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Abstract: The Casimir–Lifshitz force of friction between neutral bodies in relative motion, along with
the drag effect, causes their heating. This paper considers this frictional heating in a system of two
metal plates within the framework of fluctuation electromagnetic theory. Analytical expressions for
the friction force in the limiting cases of low (zero) temperature and low and high speeds, as well
as general expressions describing the kinetics of heating, have been obtained. It is shown that the
combination of low temperatures (T < 10 K) and velocities of 10–103 m/s provides the most favorable
conditions when measuring the Casimir–Lifshitz friction force from heat measurements. In particular,
the friction force of two coaxial disks of gold 10 cm in diameter and 500 nm in thickness, one of which
rotates at a frequency of 10–103 rps (revolutions per second), can be measured using the heating effect
of 1–2 K in less than 1 min. A possible experimental layout is discussed.
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1. Introduction

Over the past two decades, much effort has been spent investigating the static [1,2]
and dynamic [3,4] Casimir effect in various geometric configurations, including a system
of two parallel metal (dielectric) plates separated by a narrow vacuum gap. The main
objectives of these studies are the properties of a fluctuating electromagnetic field and its
interaction with matter on the nanoscale. Measurement of these effects paves the way to
the core of nonequilibrium quantum field theory [5–8].

In addition to the attractive (in most cases) Casimir forces between electrically neu-
tral bodies at rest, a dissipative tangential force arises when one or both bodies move
relative to each other. The sources of these forces are dissipative effects within the plates
(Joule losses). In this case, the corresponding fluctuation electromagnetic forces are called
“van der Waals” [9], “Casimir” [10], or “quantum” [11] forces of friction. As it looks, it is
convenient to use the general name “Casimir-Lifshitz” (CL) friction force, which incorpo-
rates all the features of these dissipative forces regarding their distance, temperature, and
material properties.

It is worth noting that, despite of many intense efforts, no convincing experimental
measurements of CL friction forces have been carried out to date. This is due not only
to the small magnitude of these forces relative to the “ordinary” Casimir forces (forces
of attraction) but also to the imperfections of the measurement layout. In particular, the
effective interaction area and relative velocity are significantly limited in the “pendulum”
measurement scheme used in Ref. [12]. Other experimental scenarios [9,13–17] seem to
be more exotic. Recently, in Refs. [15–17], to measure traces of quantum friction, the
authors suggested a scenario in which the nitrogen vacancy center in diamond acquires
the geometric phase during rotation at a frequency of 103–104 rps (revolutions per second)
near the Si- or Au-coated surface. Nitrogen vacancy centers have been proposed for use as
the main components of quantum computer processors [18].

Nearly all experiments to measure Casimir–Lifshitz forces (both conservative and
dissipative) have been performed with well-conducting materials (metals like gold) under
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near-normal temperature conditions. Regarding Casimir–Lifshitz friction forces, it has
usually been assumed that they decrease with decreasing temperature as the resistivity
of metals and ohmic losses decrease. Therefore, at first glance, the friction force also
does. The conclusion that for metals, the temperature behavior of CL friction is not that
simple was first made in Ref. [19] and later discussed in [20,21]. It has been shown that at
temperatures T << θD (θD is the Debye temperature), the force of friction can increase by
several orders of magnitude compared with normal conditions. However, several issues
have not been elucidated, in particular, the relation between friction and heating effects at
thermal nonequilibrium, the relation between quantum friction and friction at close to zero
temperature, and the kinetics of radiation heating, etc. In particular, the interplay between
nonequilibrium dynamics, the quantum and thermal properties of the radiation, and the
confinement of light at the vacuum-surface interface may lead to several intriguing features
caused by nonequilibrium thermodynamics of quantum friction [22–25]. Some other effects
were considered in Refs. [26–30].

The main objective of this paper, in addition to studying CL friction and heating in a
system of parallel metallic plates of nonmagnetic metals like gold, is to substantiate the
possibility of determining the friction force from thermal measurements. In the calcula-
tions, the general results of fluctuation electrodynamics [31,32] are used, without a linear
expansion in velocity in the basic expressions. It is shown that identical metal plates with
different initial temperatures, moving with a constant nonrelativistic velocity, V, relative
to each other, rapidly reach a state of quasithermal equilibrium and continue to heat up
further. The heating rate is then determined by the power of the friction force.

The outline of this paper is as follows. In Section 2, the general relations between
radiative heating and friction force for parallel plates in relative nonrelativistic motion
are given. In Sections 2.2, 2.3, 2.4, and 2.5 I consider the simplest case of identical plates
of Drude metals having the same material parameters and temperature, T. Analytical
expressions are obtained for the friction force of metal plates in the limiting cases of low
(zero) temperature and low and high speeds, as well as general expressions describing
the kinetics of heating. In Section 3, the results of the numerical calculations (heating
rates of plate 1 and friction parameter, η = Fx/V, with Fx the x-component of the friction
force) are given for different thermal configurations and velocities. The analytical results of
Section 2 are compared with the results of numerical integration according to the general
formulas. Section 4 is devoted to a brief discussion of a possible layout of an experiment for
determining the CL friction force by measuring the heating rates of gold plates. Concluding
remarks are given in Section 5. Appendixes A–C contain the details of the analytical
calculations. All formulas are written in the Gaussian units, } and c are the reduced Planck
constant and the speed of light in vacuum, respectively, T denotes the absolute temperature
and is given in units of energy.

