface, including both
natural terrain and man-made features above the ground. The high-resolution point cloud,
obtained from a LiDAR scanner (VLP-32C) with a resolution of 0.04 m, underwent an initial
classification into ground and non-ground points using a classifier algorithm in the ArcGIS
Pro environment. Subsequently, the non-ground points were filtered to remove any noise.
To convert these classified points into a raster format, the binning interpolation method
was employed. This method assigned raster values based on the chosen cell assignment
type, which, in this case, was set to ‘average’. Consequently, the rasterized ground points
constitute the DEM, while the rasterized non-ground points form the DSM.

By integrating data of the campus high-resolution DEM, hyperspectral imagery, and
the drainage pipe network, one can significantly enhance the effectiveness of flood vul-
nerability assessment. The DEM serves as a fundamental representation of the campus’s
terrain, offering insights into elevation and contours. This facilitates the identification
of flood-prone low grounds. Additionally, it aids in understanding the natural flow of
water during flood events. The hyperspectral data (collected for seventh DODT) provides
a detailed account of ground features, distinguishing between pervious and impervious
surfaces. This distinction is crucial for identifying areas vulnerable to saturation and runoff
during flooding. Moreover, comprehending the location and layout of the pipe network is
essential for evaluating its influence on floodwater movement and pinpointing potential
obstructions during flooding events. This holistic comprehension empowers the develop-
ment and implementation of effective flood risk reduction and mitigation strategies. These
strategies may include improvements to drainage systems or alterations in landscaping,
specifically tailored to address the existing features and expansions of the campus, ensuring
a proactive approach to flood management.
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4.8. Seventh DODT: Master Planning for Green Space Development

Green spaces offer critical ecosystem services that are closely tied to human wellbeing.
Having monitoring systems with a high temporal resolution is essential to monitor the
health of vegetated areas and ensure the effectiveness of green infrastructure. Several
sensing approaches have been established to assess vegetation health, and hyperspectral
sensors are one of these methods. These sensors measure the radiative characteristics of
plants across numerous narrow bands continuously, providing extensive spectral data.
This richness in spectral information enhances the ability to detect subtle physiological
alterations in vegetation. The assessment of vegetation health on the campus utilized a
high-resolution hyperspectral camera (Headwall: Nano-Hyperspec® VNIR) with a wave-
length range spanning from 399 nm to 1000 nm, segmented into 273 bands, and a spectral
resolution of 2.21 nm. Various Vegetation Indices (VIs) were derived by combining surface
reflectance at different wavelengths to evaluate specific vegetation properties. Among
these, the Normalized Difference Vegetation Index (NDVI) was prominently utilized for
vegetation health assessment [28]. The NDVI is calculated by combining the NIR-band
with the red-band. NDVI values range from −1 to 1, where healthy or dense vegetation
predominantly reflects NIR light and absorbs a significant portion of visible light. On
the contrary, unhealthy or sparse vegetation reflects a substantial portion of visible light
instead of absorbing it. Figure 14a shows the NDVI map and Figure 14b presents a close
view of a small area clearly indicating spotted red regions due to grass stress as confirmed
by comparing with the RGB image. Indeed, hyperspectral imaging can reveal early-stage
stress that is imperceptible to the human eye. The spectra in the stressed and healthy grass
areas are quite different, as shown in Figure 14c.

Thermographic methods can also be employed to detect stress in plants by primarily
leveraging alterations in land surface temperature (LST), which serve as a significant
indicator of stress. For instance, when plants are stressed, small openings called stomata
on their leaves, which regulate water loss through transpiration, may close, leading to an
elevation in the plant’s temperature. The thermographic data initially used for evaluating
the condition of building envelopes (second DODT) can also be repurposed, focusing
specifically on vegetation, to enable early detection and mitigation of thermal-related stress.
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Additionally, LST serves as a typical indicator for evaluating the micro thermal environment.
UAV mounted high-resolution infrared cameras can capture thermal data and convert them
into LSTs on a block scale, offering high temporal and spatial resolution [29]. Understanding
LSTs ultimately helps in taking action to mitigate the heat island effect on the campus. This
includes implementing various strategies such as increasing greenery and incorporating
water bodies to reduce heat absorption and retention in campus areas, ultimately resulting
in lowered temperatures and improved overall campus climate resilience.
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In another perspective, solar radiation emerges as a vital ecological determinant
affecting the growth, maturation, and reproduction of plants. In settings with dense urban
structures, green spaces can experience notable fluctuations in solar radiation over small
areas. The most effective method for choosing suitable plants is centered on the principle of
carefully situating trees and plants according to specific site conditions, often summarized
as “matching the plant to the site”. Achieving this goal necessitates an accurate evaluation
of solar radiation within the green area. Consequently, the computed solar radiation for
the fifth DODT can be leveraged by concentrating solely on the solar radiation within the
green space.

