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Abstract: This study investigates soil loss erosion dynamics in the Nan River Basin, Thailand,
focusing on the impact of land cover changes. Utilizing the Universal Soil Loss Equation (USLE)
model, key factors, including rainfall erosivity, soil erodibility, topography, and land cover, are
analyzed for the years 2001 to 2019. The findings reveal a substantial increase in human-induced
soil erosion, emphasizing the pressing need for effective mitigation measures. Severity classification
demonstrates shifting patterns, prompting targeted conservation strategies. The examination of land
cover changes indicates significant alterations in the satellite image (MODIS), particularly an increase
in Deciduous forest (~13.21%), Agriculture (~0.18%), and Paddy (~0.43%), and decrease in Evergreen
Forest (~13.73%) and Water (~0.12%) cover types. Deciduous forest and Agriculture, associated with
the highest soil loss rates, underscore the environmental consequences of specific land use practices.
Notably, the increase in Deciduous forest and Agriculture significantly contributes to changes in
soil loss rates, revealing the interconnectedness of land cover changes and soil erosion in ~18.05%
and ~8.67%, respectively. This study contributes valuable insights for informed land management
decisions and lays a foundation for future research in soil erosion dynamics. Additionally, the
percentage increase in Agriculture corresponds to a notable rise in soil loss rates, underscoring the
urgency for sustainable land use practices.
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1. Introduction

In the 21st century, land degradation has become a crucial environmental issue. It
is caused by the intricate interplay between climate, geography, and human activities.
Soil erosion is the primary consequence of these interactions, which poses a significant
threat to land, freshwater, and oceans worldwide. The impacts of this phenomenon
are extensive and include a decline in agricultural productivity, ecological harm, and
an increase in sedimentation in water bodies. This poses a significant challenge to the
sustainability of both water supply and the environment. Therefore, it is essential to
implement appropriate measures to mitigate the adverse effects of land degradation and
ensure long-term sustainability of the ecosystem [1–8].

The Maritsa Basin is currently facing significant soil erosion, which can be attributed
to changes in land use and land cover. This issue has been highlighted by studies that have
utilized the Revised Universal Soil Loss Equation (RUSLE) [1]. The impact of soil erosion on
food production is a major concern, with an annual loss of 10 million hectares of cropland
posing a serious threat to global food security [2]. A study on the Lancang–Mekong River
basin, which employed the RUSLE and GIS techniques, has estimated annual soil erosion
rates and identified areas that are vulnerable to increased erosion rates and sediment de-
position [3]. A comprehensive review of the (R)USLE model has been conducted, which
discusses the model’s strengths, limitations, and adaptability to varying conditions. The
objective of this review is to improve the model’s global applicability and refine soil loss
estimates [4]. Predictions of future water erosion rates indicate the influence of socioeco-
nomic development and climate projections [5]. Another study proposes an extension of

GeoHazards 2024, 5, 1–21. https://doi.org/10.3390/geohazards5010001 https://www.mdpi.com/journal/geohazards

https://doi.org/10.3390/geohazards5010001
https://doi.org/10.3390/geohazards5010001
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geohazards
https://www.mdpi.com
https://orcid.org/0000-0002-1572-0954
https://doi.org/10.3390/geohazards5010001
https://www.mdpi.com/journal/geohazards
https://www.mdpi.com/article/10.3390/geohazards5010001?type=check_update&version=2


GeoHazards 2024, 5 2

the Universal Soil Loss Equation (USLE) to predict nitrogen and phosphorus loss during
soil erosion [6]. The USLE and GIS technologies have been utilized in Central Vietnam and
Central Chile to assess soil erosion, suggesting targeted solutions and emphasizing the
role of vegetative cover in mitigating erosion rates [7,8]. Overall, these studies underscore
the importance of understanding and addressing soil erosion for sustainable land use and
conservation efforts globally.

Soil loss is mostly attributed to erosion processes, estimated to account for about 84%
of global loss [9]. The average rate of soil erosion ranges from 12 to 15 tons per hectare per
year [10]. However, it is alarming that human activities cause soil erosion 10–15 times more
than natural processes, affecting nearly 80% of cultivated regions worldwide, especially in
tropical areas. In these regions, water erosion causes soil loss exceeds 20 tons per hectare
per year [11,12]. The excessive sedimentation caused by soil erosion leads to increased
turbidity in waterways and high concentrations of impurities, significantly affecting aquatic
ecosystems [13].

Understanding the intricate interplay of diverse factors contributing to soil erosion is
paramount for devising effective mitigation strategies. Rainfall patterns, topography, soil
characteristics, vegetation, land cover changes, cropping systems, and land management
practices are among the principal determinants influencing soil erosion rate and sever-
ity [14,15]. Accordingly, it becomes crucial to investigate the impact of climate and land
cover changes on soil erosion at the regional scale, particularly in watershed areas. Such an
investigation would facilitate the development of evidence-based mitigation measures to
combat soil erosion.