2. General Results
2.1. Radiative Heating and Friction Force for Parallel Plates in Relative Motion

Here, we use the standard formulation of the problem, in which the plates are as-
sumed to be made of homogeneous and isotropic materials with permittivities, ε1, ε2, and
permeabilities, µ1, µ2, depending on the frequency, ω, and local temperatures, T1 and T2
(Figure 1).
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Figure 1. Configuration of parallel plates in relative motion. See text for details. 

In line with Refs. [31,32], the power, 𝐹௫𝑉, of the friction force x-component, 𝐹௫, per 
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Figure 1. Configuration of parallel plates in relative motion. See text for details.

In line with Refs. [31,32], the power, FxV, of the friction force x-component, Fx, per
unit surface area applied to plate 2 in the laboratory coordinate system associated with
plate 1 is calculated using

FxV = P1 + P2/γ. (1)

Here, P1 and P2 are the heat fluxes of the plates from a unit surface area per unit time,
and γ =

(
1−V2/c2)−1/2. For all quantities, indices 1 and 2 here and in what follows

correspond to the numbering in Figure 1. Moreover, P1 and P2 are calculated in the rest
frames of the plates. General relativistic expressions for P1 and P2 were obtained in Ref. [31].
In the nonrelativistic case, V/c� 1, but taking retardation into account, a more compact
form of P1 and P2 reads [32]:

P1 =
}

4π3

∞∫
0

dωω
∫

d2k
|q|2∣∣Qµ

∣∣2 Im
(

q1

µ1

)
Im

(∼
q2
µ2

)[
coth

(
}ω

2T1

)
− coth

(
}ω−

2T2

)]
+ (µ1,2 ↔ ε1,2), (2)

P2 = − }
4π3

∞∫
0

dω
∫

d2kω−
|q|2∣∣Qµ

∣∣2 Im
(

q1

µ1

)
Im

(∼
q2
µ2

)[
coth

(
}ω

2T1

)
− coth

(
}ω−

2T2

)]
+ (µ1,2 ↔ ε1,2), (3)

Qµ =
(

q + q1/ µ1)
(

q +
∼
q2/

∼
µ2

)
exp( qa

)
−
(

q− q1/ µ1)
(

q− ∼q2/
∼
µ2

)
(−qa

)
, Qµ↔ Q ε. (4)

Here, ω− = ω− kxV, q =
√

k2 −ω2/c2, q1,2 =
√

k2 − ε1,2µ1,2ω2/c2, and a is the gap

width in Figure 1. Variables with a tilde, such as
∼
q2, should be used replacing ω → ω− . The

terms (µ1,2 ↔ ε1,2) are defined by the same expressions with appropriate replacements. In
the general case, the expressions depending on ε1,2 and µ1,2 correspond to the contributions
of electromagnetic modes with P (transverse magnetic, TM) and S (transverse electric, TE)
polarizations. The quantities P1 and P2 are directly related to the heating (cooling) rates of
the plates: dQ1/dt = −P1 and dQ2/dt = −P2, where t denotes the time.

Using Equations (1)–(4), the power of the friction force FxV = P1 + P2 takes the form:

FxV =
}

4π3

∞∫
0

dω
∫

d2k(kxV)
|q|2∣∣Qµ

∣∣2 Im
(

q1

µ1

)
Im

(∼
q2
µ2

)[
coth

(
}ω

2T1

)
− coth

(
}ω−

2T2

)]
+ (µ1,2 ↔ ε1,2). (5)

Formula (5) can be also recast into a more familiar form in terms of the Fresnel
reflection coefficients [9,32].

At T1 = T2 = T, due to the symmetry of the system, the heating rates of identical plates
are equal. One then has FxV = 2P1,2, and the friction force can be determined using the heat-
ing rate of any plate. For T1 6= T2, it follows that P1 6= P2, but P1(T1, T2) = P2(T2, T1) and,
correspondingly, P1(T1, T2) + P2(T1, T2) = P1(T1, T2) + P1(T2, T1) = P2(T1, T2) + P2(T2, T1).
This means that when measuring the CL friction force, it is sufficient to control the temper-
ature of only one plate.
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2.2. Metal Plates in the Drude Model

In order to treat the problem of temperature-dependent CL friction force between
ordinary metals, they are described using the Drude model in terms of plasma frequency,
ωp, and damping parameter, ν(T) = ω2

pρ(T)/4π, with ρ(T) being the resistivity:

ε(ω) = 1−
ω2

p

ω(ω + i·ν(T)) . (6)

Figure 2 plots the dependences ρ(T) corresponding to the Bloch–Grüneisen (BG)
model [33] and the modified Bloch–Grüneisen (MBG) model (BG scaled in Figure 2 to the
data from Ref. [34]). In the former case, the residual resistance is zero or can be specified by
indicating the effective temperature, below which it is constant. In the MBG model, the
residual resistivity is ρ0 = 2.3× 10−10Ω·m (see Figure 2).
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Figure 2. Resistivity of gold [34]. To obtain resistivity in the Gaussian units, one should use the
relation Ω·m = (1/9)10−9s. The ‘zero RR’ stands for zero residual resistance, TD is the Debye
temperature, and ρ ∼ T denotes a linear fit. See text for more details.