4.9. Eighth DODT: Security Protocol Development

The 3D digital campus as shown in Figure 6 allows a quick determination of the
best locations for security camera placement to develop an optimal security protocol. For
example, Figure 15 illustrates two observer points where visible and invisible areas can
be determined individually or their common visible area is identified as vantage points.
Conducting such an analysis helps guarantee that vital landmarks, signages, and directions
are visible from pivotal spots, thereby enhancing the overall user experience for both the
campus community and visitors. This visibility assessment not only supports the specific
DODT being discussed but also contributes to the success of the fifth DODT and seventh
DODT. In the context of fifth DODT, grasping visibility patterns within the digital campus
twin allows for the strategic placement of buildings to optimize exposure to sunlight and
airflow, thus enhancing energy efficiency and creating a superior indoor environment. By
scrutinizing the shadows cast by the buildings, it becomes possible to design green spaces
on campus that capitalize on sunlight exposure for plants, thus optimizing their growth
and overall health. Consequently, the campus environment achieves a harmonious blend of
aesthetics and functionality, indirectly contributing to the realization of the seventh DODT.
Essentially, the 3D building models of the campus emerge as an invaluable tool for both
current campus planning and future expansion endeavors, providing a comprehensive
understanding of spatial considerations and enhancing decision-making processes.
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A three-axis magnetometer was installed on a ground robot, as shown in Figure 16,
or on an octocopter [30] to survey a nearby magnetic field. When surveyed using a
ground robot, the process of creating a total magnetic field map near the ground surface
is illustrated in Figure 16. The map is useful for exploring and locating underground
utility lines and infrastructure such as metal pipes for flood vulnerability studies (sixth
DODT). Additionally, it proves beneficial for construction projects, enabling the prevention
of inadvertent damage during excavation activities. When surveyed using a drone [30], the
ambient magnetic field in space can be used to ensure the navigation and guidance safety
of aerial vehicles by understanding the minimum interference of the magnetic field.

Smart Cities 2024, 7, FOR PEER REVIEW  22 
 

 
Figure 16. Magnetic field mapping for navigation security and underground exploration. 

As evidenced by practical demonstrations involving eight DODTs at the campus (re-
gional) level, a single DT has the capacity to fulfill multiple DODTs based on the targeted 
values for exploration. All the presented DODTs play a vital role in tackling various issues 
within the campus environment. However, the significance attributed to each may fluctu-
ate depending on the priorities of stakeholders pertaining to cost-efficiency, safety, aes-
thetics, or other customized factors relevant to the intended use of the built environment. 
This diversity introduces complexity in reaching consensus. Therefore, the proposed 
DODT concept suggests a revolutionary simplification of metrics that solely assesses the 
value of a DT by considering the number of digital models and feature mappings it en-
compasses, thereby addressing diverse social needs without bias towards any specific as-
pect. 

The majority of examples presented in this work illustrate the campus-scale DT op-
erating at the asset level within a hierarchical structure of modulated DTs. This modulated 
arrangement enables interactive data flow between physical and digital twins, incorpo-
rating the insightful inputs of domain experts in different disciplines to establish an inte-
grative, closed-loop, digital–physical system. As detailed in Section 2, the proposed DT 
framework supports the real-time updating of digital models through in situ sensing. The 
workflow depicted in Figure 7 demonstrates that, while eight DODTs are showcased, this 
number is not the maximum attainable, and the integration of new sensors will allow the 
creation of further DODTs. We are actively developing novel DODTs that leverage in situ 
sensors to generate added value at both system and asset levels. This endeavor promotes 
the creation of new digital models and facilitates bidirectional data transmission between 
physical and digital twins through autonomous closed-loop operation without human in-
tervention after the digital models have been fully developed with domain experts’ 
knowledge. Ultimately, this progression will result in a regional-level DT encompassing 
an expanded array of DODTs, delivering comprehensive value throughout the lifecycle of 
the campus environment. 

5. Concluding Remarks 
This position paper outlines an implementable framework for enterprise DTs. In the 

area of asset lifecycle management, rudimentary database and BIM are, respectively, the 
first-generation and second-generation of clearinghouse tools with increasing merits in 
value engineering and as-built information. The proposed DT framework implies the 
coming of the third-generation tool in asset lifecycle management, which will act as a 
clearinghouse for structural condition assessment and information on buildings and in-
frastructure, as well as their affected communities. 