The assessment of soil erosion has traditionally relied on physically intensive field
assessments, which presented significant challenges, including being expensive and im-
practical for mapping soil erosion risks across large spatial areas with diverse environ-
ments [15,16]. Despite these challenges, field-based assessments remain integral to pro-
viding accurate data for calibrating and validating soil loss models [6,17,18]. In response
to the limitations of field assessments, researchers have made use of various models to
map soil loss and erosion risks globally and locally, with the Universal Soil Loss Equation
(USLE) and the Revised Universal Soil Loss Equation (RUSLE) emerging as widely used
tools [19–21].

Various models have been developed to estimate the risks associated with soil loss,
utilizing empirical, conceptual, and physical approaches. Such models differ in complexity,
data requirements, and calibration processes [22,23]. Empirical models, such as USLE and
RUSLE, are particularly beneficial due to their adaptability, minimal data requirements,
and broad applicability under diverse conditions [24–27]. These models are based on
observed data and the relationships between factors and soil erosion levels, thus proving
advantageous when data availability is limited. However, they often lack detailed informa-
tion on stream sedimentation deposition, thus constraining their application in modeling
mass balance [23].

The primary objective of this paper is to contribute to understanding the impact of
land cover changes on soil erosion at the watershed scale. Utilizing the Universal Soil Loss
Equation (USLE) method, five highly influential factors were assessed at the pixel level:
rainfall, soil type, topography, land cover, and land management. This study focuses on
the Upper Nan River Basin in the northern region of Thailand. Specifically, the changes
in land cover and their implications for soil erosion between 2001 and 2019 are examined.
The ultimate goal is to provide valuable insights to support informed land management
and conservation strategies in the region.

2. Materials and Methods
2.1. Study Area

The area upstream of the Nan River Basin holds considerable significance in this study
as it plays a vital role in supplying water from the SIRIKIT dam to Thailand’s central
region, including the capital city of Bangkok. Figure 1 illustrates the study area in northern
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Thailand, encompassing a total watershed area of approximately 13,000 km2. The main river
originates in the Bor-Klua District, Nan Province, located between latitude 17◦42′12′′ N
and latitude 19◦37′48′′ N, and longitude 100◦06′30′′ E to longitude 101◦21′48′′ E. The
topography of the region reveals that a substantial 88% comprises mountainous terrain,
with the remaining 12% inhabited by residents within the watershed. Moving downstream
from the SIRIKIT dam, which serves as the modeling river outlet, the river bed features a
steep slope of approximately 1/1500. As it progresses upstream, the slope transitions to
a flat gradient of 1/10,000 before reverting to a steep angle of 1/600. The region has an
elevation range of 70 to 1200 m above mean sea level and experiences an average annual
rainfall of approximately 1380 mm. The hydrological system in the area is intricate, relying
significantly on critical tributaries such as the Wa River, Nam Pua River, and Nam Yao River.
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2.2. Rainfall Data

The present study analyzes monthly rainfall data for the basin from 2001 to 2019,
provided by the National Aeronautics and Space Administration (NASA) through The
Tropical Rainfall Measuring Mission (TRMM) on the 3B43V7 product [28]. Rainfall in this
region holds significant importance due to its association with weather patterns originating
from the Pacific Ocean and moving westward to the area between March and August. The
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Inter Tropical Convergence Zone (ITCZ) impacts the northern region of Thailand from
May to August, as reported by Schneider et al. [29]. Notably, substantial rainfall between
200 and 450 mm/month was observed during the monsoon event, as depicted in Figure 2a.
Figure 2b illustrates the average annual rainfall during the years under consideration, with
the maximum value located in the northern area, approximately 1250 mm/year, and the
minimum value in the southern region, below 1000 mm/year.
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The northern region of Thailand experiences seasonal changes in temperature and
monsoon activity. The area is generally hot and humid from November to March, with
temperatures ranging from 31 to 38 ◦C and high relative humidity. The monsoon lows in
this area exhibit a cyclonic circulation in the lower troposphere and a warm-cored structure
in the upper levels from March to August. The temperature lapse rate in mountainous
areas of northern Thailand varies seasonally, with the difference in minimum temperatures
changing throughout the year. A combination of wet catchment conditions, heavy rainfall
from monsoonal effects or tropical storms, and El Nino Southern Oscillation events cause
floods and soil erosion in the region. The temperature and monsoon patterns in the northern
area of Thailand are influenced by factors such as the Indian Ocean, the tropical eastern
Pacific Ocean, and the high-latitude Asian landmass.