Hereinafter, for simplicity, the plates are assumed been made of similar nonmagnetic
metal (µ1 = µ2 = 1) with the same plasma frequency ωp, but different ν(T) dependence.

Since ε(ω)� 1 for good conductors and the inequality becomes stronger as T → 0,
the terms with ε1,2 in Equations (2), (3) and (5), corresponding to modes with P-polarization,
are negligible compared to the terms with µ1,2, corresponding to modes with S-polarization.
Therefore, in what follows, the contributions of P modes are omitted.

When calculating the integrals in (2), (3), and (5), it is convenient to introduce a new fre-
quency variable ω = νm(T1, T2)t, with νm(T1, T2) = max(ν1(T1), ν2(T2)) and νi(Ti), i = 1, 2,
being the damping parameters of plates 1 and 2 depending on their temperatures T1 and T2,
respectively. The absolute value k of the two-dimensional wave vector (using the polar coor-
dinates k, φ in the plane (k x, ky

)
) is expressed as k =

(
ωp/c

)√
y2 + β2

mt2 in the evanescent
sector k > ω/c (0 ≤ y < ∞) and k =

(
ωp/c

)√
β2

mt2 − y2 in the radiation sector k < ω/c
(0 ≤ y ≤ βmt). Here, the parameters βm = νm/ωp, αi = }νi/Ti, γi = νi/νm, λ = ωpa/c,

ζ = (V/ c)βm
−1., and K =

hν2
m(ωp/c)

2

2π3 are introduced. With these definitions, for k > ω/c,
Equations (2), (3) and (5) take the form:

P1 = K
∞∫

0

dt
∞∫

0

dyy3 f 1(t, y), (7)

P2 = −K
∞∫

0

dt
∞∫

0

dyy3 f 2(t, y), (8)
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FxV = K
∞∫

0

dt
∞∫

0

dyy3
√

y2 + β2
mt2 f

3
(t, y), (9)

f1(t, y) = t
π∫

0

dφ
Imw1Imw2

|D|2
Z(t, y, φ), (10)

f2(t, y) =
π∫

0

dφt−
Imw1Imw2

|D|2
Z(t, y, φ), (11)

f3(t, y) = ζ

π∫
0

dφcosφ
Imw1Imw2

|D|2
Z(t, y, φ), (12)

Z(t, y, φ) = coth
(

α1t
2

)
− coth

(
α2t−

2

)
, (13)

w1 =

√
y2 +

t
t + i·γ1

, w2 =

√
y2 +

t−

t− + i·γ2
, t− = t− ζcosφ

√
y2 + β2

mt2, (14)

D = (y + w1)(y + w2)exp(λy)− (y− w1)(y− w2)exp(−λy). (15)

In the sector k < ω/c, Formulas (14) and (15) should be modified by replacing y→ iy
and substituting βmt for ∞ in Equations (7)–(9) in the integrals over y. The expressions for
Imw1,2 can be additionally simplified. For example, it follows that

Imw1 =

(√{
γ2

1y2 + (1 + y2)t2
}2

+ γ2
1t2 − γ2

1y2 −
(
1 + y2)t2

)1/2
sgn(−t)√

2
(
γ2

1 + t2
) . (16)

The Imw2 is defined by the same expression (16), substituting γ2 for γ1 and t− for t.
For two identical plates at quasithermal equilibrium, it follows that γ1 = γ2 = 1, and a
simpler useful expression is obtained by expanding the square root in Equation (16) and
leaving the expansion terms up to the second order:

Imw1 ≈
|t|·sgn(−t)

2
√
(1 + t2)(y2 + (1 + y2)t2)

. (17)

In this case, an approximate analytical calculations can be done.

2.3. Quantum Friction

In the case T1 = T2 = 0, corresponding to the conditions of quantum friction, the main
role is played by the evanescent modes k > ω/c. At finite temperatures, the evanescent
modes make the dominant contribution at a < 1 µm. This range of distances is highly
promising experimentally. For this reason, hereinafter, let us consider only evanescent
modes, omitting the small term β2

mt2 in Equations (9), (14) and other formulas. Therefore,
at zero temperature, substituting the identity Z(t, y, φ) = sgn(t)− sgn(t− ζycos(φ)) into
Equation (9) yields:

FxV = 2Kζ

∞∫
0

dyy4

π
2∫

0

dφcosφ

ζycosφ∫
0

dt
Imw1Imw2

|D|2
. (18)
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The most straightforward asymptotics of Equation (18) can be worked out for two
identical plates in the limit of low velocities, ζ � 1. Using Equations (15) and (17),
one obtains:

Imw1Imw2 → −
t(ζycosφ− t)

4y2 , |D|2 → 1
16

y−4exp(−2λy). (19)

Inserting Equation (19) into Equation (18) yields:

FxV = −πK
212

ζ4

λ2 = −
}ωp

2

213π2

(ωp

c

)2
(

V
c

)2( V
aν0

)2
= − 1

29
}

ρ02a2

(
V
c

)4
, (20)

where ρ0 is the residual resistivity corresponding to the zero-temperature damping factor
ν0 = ν(0). The limit of high velocities, ζ � 1 is more laborious. A reasonable representation
of the double integral in Equation (9) can be worked out using an approximate expression
for Imw1Imw2, based on Equation (17):

Imw1Imw2 =
|t(b− t)|sgn(t)sgn(b− t)

4
[
(1 + t2)

(
1 + (t− b)2

)
(y2 + t2(1 + y2 )

)(
y2 + (t− b)2(1 + y2

))]1/2 . (21)

where b = ζycosφ. The product Imw1Imw2, as a function of t in the range 0 ≤ t ≤ b, reaches
its maximum close to the point t = b/2, with zeroing at the end points t = 0, t = b of the
integration domain of the inner integral in Equation (9). At the same time, the dependence
on t in |D|2 is much weaker. By virtue of this, t = b/2 was inserted into the denominator of
Equation (21) and into |D|2 (in the latter case, cosφ ≈ 1 isalsoused). Expression (21) then
takes the form

Imw1Imw2 ≈ −
t(b− t)

4[ (1 + b2/4)(y2 + b2(1 + y2 )/4)]
. (22)

With these transformations, it follows that (see Appendix A):

FxV = −Kζ

2

∞∫
0

dy
y4

|D|2

π/2∫
0

dφ
cosφ

ψ(y, φ)

ζycosφ∫
0

dtt(ζycosφ− t), (23)

where |D|2 and ψ(y, φ) are calculated using Equations (A2) and (A3). The integrals over t
and φ are calculated explicitly, and finally, we obtain (see Equations (A4) and (A6)):

FxV = −}ν0
2

3π2

(ωp

c

)2
∞∫

0

dy
y5exp(−2λy)(
y +

√
1 + y2

)4

(
1

y2(1 + y2)
− 2

y2
√

y2ζ2 + 4
+

2
(1 + y2)

√
(1 + y2)ζ2 + 4

)
. (24)

As follows from Equation (24), in this approximation, the power of the quantum
friction force does not depend on the velocity. However, it is worth noting that the condition
ζ � 1 implies ρ0ωp � 4πV/c, and along with V/c � 1, it can only be satisfied if ρ0 is
more than three orders of magnitude smaller than the MBG value shown in Figure 2.
Interestingly, for ζ � 1, Equation (24) also agrees quite well with the numerical calculations
and approximation (20) (see Section 3.2 below).

2.4. Low Temperatures, Linear in Velocity Approximation

In the quasiequilibrium thermal regime, T1 = T2 = T, for two identical metal
plates in the linear in velocity approximation, Equations (5) and (9) can be recast into
the form of [19,20]:

FxV = −}V2

8π2

(ωp

c

)4
α−1Y1(λ, α), (25)
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Y1(λ, α) = α2
∞∫

0

dt
sinh2(αt/ 2)

∞∫
0

dyy5 (Imw1)
2

|D|2
. (26)

In this limit, the friction parameter, η = Fx/V, does not depend on V. It is the
dependence Fx ∝ α−1 in Equation (25) that leads to a large enhancement of friction at low
temperatures, when α = }ν(T)/T → 0, because the function Y1(λ, α) weakly depends on
α. The main contribution to Y1(λ, α) in this case makes the values t < 1, y ∼ 1/ 2λ ∼ 1,
and one can again use Equation (17) for Imw1. Meantime, α2sinh−2(αt/ 2) ≈ 4/t2 (this
is a suitable approximation at α < 0.3) and |D|2 ≈ 16y4exp(2λy). Making use of these
simplifications in Equation (26), one arrives at (see Appendix B)

Y1(λ, α) ≈ χ(λ) =
π

32

{
π

4λ
[H1(2λ)− N1(2λ)]− 1

4λ2

}
, (27)

where H1(x) and N1(x) are the Struve and Neumann functions [35], respectively. Using
the series representations of these functions yields:

χ(λ) =


π
64

(
1
λ −

1
2λ2 +

1
4λ3 + . . .

)
, λ� 1,

π
32

(
1
4 + 2λ

3 − 2λ(lnλ + 0.577)
)

, λ� 1.
(28)

A more straightforward and physically transparent low-temperature representation of
Equation (25) is obtained by using the relation ν(T) = ω2

pρ(T)/4π between the damping
factor and resistivity, yielding

FxV = − 1
2π

(
V
c

)2(ωp

c

)2 T
ρ(T)

χ(λ). (29)

Combining the relation α� 1, which implies }ν(T)� T, and ζ � 1, which implies
the limit of low velocities V/c� ν(T)/ωp, one concludes that the Formula (29) holds at

}ωpV/c� }ν(T)� T. (30)

As a result, the conditions of a low-temperature increase in friction and the applicabil-
ity of the low-speed approximation are met at V/c � T/ωp}. For gold, at T = 1 K, this
implies V/c� 1.5× 10−5.