Figure 16. Magnetic field mapping for navigation security and underground exploration.

As evidenced by practical demonstrations involving eight DODTs at the campus
(regional) level, a single DT has the capacity to fulfill multiple DODTs based on the targeted
values for exploration. All the presented DODTs play a vital role in tackling various issues
within the campus environment. However, the significance attributed to each may fluctuate
depending on the priorities of stakeholders pertaining to cost-efficiency, safety, aesthetics,
or other customized factors relevant to the intended use of the built environment. This
diversity introduces complexity in reaching consensus. Therefore, the proposed DODT
concept suggests a revolutionary simplification of metrics that solely assesses the value of
a DT by considering the number of digital models and feature mappings it encompasses,
thereby addressing diverse social needs without bias towards any specific aspect.

The majority of examples presented in this work illustrate the campus-scale DT oper-
ating at the asset level within a hierarchical structure of modulated DTs. This modulated
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arrangement enables interactive data flow between physical and digital twins, incorporat-
ing the insightful inputs of domain experts in different disciplines to establish an integrative,
closed-loop, digital–physical system. As detailed in Section 2, the proposed DT framework
supports the real-time updating of digital models through in situ sensing. The workflow
depicted in Figure 7 demonstrates that, while eight DODTs are showcased, this number
is not the maximum attainable, and the integration of new sensors will allow the creation
of further DODTs. We are actively developing novel DODTs that leverage in situ sensors
to generate added value at both system and asset levels. This endeavor promotes the
creation of new digital models and facilitates bidirectional data transmission between
physical and digital twins through autonomous closed-loop operation without human
intervention after the digital models have been fully developed with domain experts’
knowledge. Ultimately, this progression will result in a regional-level DT encompassing an
expanded array of DODTs, delivering comprehensive value throughout the lifecycle of the
campus environment.

5. Concluding Remarks

This position paper outlines an implementable framework for enterprise DTs. In
the area of asset lifecycle management, rudimentary database and BIM are, respectively,
the first-generation and second-generation of clearinghouse tools with increasing merits
in value engineering and as-built information. The proposed DT framework implies
the coming of the third-generation tool in asset lifecycle management, which will act as
a clearinghouse for structural condition assessment and information on buildings and
infrastructure, as well as their affected communities.

This paper extended the concept of DTs to enable a multilayered integration of infor-
mational, computational, and learning-based models of buildings and infrastructure to
understand their conditions and their impact on surrounding communities during normal
operations and emergency responses in the wake of a catastrophic event. The extended DTs
can be applied in a wide spectrum of functions in a lifecycle of assets from design through
construction to operation to preserve buildings and infrastructure.

The two foundational computation platforms couple information and computation
modeling and hybridize instrumentation and computational simulation. They address both
spatial and temporal connections within existing infrastructure or between existing and new
infrastructure. The spatial connection between structural and nonstructural components
integrates the structural safety and nonstructural property loss into a multi-performance-
based design, which enables rapid emergency planning as natural or man-made hazards
arise, to understand regional and thus community resilience. The temporal connection
enables a glimpse into and execution of potential projects and their impacts on community
during urban planning.

The DODT allows the value-driven digital duplication of a physical twin at different
levels and thus the value proposition of structural health monitoring in broader architec-
tural and engineering practices. The DODT of the example campus-scale DT is at least eight,
indicating substantial DT values to addressing campus needs in asset lifecycle management.

The concept and model of multidimensional DTs are still evolving. More and closer
collaborations among academia, industry, government, and software sources are required
to develop standards and guidelines. For capital DT projects, clear outcomes and end users
must be identified to sustain the needed infrastructure and workforce both administratively
and financially.

Author Contributions: Conceptualization, G.C. and W.Z.T.; methodology, W.Z.T., I.A. and M.H.A.;
software, I.A., W.Z.T. and Z.S.; validation, I.A. and W.Z.T.; formal analysis, I.A., W.Z.T. and M.H.A.;
investigation, I.A., W.Z.T., M.H.A. and T.G.M.; resources, G.C.; data curation, Z.S., M.H.A. and S.N.;
writing—original draft preparation, G.C., W.Z.T., I.A. and M.H.A.; writing—review and editing, G.C.,
W.Z.T. and T.G.M.; visualization, W.Z.T.; supervision, G.C.; project administration, G.C.; funding
acquisition, G.C. All authors have read and agreed to the published version of the manuscript.