2.3. Soil Data

Thailand’s Land Development Department (LDD) [30] has provided soil data catego-
rized into nine distinct types, as depicted in Figure 3a. The soil in the mountainous regions
is primarily composed of sandstone, representing an estimated 83.68% of the total. On the
other hand, the surface horizons of soils in floodplain areas contain eight diverse soil types:
silty clay, clay loam, sand clay, sandy loam, silty loam, sand clay loam, loam, and clay.
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The distribution of organic carbon content in the study area is depicted in Figure 3b.
These data were sourced from the United Nations Food and Agriculture Organization
(FAO) [31]. The percentage values range from 0 to 3%, with the highest concentration
of 3% observed in the wider basin area. Conversely, the floodplain area, located in the
middle region, exhibits a comparatively lower value of 1.5%. Notably, the FAO data were
instrumental in determining the variability in and distribution of organic carbon content
across the study area.

The classification of soil types in the study area is based on the percentage of three
main components: sand, silt, and clay. Figure 3c exhibits the percentage distribution of
sand in the various soil types across the study area. The border area, which encompasses
the mountain region, has the highest concentration of sand, ranging between 90 and 100%.
Conversely, the soil of the floodplain region in the middle section has a lower proportion
of sand, ranging from 25 to 50%. Figure 3d illustrates the percentage of silt present in
the different soil types. The mountain region at the border has a lower silt percentage, at
approximately 0–25%. In contrast, the floodplain area has a higher silt percentage, ranging
between 50 and 75%. As shown in Figure 3e, the percentage of clay is higher in the middle
section of the study area, at approximately 50–100%, and lower in the mountain region at
the border, at approximately 0–25%.
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2.4. Topography Data

The data used in this study for topography were graciously provided by the United
States Geological Survey (USGS), explicitly sourced from the Shuttle Radar Topography
Mission (SRTM) [32]. The SRTM project was a joint venture between the National Imagery
and Mapping Agency (NIMA) and the National Aeronautics and Space Administration
(NASA). The SRTM data are available online through the Consultative Group for Interna-
tional Agriculture Research Consortium for Spatial Information (CGIAR-CSI). The Digital
Elevation Model (DEM) data cover approximately 80% of the Earth’s surface, ranging from
a latitude of 60 degrees in the north to 60 degrees in the south. The resolution of the data
is one arc second, equivalent to approximately 30 m, and boasts 16 m vertical accuracy
and 20 m horizontal accuracy at 90% confidence, according to Javis et al. [32]. The original
SRTM data were upscaled to 15 × 15 arc-seconds. This pixel size represents a watershed
area of 13,000 km2, depicted in Figure 4a, and comprises 457 rows and 292 columns.
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Figure 4a shows the digital elevation model (DEM) of the study area, while Figure 4b
shows the slope based on the DEM. The mountainous region is situated on a steep slope
of approximately 5–30 degrees, whereas the floodplain is characterized by a flat slope of
approximately 0–5 degrees. The flow direction data were derived from the slope of the
DEM, which facilitated the determination of the downstream direction based on the eight
surrounding directions, as illustrated in Figure 4c. Subsequently, flow accumulation data
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were computed from the flow direction data, representing the number of upstream areas for
a given point in the form of grid cells, as displayed in Figure 4d. The Pysheds [33] library
created the slope, flow direction, and flow accumulation on the Python 3.8 [34] system.

2.5. Land Cover Data

To acquire land cover data in the study area, data obtained from the Moderate Reso-
lution Imaging Spectroradiometer (MODIS) with a spatial resolution ranging from 250 m
to 1 km were utilized. The MODIS data provided the possibility of time series coverage
at a moderate resolution. A diverse range of MODIS data in global products, including
land cover, primary production, and leaf area index, were used. The MODIS land cover
products are primarily available sets of global MODIS products. The product is established
from various MODIS-provided inputs such as surface reflectance, vegetation index, surface
temperature, and texture. Generated data are provided as a global product according to the
worldwide IGBP (International Geosphere–Biosphere Program) classification system [35].
Global MODIS land cover products are suitable for global and regional scales. However,
MODIS surface reflectance provided at 250 and 500 m can map regional land cover at a
higher resolution according to a user-specified classification system. Empirical analyses
have demonstrated that higher resolutions than 1 km are highly desirable for mapping land
cover, and the MODIS instrument was designed to deliver 250 and 500 m resolution data.