According to Refs. [19,20], the dependence (29) is associated with a growing penetra-
tion depth of S-polarized electromagnetic modes and an increase in their density at low
temperatures. A significant low-temperature increase in the friction parameter was also
noted in the case of the movement of a metal particle above the metal surface [21].

2.5. Low Temperatures, High-Velocity Limit

The limit ζ � 1 at finite but low temperatures ( α� 1) can be analyzed similarly to
the case of zero temperatures using the properties of the function (21). When substituting
Equation (21) into Equation (9) with allowance for Equation (13), the first exponential term
in Equation (13) makes the dominant contribution at t ∼ 1� b = ζycosφ. Due to this, let
us take an advantage of the substitution |t− b| → b in the denominator of Equation (21).
For the second term in Equation (13), a new variable t′ = t − b is introduced and the
substitution |t′ + b| → b is made in the denominator of Equation (21), while the integral (9)
is then determined using the large exponential factor (exp(αt′)− 1)−1 at t′ ∼ 1� b. Then,
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taking into account these transformations in Equation (9), and summing both contributions,
the double integral in Equation (9) finally takes the form (see Appendix C)

I ≈ ζ2

2

∞∫
0

dyy4|D|−2

π
2∫

0

dφψ1(y, φ)

∞∫
0

dt
t

(eαt − 1)
ψ2(y, φ), (31)

where

|D|−2 ≈
(

y +
√

1 + y2
)−4

exp(−2λy), (32)

ψ1(y, φ) = cos2φ
(

1 + ζ2y2cos2φ
)−1/2

(
1 + ζ2

(
1 + y2

)
cos

2
φ

)−1/2
, (33)

and
ψ2(y, t) =

1

[(1 + t2)(y2 + t2(1 + y2 )]
1/2 . (34)

To proceed further, we replace the function t/
(
eαt − 1

)
with 1/α in the inner integral

(31), which is again a good approximation for α < 0.3. The remaining integral yields:

∞∫
0

dt
t

(eαt − 1)
ψ2(y, t) ≈ 1

α

K(q)√
1 + y2

, q =
(

1 + y2
)−1/2

, (35)

where K(q) is a complete elliptic integral [35]. Taking this into account, the φ -integral in
Equation (31) can be evaluated as the arithmetic mean between the integrals calculated
with the limit functions on the left and right sides of the inequality (see Appendix C):

cos2φ
(

1 + ζ2
(

1 + y2
)

cos2φ
)−1

< ψ1(y, φ) < cos2φ
(

1 + ζ2y2cos2φ
)−1

. (36)

Substituting Equation (A20) into Equations (31) and (9) finally yields:

FxV = − T
8π2 V

(ωp

c

)3
Y2(λ, ζ), (37)

where Y2(λ, ζ) is calculated using:

Y2(λ, ζ) =

∞∫
0

dy
y4e−2λy(

y +
√

y2 + 1
)4

(1 + y2)
1
2

K

(
1√

1 + y2

)[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
. (38)

Similar to the case of quantum friction (24), the power of the friction force (37) does
not depend on velocity.

To date, there are no other relevant calculations for the friction forces between metal
plates, corresponding to low-temperature conditions. However, it is interesting to com-
pare the results obtained here with those in the case of an atom moving above the metal
surface [22,23]. Let us compare the dependences on the velocity and resistivity of metal
for quantum friction ( T = 0). Equation (20) has the same low-speed dependence, Fx ∼ V3,
but the opposite dependence on resistivity (Equation (16) in Ref. [22]): Fx ∼ ρ−2

0 (yet the
additional condition ρ0ωp � 4πV/c should be met). At high but nonrelativistic velocities
( ρ0ωp � 4πV/c

)
, Equation (24) yields Fx ∼ ρ2

0 in contrast to Fx ∼ ρ0 (Equation (19) in
Ref. [22]). The dependence on velocity in Equation (24) is more moderate, Fx ∼ V−1,
which qualitatively agrees with that in Ref. [22]. The case T > 0, when the friction force
is linear in velocity, is less informative, because the results of Refs. [22,23] correspond to
room conditions. Yet, Formula (29) yields Fx ∼ 1/ρ0 (assuming the condition (30)), which
is different from that in Ref. [23]: Fx ∼ ρ(T)2.
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In general, one should not expect close qualitative similarity between the plate–plate
and atom–plate configurations because in the latter case, the radiative energy exchange
processes, according to Refs. [22,23], are determined by the specific thermal nonequilibrium
in the system. In the case of macroscopic bodies, such as two plates, the system must reach
a state of thermal quasiequilibrium; see Section 2.6 just below.

2.6. Kinetics of Heating of Plates

The heat transfer of plates is described using the equations

P1(T1, T2)∆t = −h1ρ1c1(T1)∆T1 and P2(T1, T2)∆t = −h2ρ2c2(T2)∆T2. (39)

With ci(Ti) being the specific heat capacities, hi and ρi are the thicknesses and densities
of materials, P1(T1, T2) and P2(T1, T2) are defined using Equations (2) and (3), and the
temperature gains ∆Ti correspond to the interval of time ∆t. The dependences T2(T1) and
T1(T2) can be determined using the equation

dT2

dT1
=

P1(T1, T2)c1(T1)h1ρ1

P2(T1, T2)c2(T2)h2ρ2
. (40)

For identical plates, in Equation (40), one can use the replacements P2(T1, T2)→ P1(T2, T1) ,
P1(T1, T2)→ P2(T2, T1) . In what follows, only this case is considered.