Smart Cities 2024, 7 857

Funding: Financial support to complete this study was provided in part by the University of Missouri
System Strategic Investment, by the U.S. Department of Transportation, Office of the Assistant
Secretary for Research and Technology (USDOT/OST-R) under Grant No. 69A3551747126 under the
auspices of the INSPIRE University Transportation Center, and by the Taylor Geospatial Institute
Fellow Program led by St. Louis University. The views, opinions, findings, and conclusions reflected
in this publication are solely those of the authors and do not represent the official policy or position
of the USDOT or any State or other entity.

Data Availability Statement: Support data will be made available upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Gelernter, D.H. Mirror Worlds: Or the Day Software Puts the Universe in a Shoebox—How It Will Happen and What It Will Mean; Oxford

University Press: Oxford, UK, 1991; ISBN 978-0195079067.
2. Grieves, M. Completing the cycle: Using PLM information in the sales and service functions. In Proceedings of the Society of

Manufacturing Engineering (SME) Management Forum, Troy, MI, USA, 31 October 2002.
3. Piascik, B.; Vickers, J.; Lowry, D.; Scotti, S.; Stewart, J.; Calomino, A. Materials, Structures, Mechanical Systems, and Manufacturing

Road Map: Technology Area 12; NASA: Washington, DC, USA, 2012.
4. Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdis-

ciplinary Perspectives on Complex Systems; Kahlen, F.J., Flumerfelt, S., Alves, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 85–113.

5. Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Annu.
2017, 66, 141–144. [CrossRef]

6. Mohammadi, N.; Taylor, J.E. Smart city digital twins. In Proceedings of the 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), Honolulu, HI, USA, 27 November–1 December 2017.

7. Batty, M. Digital twins. Environ. Plan. B Urban Anal. City Sci. 2018, 45, 817–820. [CrossRef]
8. NIC. Data for the Public Good; Final Report; National Infrastructure Commission: London, UK, 14 December 2017.
9. Lu, Q.C.; Xie, X.; Parlikad, A.K.; Schooling, J.; Pitt, M. Digital Twins in the Built Environment: Fundamentals, Principles, and

Applications; Institution of Civil Engineers (ICE), ICE Publishing: London, UK, 2022.
10. Farsi, M.; Daneshkhah, A.; Hosseinian-Far, A.; Jahankhani, H. Digital Twin Technologies and Smart Cities; Springer: Cham,

Switzerland, 2020.
11. Farhat, C. Data-driven digital twinning for structural health monitoring. In Proceedings of the 14th International Workshop on

Structural Health Monitoring (Keynote Presentation), Stanford, CA, USA, 12–14 September 2023.
12. Pan, Y.; Zhang, L. A BIM-data mining integrated digital twin framework for advanced project management. Autom. Constr. 2021,

124, 103564. [CrossRef]
13. Chen, G.; Alomari, I.; Shi, Z.; Taffese, W.; Mondal, T.; Runji, J.; Afsharmovahed, M. Computation-enabled digital twin in the

built environment. In Proceedings of the 14th International Workshop on Structural Health Monitoring (Keynote Presentation),
Stanford, CA, USA, 12–14 September 2023.

14. Barricelli, B.R.; Casiraghi, E.; Fogli, D. A survey on digital twin: Definitions, characteristics, applications, and design implications.
IEEE Access 2019, 7, 167653–167671. [CrossRef]

15. Delgado, J.M.D.; Oyedele, L. Digital twins for the built environment: Learning from conceptual and process models in manufac-
turing. Adv. Eng. Inform. 2021, 49, 101332. [CrossRef]

16. Chatzi, E. Learning by monitoring: Twinning and model discovery for engineered. In Proceedings of the 14th International
Workshop on Structural Health Monitoring (Keynote Presentation), Stanford, CA, USA, 12–14 September 2023.

17. Grieves, M. Virtually intelligent product systems: Digital and physical twins. In Complex Systems Engineering: Theory and Practice;
Flumerfelt, S., Schwartz, K.G., Mavris, D., Briceno, S., Eds.; American Institute of Aeronautics and Astronautics: Washington, DC,
USA, 2019; pp. 175–200.

18. Haselton, C.B.; Goulet, C.A.; Mitrani-Reiser, J.; Beck, J.L.; Deierlein, G.G.; Porter, K.A.; Stewart, J.P.; Taciroglu, E. An Assessment to
Benchmark the Seismic Performance of a Code-Conforming Reinforced Concrete Moment-Frame Building; PEER Report 2007/12; Pacific
Earthquake Engineering Research Center: Berkeley, CA, USA, 2008.