MCD12Q1 is one of the global MODIS land cover products, of which the data product
has been generated annually for twenty years, from 2001 to the present [35]. The MCD12Q1
product of MODIS is obtained by collecting supervised classification samples for each map-
ping class from 2000 training sites, carried out by the decision tree classifier. The MCD12Q1
product has a global accuracy of approximately 74.8% with a resolution of approximately
500 m. It is categorized into eight classes: Water, Evergreen Forest, Deciduous Forest,
Shrub, Agriculture, Paddy, Urban, and Barren. The land cover of the year 2001 is shown in
Figure 5a, and the land cover of 2019 is shown in Figure 5b. The difference between both
maps reveals a significant change in the area from the Evergreen Forest to Deciduous Forest
from the middle to the south. The details of the land cover change for each type are shown
in Figure 5c. Water and Evergreen Forests decreased during the years considered, while
Deciduous Forests, Shrubland, Agriculture, Paddy, and Barren areas increased. Urban land
cover remained unchanged.

2.6. Method of Estimating Soil Loss

The current study utilized the Universal Soil Loss Equation (USLE) model to estimate
the potential soil loss risk in the study area. Figure 6 illustrates the applied methodology
for this purpose. This study used the Python packages [34] for data analysis and figure
generation. The USLE model considers several geospatial factors to calculate the soil loss
rate, including rainfall erosivity, soil erodibility, topography, crop management, and conser-
vation practices. Despite its simplicity and suitability for limited data conditions, the model
has been widely utilized across the world [22,36–40], including in Ethiopia [41], Kenya [15],
Zimbabwe [9], China [26,42,43], Japan [6], India [44,45], Nepal [46,47], Sri Lanka [48], the
Philippines [49–51], Thailand [52,53], and the Mekong River Basin [3,54,55]. The USLE
has also been found to have international applicability and comparability, providing an
efficient tool for soil loss estimation and risk assessment. The USLE model [24] is based on
an empirical parametric Equation (1), which mathematically estimates the average annual
soil loss rate. This equation is expressed as follows:

A = R × K × LS × C × P, (1)

where A is soil loss computed in tons per hectare per year, R is the rainfall erosivity factor
in megajoules millimeter per hectare per hour per year, K is the soil erodibility factor in ton
hectare hour hectare−1 mega joule−1 millimater−1, LS is the topography factor, including
with length and steepness of the slope, C is the crop management factor, and P is the
conservation practice factors that are based on the development of an area.
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The rainfall erosivity (R-factor) is a crucial metric for gauging the erosive force of
rainfall [24]. The erosive power of precipitation depends on the quantity, intensity, and
distribution of the rainfall, with intensity being the most significant factor in determining
the extent of erosion [56]. To derive the R-factor, satellite rainfall products utilized the
TRMM on the 3B43V7 product to obtain monthly data. For rainfall data collection, grid data
were accumulated for 19 years, and the annual average factor was used in Equation (2), as
provided by Wischmeier [57].

R = ∑n
i=0 1.735 × 10(1.5 log10 (

P2
i
P )−0.08188), (2)

where Pi is the monthly rainfall in millimeters and P is the annual rainfall in millimeters.
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Soil erodibility (K-factor) is a crucial factor that determines the impact of physical and
chemical properties of soil on erosion during storm events in upland areas [20,24]. Soil
texture, drainage condition, soil depth, structural integrity, and organic content are some
soil properties that can significantly influence soil erodibility [44]. The soil nomograph
method is the most commonly used technique for calculating the K-factor. This method
determines the K-factor by analyzing the relative ratios of soil texture, permeability, soil
structure, and organic matter content [24]. Equation (3) estimates the K-factor, which
researchers and practitioners widely use.

K =
(
0.2 + 0.3exp

[
−0.256·msand·

(
1 − msilt

100
)])

·
(

msilt
mclay+msilt

)0.3
·(

1 − 0.25moc
moc+exp[3.72−2.95moc ]

)
·
(

1 − 0.7(1− msand
100 )

(1− msand
100 )+exp[−5.51+22.9(1− msand

100 )]

)
,

(3)

where msand is the percentage of sand content, msilt is the percentage of silt content, mclay is
the percentage of clay content, and moc is the percentage of organic carbon content.

The topographic factor is an essential parameter of the USLE model to determine soil
loss. This is because the gravitational force plays a significant role in surface runoff, and the
terrain’s topography can significantly impact water flow across its surface [58,59]. The slope
length (L) determines the topographic factor, which measures the distance from the source
to the top of the intercalation and the slope steepness (S). The LS factor can be calculated
using a recommended Equation (4) [60]. Therefore, understanding the topographic factor
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is critical in predicting and mitigating soil erosion, and it requires careful attention to the
relevant parameters and equations.

LS =

(
Flow accumulation· grid size

22.12

)m
·
(

0.065 + 0.045·S + 0.0065·S2
)

, (4)

where grid size is the DEM resolution, m; S is the slope of the DEM in percentage; and m
is the dimensionless exponent of the steepness of the terrain, being 0.5 for the slope > 5%,
0.4 for 3–5%, 0.3 for 1–3%, and 0.2 for <1%.