When writing Equations (39) and (40), it is also assumed that the heat exchange
due to radiative heat transfer occurs much slower than under thermal diffusion, and the
plates acquire equal temperature at all points because of high thermal conductivity. Using
the thermal diffusion equation along the normal to the plates, ∂T/∂t = a2∂2T/∂z2, the
characteristic time of the heat diffusion necessary to reach thermal quasiequilibrium, is
τ = h2/a2 (where a2 = κ/cρ, and κ is the thermal conductivity). Then it follows that
τ = h2cρ/κ and in the case of gold at T = 10 K and h1,2 = h = 500 µm c = 2.2 J/(kg·K),
κ = 3200 W/(m·K), ρ = 19.8·103 kg/m3 [36]) one obtains τ ' 3 µs. In turn, the kinetics
of heating induced by friction takes dozens of seconds or minutes (see Section 3.3 below),
depending on the velocity and other parameters. Assuming that Pi(T, T) = −0.5η(T, V)V2,
from Equation (39) one obtains:

t =
2hρ

V2

T∫
T0

c(T)
η(T, V)

dT, (41)

the heating time from the initial temperature T0 to the final temperature T. In the simplest
case of η = const and c(T) = a1T + a2T3 (this is a typical low-temperature dependence for
metals), it follows from Equation (41) that

T(t) =
(
−β +

√
β2 + T4

0 + 2βT2
0 + 2ηV2t/hρa2

)1/2
, (42)

where β = a1/a2. At T1 6= T2 and relatively low velocities of plate 2, as follows from
numerical calculations (see Section 3.1 below), the heating/cooling rates of metal plates
differ only in sign, i.e., P1(T1, T2) = −P2(T1, T2). This is the normal mode of heat trans-
fer, when a hotter body cools down, and a colder one heats up. Then the left sides of
Equation (39) can be equated, and the corresponding quasistationary temperature of the
plates is calculated using:

T =

(
−β +

√
β2 + β

(
T2

1 + T2
2
)
+ T4

1 + T4
2

)1/2
, (43)

where T1 and T2 are their initial temperatures. After establishing quasithermal equilibrium,
the temperature of the plates will increase according to Equations (41) and (42).
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3. Numerical Results

For an ideal metal without impurities and defects, within the BG model, the damping
frequency ν(T) in Equation (6) is defined using the formula [33]:

ν(T) = 0.0212(Θ/T)5
Θ/T∫
0

dxx5sinh−2(x/2) (eV). (44)

Numerical calculations were performed using Equation (44) and the MBG approxima-
tion shown in Figure 2 (BG scaled). The used plasma frequency of gold is ωp = 9.03 eV. All
calculations were performed with a gap width of a = 10 nm (Figure 1) unless another value
is indicated. It should be noted that at distances of a > 10 nm, the processes of radiative
heat transfer and friction due to tunneling of electrons and phonons [37,38] seem do not
occur or become insignificant [39–41].

3.1. Quantum Friction

Figure 3 shows the velocity-dependent quantum friction force between the plates of
gold, calculated using Formulas (20) (green line), (9) (red line) and (24) (blue line).
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Figure 3. Quantum friction force of the plates of gold as a function of the velocity of a moving plate 2:
(a) residual resistance of gold corresponds to Bloch–Grüneisen (BG) model at T = 5 K; (b) residual
resistance corresponds to modified BG (MBG) model at T = 0 (see Figure 2). The red lines represent
complete numerical integration in Equation (9), the green and blue lines are calculations using
Formulas (20) and (24). The positions of the maxima and the corresponding velocities are shown,
respectively, by vertical lines and the numbers indicated.

The curves in Figure 3a,b were calculated at residual resistances of 2.13× 10−13 Ω·m
and 2.3× 10−10 Ω·m, which correspond to the BG model (44) at T = 5 K and the MBG
model at T = 0 K. Note that in the latter case, the residual resistance coincides with that
defined using Formula (44) at T = 20.9 K.

3.2. Temperature-Dependent Friction at Thermal Quasiequlibrium

Figure 4 shows the plots of the friction parameter, η = Fx/V, depending on the
temperature T of the gold plates, corresponding to the BG and MBG models. The curves
with symbols were calculated using Equation (9) for V = 1 m/s. Solid curves were plotted
using approximation (25) along with Equation (26) (green lines) or Equation (28) at λ� 1
(blue lines). In Figure 4a, both solid lines merge. The presence of maxima and their
positions on the curves agree with Equations (29) and (30), respectively. These results show
that the linear-in-velocity approximation is valid only to the right of the maxima of the
η(T) dependences.
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Figure 4. Friction parameter of gold plates as a function of their quasiequilibrium temperature for
(a) BG and (b) MBG models. The curves with symbols were calculated using complete numerical
integration in Equation (9). Solid lines correspond to the calculations using Equation (25) with
Equation (26) (green lines) and (28) (blue lines); in (a), the blue and green lines merge. The vertical
numbered lines show the temperatures corresponding to the maxima of the curves.