19. Chen, G.D.; Huang, Y. Real-time monitoring and assessment of large-scale infrastructure with statistically correlated, hybrid
instrumented and computational simulations. In Proceedings of the 6th International Conference on Structural Health Monitoring
of Intelligent Infrastructure, Hong Kong, China, 9–11 December 2013.

20. Zhang, C.; Karim, M.; Qin, R. A multitask deep learning model for parsing bridge elements and segmenting defect in bridge
inspection images. Transp. Res. Rec. J. Transp. Res. Board 2023, 2677, 693–704. [CrossRef]

21. Kirimtat, A.; Krejcar, O. A review of infrared thermography for the investigation of building envelopes: Advances and prospects.
Energy Build. 2018, 176, 390–406. [CrossRef]

22. Mergos, P.E.; Kappos, A.J. Seismic damage analysis including inelastic shear–flexure interaction. Bull. Earthq. Eng. 2010, 8, 27–46. [CrossRef]

https://doi.org/10.1016/j.cirp.2017.04.040
https://doi.org/10.1177/2399808318796416
https://doi.org/10.1016/j.autcon.2021.103564
https://doi.org/10.1109/ACCESS.2019.2953499
https://doi.org/10.1016/j.aei.2021.101332
https://doi.org/10.1177/03611981231155418
https://doi.org/10.1016/j.enbuild.2018.07.052
https://doi.org/10.1007/s10518-009-9161-2


Smart Cities 2024, 7 858

23. Soroushian, S.; Zaghi, A.E.; Maragakis, M.; Echevarria, A.; Tian, Y.; Filiatrault, A. Analytical seismic fragility analyses of fire
sprinkler piping systems with threaded joints. Earthq. Spectra 2015, 31, 1125–1155. [CrossRef]

24. FEMA. Seismic Performance Assessment of Buildings; Federal Emergency Management Agency; National Earthquake Hazards
Reduction Program and Applied Technology Council: Redwood City, CA, USA, 2018.

25. Hofierka, J. Topographic Solar Radiation Modeling for Environmental Applications. In Encyclopedia of Sustainability Science and
Technology; Springer: Cham, Switzerland, 2012; pp. 10621–10636.

26. Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002,
37, 25–35. [CrossRef]

27. Li, B.; Hou, J.; Li, D.; Yang, D.; Han, H.; Bi, X.; Wang, X.; Hinkelmann, R.; Xia, J. Application of LiDAR UAV for high-resolution
flood modelling. Water Resour. Manag. 2021, 35, 1433–1447. [CrossRef]

28. Jimenez, R.B.; Lane, K.J.; Hutyra, L.R.; Fabian, M.P. Spatial resolution of normalized difference vegetation index and greenness
exposure misclassification in an urban cohort. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 213–222. [CrossRef] [PubMed]

29. Wu, Y.; Shan, Y.; Lai, Y.; Zhou, S. Method of calculating land surface temperatures based on the low-altitude UAV thermal infrared
remote sensing data and the near-ground meteorological data. Sustain. Cities Soc. 2022, 78, 103615. [CrossRef]

30. Zhang, H.; Li, Z.; Chen, G.; Reven, A.; Scharfenberg, B.; Ou, J. UAV-based smart rock localization for bridge scour monitoring.
J. Civ. Struct. Health Monit. 2021, 11, 301–313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1193/083112EQS277M
https://doi.org/10.1016/S0168-1699(02)00115-1
https://doi.org/10.1007/s11269-021-02783-w
https://doi.org/10.1038/s41370-022-00409-w
https://www.ncbi.nlm.nih.gov/pubmed/35094014
https://doi.org/10.1016/j.scs.2021.103615
https://doi.org/10.1007/s13349-020-00453-w

	Introduction 
	DT Framework in the Built Environment 
	DT in the Context of PLM and ALM 
	Novel DT Definition in the Context of ALM 
	Degree of Digital Twinning (DODT) 
	Connections, Hierarchy, and Architecture of Modulated DTs 

	DT in the Built Environment at Asset and System Levels 
	Coupling of Computational and Informational Models 
	Hybridization of Experimental and Computational Models 

	DT in the Built Environment at the Region Level 
	Workflow to Realize Multiple DODTs and Values 
	First DODT: Building and Infrastructure Planning 
	Second DODT: Condition Assessment of Building Envelopes 
	Third DODT: Construction Management for Efficiency and Quality 
	Fourth DODT: Damage/Cost Scenario Studies under Earthquake Events 
	Fifth DODT: Energy Harvesting Efficiency 
	Sixth DODT: Environmental Planning for Flood Zone Susceptibility 
	Seventh DODT: Master Planning for Green Space Development 
	Eighth DODT: Security Protocol Development 

	Concluding Remarks 
	References