The crop management factor, also known as the C-factor, is a metric used to determine
the extent of soil loss from a specific area subject to a particular cover and management
practice. This factor accounts for the protective role of vegetative covers against water
erosion [24,61]. In areas lacking vegetation, the soil is highly vulnerable to erosion by
water. In contrast, vegetation cover significantly protects the soil surface, reducing erosion.
Therefore, increasing vegetation cover can substantially mitigate soil erosion. The C-factor
is generally considered the most critical factor in reducing soil erosion. To determine the
C-factor, report similar land cover values and compare them with previous studies [4]. In
this study, the C-factor was determined based on the land cover type assigned to each area,
using values from earlier studies, as illustrated in Table 1.

Table 1. C- and P-factors adopted for this study are related to the land cover type.

Land Cover Type C-Factor P-Factor

Water 0.01 1.0
Evergreen Forest 0.001 1.0
Deciduous Forest 0.01 1.0

Shrubland 0.014 1.0
Agriculture 0.5 0.5

Paddy 0.1 0.5
Urban 0.1 1.0
Barren 0.35 1.0

The conservation practice factor (P-factor) is a critical parameter that quantifies the
efficacy of conservation practices in mitigating erosion [24]. The P-factor is a dimensionless
value ranging from 0 to 1, with one assigned to areas without erosion control measures [49].
In contrast, areas with adequate protection measures receive a minimum value close to
0. The present study derived the P-factor from the land cover type associated with the
C-factor, following the approach recommended by Yang et al. [62]. The values of the
P-factor, ascertained from the land cover types, are presented in Table 1 for reference.
Notably, the P-factor is an essential parameter that captures the impact of conservation
practices on soil loss. By incorporating the P-factor in erosion prediction models, it can better
understand the effectiveness of erosion control measures and design efficient strategies to
reduce soil erosion.

3. Results
3.1. USLE Factor Estimation Results

Figure 7a illustrates the rainfall erosivity factor (R-factor) ranging from 300 to
500 MJ.mm/ha/h/year, with an average of approximately 400 MJ.mm/ha/h/year. The
R-factor distribution was estimated from the monthly Tropical Rainfall Measuring Mission
(TRMM) data using the 3B43V7 product over 19 years (2001–2019). The spatial distribution
of the R-factor reveals that the northern area exhibited a higher value of approximately
500, whereas the southern area exhibited a lower value of approximately 300. This spatial
pattern of the R-factor in the study area corresponds to the annual average rainfall pattern
depicted in Figure 2a.
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Figure 7b presents the soil erodibility factor (K-factor), which exhibits values ranging from
0 to 0.2 ton.ha.h/ha/MJ/mm, with an average of approximately 0.1 ton.ha.h/ha/MJ/mm.
The distribution of the K-factor value was developed from soil data provided by LDD,
Thailand, which included nine different soil types in the study area. Notably, the K-factor
value distribution is concentrated in the middle of the study area, with a high value of
approximately 0.2, mainly in the floodplain area. Conversely, in the mountain area, the
K-factor value is low, ranging from approximately 0.05 to 0.1.

The present study examined the LS factor, indicating the topography factor, as illus-
trated in Figure 7c. The LS-factor values range from 0 to 50, averaging approximately 25.
The distribution of the LS factor reveals that the mountainous areas at the border of the
study region exhibit high values of approximately 25–50, while the central part has low
values of approximately 0–20. The high LS-factor values in the mountainous areas can be
attributed to the high steep slope characteristic. Conversely, the low LS-factor values are
situated in the floodplain area, characterized by gentle slopes. Notably, the LS factor is a
critical parameter in predicting soil erosion caused by water. Therefore, understanding the
LS-factor values in different topographical regions is crucial in developing effective erosion
control strategies. The present findings provide valuable insights into the topographical
features of the study area and contribute to the overall knowledge of soil erosion and
its prevention.

Figure 8a,b illustrates the crop management factor (C-factor) for the study area across
different land cover categories from 2001 to 2019. The distribution of the C-factor value
ranged from 0.001 to 0.5, with high values (0.01 to 0.5) observed in the floodplain area
located in the middle of the study area and low values (0.001) in the mountainous border
area. Notably, the middle area of the southern part exhibited a significant shift in values
between 2001 and 2019, with a significant difference in values between 0.001 and 0.01. This
discrepancy can be attributed to alterations in land cover within the study area.
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Figure 8c,d showcases the conservation practice factor (P-factor) for 2001 and 2019,
respectively. For both the years, the distribution values varied between 0.5 and 1.0. The
mountainous area hosts a high value of approximately 1.0, while the middle region contains
a low value of around 0.5. These values correspond to the land cover types enumerated in
Table 1.
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The C-factor and P-factor were identified based on a previous study. It is plausible
that the estimation of soil losses in this study may either underestimate or overestimate the
actual losses. However, this study employed the change in soil losses to demonstrate the
impact of the land cover change. It is important to note that the estimation of soil losses is
a complex process that involves several factors, including soil type, slope, and land use.
Therefore, the results of this study should be interpreted with caution. Nonetheless, the
findings of this study provide valuable insights into the impact of land cover change on
soil losses and can be used to inform land management decisions.