Figure 5a,b demonstrates the velocity dependences of η in the BG and MBG models.
The red, blue, and green lines correspond to quasiequilibrium temperatures of 5 K, 10 K,
and 77 K, respectively. The different (temperature) order of lines in Figure 5a compared
to Figure 5b is explained by the high residual resistance of gold in the MBG model: the
condition }ν(T) < T, which is necessary for the law-temperature increase in friction, is
violated at T = 5 and 10 K.
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Figure 5. Friction parameter of gold plates as a function of the velocity of plate 2 for the (a) BG
and (b) MBG models. The solid lines represent the calculations using Equation (9), dashed lines—
Equations (37) and (38). The red, blue, and green lines correspond to quasistationary temperatures of
5 K, 10 K, and 77 K, respectively, for both plates. The different temperature order of the curves in (b)
is explained by a different sequence of parameters α = }ν/T: α(10) < α(5) < α(77). The plateau in
the curves corresponds to the linear velocity dependence of the friction force.

Table 1 shows the calculated values of the friction parameter η of the gold plates at
V = 1 m/s, depending on the temperature, T, and separation distance, a. Similar to that in
Figure 4, one can note the effect of increasing friction (up to a maximum) with decreasing
temperature at T < θD, which is more better expressed in the BG model. The height of
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this maximum depends on the velocity-to-resistivity ratio. When the temperature becomes
sufficiently low, condition (30) is violated, and the coefficient of friction decreases.

Table 1. Friction parameter η (in kg/(m2· s)) of gold plates for velocity V = 1 m/s at thermal
quasiequilibrium, Equation (9).

Temperature of
Plates, K

a = 10 nm a = 20 nm a = 10 nm a = 20 nm
Model BG Model MBG

1 4.81 × 10−6 2.77 × 10−6 5.60 × 10−8 2.80 × 10−8

2 2.63 × 10−4 1.47 × 10−4 1.22 × 10−7 5.98 × 10−8

3 1.10 × 10−3 5.73 × 10−4 1.87 × 10−7 9.13 × 10−8

5 3.44 × 10−4 1.67 × 10−4 3.08 × 10−7 1.50 × 10−7

10 2.15 × 10−5 1.04 × 10−5 5.63 × 10−7 2.73 × 10−7

15 4.30 × 10−5 2.09 × 10−6 7.77 × 10−7 3.76 × 10−7

20 1.52 × 10−6 7.35 × 10−7 7.19 × 10−7 3.33 × 10−7

50 2.04 × 10−7 9.90 × 10−8 2.56 × 10−7 1.25 × 10−7

100 1.30 × 10−7 6.30 × 10−8 1.77 × 10−7 8.63 × 10−8

200 1.14 × 10−7 5.54 × 10−8 1.42 × 10−7 6.81 × 10−8

300 1.11 × 10−7 5.41 × 10−8 1.39 × 10−7 6.81 × 10−8

The dependence of η on the separation distance a in all the cases is close to inverse
proportionality (η ∝ a−1 ). This is clearly seen from the data in Table 1 and agrees with our
previous results [19,20,32].

3.3. Friction and Heating under Different Conditions

Figures 6 and 7 show the calculated heating rates of plate 1 (Figures 6a and 7a) and
friction parameters (Figures 6b and 7b), depending on the velocity V of plate 2 for various
thermal configurations.

Physics 2024, 6, FOR PEER REVIEW  12 
 

 

The dependence of 𝜂 on the separation distance a in all the cases is close to inverse 
proportionality (𝜂 ∝ 𝑎ିଵ). This is clearly seen from the data in Table 1 and agrees with 
our previous results [19,20,32]. 

3.3. Friction and Heating under Different Conditions 
Figures 6 and 7 show the calculated heating rates of plate 1 (Figures 6a and 7a)) and 

friction parameters (Figures 6b and 7b), depending on the velocity 𝑉 of plate 2 for vari-
ous thermal configurations. 

  
(a) (b) 

Figure 6. Heating rate of plate 1 (a) and friction parameter 𝜂 = 𝐹௫/𝑉 (b) as a function of velocity V 
of plate 2 in the BG model. The temperature configuration for the plates are indicated on the curves 
as follows: e.g., 6/4 denotes 𝑇ଵ = 6K,  𝑇ଶ = 4K. Thermal configurations 𝑇ଵ = 6 K,  𝑇ଶ = 4 K and 𝑇ଵ =4 K,  𝑇ଶ = 6 K have the same friction parameters, configurations 𝑇 = 4 and 6 K correspond to a 
quasiequilibrium thermal mode. The data shown by open triangles (∆ (a)) and by open diamonds (◊ 
(b)) are multiplied by 3 (cf. [42], where all numerical data to be reduced by 𝜋 times). 

  
(a) (b) 

Figure 7. Same as in Figure 6 but in the MBG model. No additional numerical factors for the data 
are used. 