3.2. Soil Loss Estimation Result and Its Change between 2001 to 2019

The estimation of soil loss rate relies on five significant factors, as elaborated in the
study area information discussed earlier. The distribution of soil loss rate in the study
area for 2001 and 2019 is presented in Figure 9a,b, respectively. In 2001, the principal
distribution of soil loss rate values was observed over a broad area of approximately
0–2 tons/ha/year. Similarly, in 2019, the primary distribution of soil loss rate values
was also approximately 0–2 tons/ha/year. However, there was a considerable differ-
ence between the two years in the southern part of the area, with values ranging from
0–2 tons/ha/year to 5–10 tons/ha/year. In 2001, the average range for soil loss rate varied
from 0.344 to 132.9 tons/ha/year, while in 2019, it ranged from 0.344 to 125 tons/ha/year.
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According to Nut et al. [63] and FAO-PNUMA-UNESCO [64], this study aimed to
categorize the soil loss rate into six distinct severity classes. Specifically, the severity classes
were very low (0–2 ton/ha/year), low (2–5 ton/ha/year), moderate (5–10 ton/ha/year),
severe (10–20 ton/ha/year), very severe (20–40 ton/ha/year), and extremely severe
(>40 ton/ha/year). Figure 10a shows the percentage of the area covered by different
severity classes in 2001 and 2019. The results indicate that most of the area was classified
as very low severity in both years. In 2001, it accounted for 90.90% of the total soil loss,
whereas in 2019, it was 85.54%. Conversely, the lowest class was very severe, account-
ing for 0.46% in 2001 and 0.64% in 2019. Notably, between both years, the percentage
of the very low class decreased while the percentage of other classes increased. Further-
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more, Figure 10b presents the average soil loss rate difference for each severity class and
both years. The extremely severe class had the highest soil loss rate, with approximately
153.34 tons/ha/year in 2001 and 138.51 tons/ha/year in 2019. In contrast, the very low
class had the lowest soil loss rate, with approximately 0.39 tons/ha/year in 2001 and
0.44 tons/ha/year in 2019. This study emphasizes the significance of implementing soil
conservation practices, particularly in areas with high soil loss rates. Further research is
required to identify the causes of soil loss and develop effective strategies to mitigate its
impact on the environment and agriculture.
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3.3. Soil Loss Estimation Result Relation to Elevation and Slope

The study area was analyzed based on its elevation and corresponding soil loss
rate across six different elevation ranges: <300 m, 300–600 m, 600–900 m, 900–1200 m,
1200–1500 m, and above 1500 m [63]. Figure 11a shows the percentage of the area within
each elevation range. The highest percentage of the area falls within the 300–600 m range,
followed by the 600–900 m range. The lowest percentage of the area is within the less
than 300 m and above 1500 m ranges. Figure 11b presents the average soil loss rate for
each elevation range in 2001 and 2019. In 2001, the highest average soil loss rate was in
the 600–900 m elevation range, with approximately 2.56 tons/ha/year, followed by the
900–1200 m range, with a rate of approximately 2.55 tons/ha/year. The lowest rate was less
than 300 m, with approximately 1.53 tons/ha/year. In contrast, in 2019, the highest rate
was in the 1200–1500 m range with a rate of approximately 3.41 ton/ha/year, followed by
the 900–1200 m range with a rate of approximately 3.23 ton/ha/year. The lowest rate was
less than 300 m, with approximately 1.98 tons/ha/year. Overall, all the elevation ranges in
2019 had higher soil loss rates than in 2001.

The slope of the land, estimated using the DEM, was categorized into six different
ranges: slopes less than 2 degrees, slopes between 2 and 5 degrees, slopes between 5 and
10 degrees, slopes between 10 and 15 degrees, slopes between 15 and 30 degrees, and
slopes greater than 30 degrees [63]. Figure 12a shows the percentage of the area covered
by each slope range, with the highest percentage of the area having slopes of less than
2 degrees, covering about 31.02% of the area, followed by slopes between 2 and 5 degrees,
covering about 24.02% of the area, and slopes greater than 30 degrees covering the lowest
area of about 0.12%. Figure 12b shows the average soil loss rate for each slope range in 2001
and 2019. In 2001, the highest average soil loss rate was observed in slopes greater than
30 degrees, with a rate of approximately 29.85 tons/ha/year, followed by slopes between
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15 and 30 degrees, with a rate of approximately 7.47 tons/ha/year, and slopes less than
2 degrees having the lowest rate of approximately 0.49 tons/ha/year. Similarly, in 2019, the
highest average soil loss rate was observed in slopes greater than 30 degrees, with a rate of
approximately 31.81 tons/ha/year, followed by slopes between 15 and 30 degrees, with a
rate of approximately 7.71 tons/ha/year, and slopes less than 2 degrees having the lowest
rate of approximately 0.49 tons/ha/year. Overall, the soil loss rate in 2019 was higher than
in 2001, except for slopes less than 2 degrees.
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3.4. Soil Loss Estimation Result Relation to Land Cover Change and Land Cover Type

The study utilized MODIS land cover data represented by the MCD12Q1 product for
the Nan River basin in Thailand between 2001 and 2019. The MCD12Q1 included eight
types, namely Water, Evergreen Forest, Deciduous Forest, Shrubland, Agriculture, Paddy,
Urban, and Barren. Figure 13a shows each type’s land cover change percentage during this
period. The land cover type with the highest decrease is Evergreen Forest at approximately
13.73%, followed by Water at approximately 0.12%. The highest among the increasing
land cover types is Deciduous Forest, with approximately 13.21%, followed by Paddy at
approximately 0.43%. Deciduous Forests seem to have replaced Evergreen Forests, whereas
the other land cover categories changed insignificantly.

Figure 13b presents the soil loss rate related to each land cover type in 2001 and 2019.
In 2001, Agriculture had the highest average soil loss at approximately 1929.2 kilotons, fol-
lowed by Evergreen Forest at approximately 570 kilotons, and Shrubland at approximately



GeoHazards 2024, 5 16

1.7 kilotons as the lowest. In 2019, Agriculture had the highest soil loss at approximately
2170.4 kilotons, followed by Deciduous Forest at approximately 711.1 kilotons, and Barren
at approximately 0.4 kilotons as the lowest. Overall, the average soil loss in the Water,
Evergreen Forest, Deciduous Forest, Shrubland, Agriculture, Urban, and Barren land cover
types were related to the decreasing and increasing land cover change, except for Paddy.
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Figure 13c illustrates the total soil loss change percentage for each land cover type
from 2001 to 2019. The highest decrease in soil loss was in the Evergreen Forest type at
approximately 1.84%, while the highest increase was in Deciduous Forest at approximately
18.05%, followed by Agriculture at approximately 8.67%.

4. Discussions

This study used the Universal Soil Loss Equation (USLE) model to assess the relation-
ship between land cover change and soil erosion in the Nan River Basin in Thailand. The
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findings reveal several key factors influencing soil loss dynamics in the region. Reference
studies [1–8] emphasize the global significance of addressing soil erosion, highlighting its
far-reaching consequences on land, freshwater, and ocean ecosystems. The observed spatial
variation in rainfall erosivity (R-factor) aligns with prior research [11], emphasizing the
critical role of precipitation patterns in influencing soil erosion. Moreover, the concentrated
soil erodibility (K-factor) in the floodplain, as indicated by LDD soil data [30], corresponds
to previous studies [44], highlighting the influence of soil properties on erosion susceptibil-
ity. The LS factor distribution, influenced by topography, underscores the importance of
understanding terrain characteristics [58,59] for effective erosion control, particularly in
mountainous and floodplain areas.

It is important to understand that research on soil erosion is context-specific, and
findings may not be universally applicable. While this study provides valuable insights
into the Upper Nan River Basin, its findings should be considered within the specific
environmental context studied. A balanced approach that recognizes the strengths and
weaknesses of the USLE method will lead to a more nuanced and applicable understanding
of soil erosion dynamics.

The comparison of soil loss rates between 2001 and 2019 (Figure 9a,b) echoes concerns
raised by global estimates [9,10] regarding the escalating rates of human-induced soil
erosion. The distribution of soil loss rate values in both years shows a broad area experienc-
ing low to moderate soil loss (0–2 tons/ha/year), with a significant difference observed
in the southern part, where higher values (5–10 tons/ha/year) are evident in 2019. The
observed changes in the southern region, with higher soil loss rates in 2019, highlight the
need for targeted conservation efforts in response to shifting environmental dynamics. The
severity classification (Figure 10a) reveals a nuanced pattern, with a decrease in very low
severity and an increase in other classes, indicative of evolving soil erosion challenges. The
extremely severe soil loss rates underscore the urgency of implementing effective soil con-
servation measures [49]. These findings are consistent with studies emphasizing the need
for adaptive strategies to mitigate adverse environmental and agricultural impacts [41].

This study presents details on soil erosion in a distinct geographical area. It contrasts
the research undertaken in the northwest region of Algeria, which primarily focused on
the river basin scale of Wadi Gazouana. Although both studies utilized the Universal Soil
Loss Equation (USLE) and its variants, namely the Modified Universal Soil Loss Equation
(MUSLE) and the Revised Universal Soil Loss Equation (RUSLE), significant differences
emerged in their findings and methodologies. The Algerian study aimed to estimate
specific erosion rates in the entire Wadi Ghazouana watershed, given the challenges of
water erosion exacerbated by climate change and human intervention [65]. The USLE,
RUSLE, and MUSLE models produced erosion rates of 9.65 (t/ha/year), 9.90 (t/ha/year),
and 11.33 (t/ha/year), respectively. Of note, the MUSLE model demonstrated a higher
spatial dispersion of erosion risk due to the increased effectiveness of the rain factor. These
findings offer insights into soil erosion management and mitigation strategies that could be
adopted in different regions worldwide.

This study presents an analysis of soil loss rates in a distinct region and highlights a
range of erosion rates across severity classes. In particular, the research reveals that the
extremely severe class exhibits the highest soil loss rates, with an average of approximately
153.34 tons per hectare per year in 2001 and 138.51 tons per hectare per year in 2019.
Conversely, the very low class demonstrates the lowest soil loss rates, averaging around
0.39 tons per hectare per year in 2001 and 0.45 tons per hectare per year in 2019. While both
studies offer valuable insights into soil erosion dynamics, the differences in geographic
locations, specific methodologies, and the focus on severity classes versus overall erosion
rates underscore the complex nature of soil erosion challenges and the importance of
customized approaches to address them. The findings highlight the global significance of
comprehending and mitigating soil erosion for sustainable land management practices.

The elevation and slope analysis (Figures 11b and 12b) offer insights into topographic
influences on soil loss rates. Higher rates in elevated areas and steeper slopes align with
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established knowledge [58,59], emphasizing the vulnerability of such regions to erosion.
This supports the call for targeted conservation strategies in areas characterized by an
elevated terrain. Furthermore, the examination of land cover change (Figure 13a) highlights
anthropogenic impacts on the landscape. The increase in Deciduous Forest of 13.2% and the
corresponding decrease in Evergreen Forest of 13.7% and Water of 0.12% cover types align
with concerns raised by environmental studies [44], emphasizing the need for sustainable
land management practices. The association of Agriculture with the high average soil loss
rates of an approximately 8.67% increase underscores the environmental consequences of
specific land use practices [4]. The observed changes in soil loss rates (Figure 13b) and the
total soil loss change percentage (Figure 13c) underscore the dynamic nature of soil erosion
processes, demanding continuous monitoring and adaptive conservation efforts [3,54,55].

5. Conclusions

The comprehensive analysis sheds light on the intricate dynamics of soil erosion in the
Nan River Basin, Thailand, emphasizing the significant impact of land cover changes on
soil loss. The study employed the Universal Soil Loss Equation (USLE) model, integrating
key factors such as rainfall erosivity, soil erodibility, topography, crop management, and
conservation practices to estimate soil loss rates. The results revealed spatial variations in
the distribution of factors, with higher rainfall erosivity in the northern region, concentrated
soil erodibility in the floodplain, and notable differences in topography influencing the
LS factor. The assessment of soil loss rates between 2001 and 2019 uncovered changes,
particularly in the southern part of the study area, where higher soil loss rates were evi-
dent. The severity classification highlighted the urgency of implementing soil conservation
measures, especially in areas experiencing extreme soil loss. Additionally, the elevation,
slope, and land cover change analysis provided crucial insights into the topographic and
anthropogenic influences on soil erosion susceptibility, emphasizing the need for targeted
conservation strategies in elevated and steeper slope regions. These findings contribute
valuable information to guide evidence-based land management and conservation strate-
gies in the Nan River Basin, fostering long-term sustainability and resilience against the
adverse effects of soil erosion.

Furthermore, the study underscores the interconnected relationship between land
cover changes and soil erosion, emphasizing the role of human activities in shaping en-
vironmental outcomes. The satellite image (MODIS) showed the increase in Deciduous
Forests of 13.2% and the corresponding decrease in Evergreen Forests of 13.7% and Water of
0.13% cover types, highlighting the anthropogenic footprint on the landscape. The average
soil loss rates of different land cover types highlight the importance of sustainable land man-
agement practices. In areas dominated by Deciduous Forests, the total soil loss increased
by 18.05% (501.9 kilotons). The dynamic nature of soil erosion processes, as evidenced
by changes in severity classes and soil loss rates over the studied period, emphasizes the
need for ongoing monitoring and adaptive conservation measures. Overall, this research
provides critical insights into the factors influencing soil erosion in the Nan River Basin
and serves as a foundation for informed decision-making, facilitating the development of
effective strategies to mitigate soil loss, protect the environment, and promote sustainable
land use practices in the region.
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