One can see that at 𝑉 < 10 m/s (Figure 6a) and 𝑉 < 10ଶ m/s (Figure 7a), the heating 
rates of plates 1 and 2 are equal in absolute value, differing in sign. According to their 
temperatures, 𝑇ଵ = 4K and 𝑇ଶ = 6K, plate 1 heats up and plate 2 cools down, realizing 
the “normal” heat exchange regime. At the same time, the friction parameters weakly 
depend on the temperature (Figures 6b and 7b). When the speed of plate 2 increases, both 
plates heat up faster. Then, one can see the effect of the “anomalous” heating of plate 2 for 
some time, when it continues to heat up despite the higher temperature. This is similar to 
the case of heating a hotter metal particle moving above a cold surface [21]. However, due 
to different absolute values of the heating rates (cf. the upper and lower lines shown with 

Figure 6. Heating rate of plate 1 (a) and friction parameter η = Fx/V (b) as a function of velocity V
of plate 2 in the BG model. The temperature configuration for the plates are indicated on the curves
as follows: e.g., 6/4 denotes T1 = 6 K, T2 = 4 K. Thermal configurations T1 = 6 K, T2 = 4 K and
T1 = 4 K, T2 = 6 K have the same friction parameters, configurations T = 4 and 6 K correspond to a
quasiequilibrium thermal mode. The data shown by open triangles (∆ (a)) and by open diamonds
(♦ (b)) are multiplied by 3 (cf. [42], where all numerical data to be reduced by π times).
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data are used.

One can see that at V < 10 m/s (Figure 6a) and V < 102 m/s (Figure 7a), the heating
rates of plates 1 and 2 are equal in absolute value, differing in sign. According to their
temperatures, T1 = 4 K and T2 = 6 K, plate 1 heats up and plate 2 cools down, realizing the
“normal” heat exchange regime. At the same time, the friction parameters weakly depend
on the temperature (Figures 6b and 7b). When the speed of plate 2 increases, both plates
heat up faster. Then, one can see the effect of the “anomalous” heating of plate 2 for some
time, when it continues to heat up despite the higher temperature. This is similar to the
case of heating a hotter metal particle moving above a cold surface [21]. However, due to
different absolute values of the heating rates (cf. the upper and lower lines shown with
open squares (�) in Figures 6a and 7a), the temperature of plate 1 “catches up” with the
temperature of plate 2, and further on, both plates heat up at the same rate.

The drop in friction parameters for high velocities of plate 2 (Figures 6b and 7b)
is explained by the change in sign of the Doppler-shifted frequency ω− = ω − kxV =
ω− kVcosφ in Equation (5). This occurs at V > ν(T)a because the characteristic absorption
frequency is ω ∼ ν(T) and the characteristic wave vector is k ∼ 1/a. The positions
of the “kinks” on the curves η(V) in Figures 6 and 7 correlate with resistivity because
ν(T) ∼ ρ(T). Indeed, it follows from Figure 2 that ρMBG/ρBG = 102–103 at T = 4–6 K. At
the same time, the ratio ηMBG/ηBG in this case is inversely proportional to resistivities (see
Equation (29) and Table 1).

In general, as follows from the calculations for all considered temperatures and veloci-
ties (Figures 5–7, Table 1), the maximum friction parameter in the BG and MBG models (at
a = 10 nm) is 10−6 − 10−3 kg/(m2·s).

Figure 8 shows the heating time of the plates versus the velocity of plate 2, calculated
using numerical integration of Equation (40) from 4 K to 5 K and from 4 K to 8 K. In these
calculations, the fitting parameters a1 = 0.0035 J/

(
kg·K2

)
and a2 = 0.0023 J/

(
kg·K4

)
of the dependence c(T) = a1T + a2T3 were determined using the data [36] for gold at
T < 20 K.

As follows from Figure 8, quite comfortable (from the experimental point of view)
values of the plate heating times (1–100 s) can be obtained in the velocity range 1–103 m/s.
On the contrary, heating by 1 K at T0 = 300 K, a = 10 nm, and V = 103 m/s will take
about 2 h. Thus, low-temperature thermal measurements have exceptional advantages over
measurements under normal conditions due to a significant reduction in measurement
time and the elimination of noise and other undesirable effects.
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tum friction force, I suggested [42] using another experimental layout, as shown sche-
matically in Figure 9. Unlike in Ref. [17], where the setup includes a disk 10 cm in diam-
eter rotating with an angular frequency of up to 7 × 10ଷ rps, it is proposed to use two 
identical disks placed in one thermostat, one of which rotates at a controlled speed. In the 
peripheral region, the disks have an annular metal coating with an effective area 𝜋𝐷𝑤. 
The non-inertiality of the reference system of disk 2 does not appear in this case because 
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Figure 8. Heating time of gold plates as a function of the velocity of plate 2 at h = 500 µm according
to BG (a) and MBG (b) models. Two upper lines correspond to heating from 4 K to 8 K at a = 20 nm
(crimpson) and a = 10 nm (blue), and two lower lines correspond to heating from 4 K to 5 K at
a = 20 nm (green) and a = 10 nm (red).

4. Experimental Proposal

Initiated by the advantage of the experimental design [15–17] to measure the quantum
friction force, I suggested [42] using another experimental layout, as shown schematically in
Figure 9. Unlike in Ref. [17], where the setup includes a disk 10 cm in diameter rotating with
an angular frequency of up to 7× 103 rps, it is proposed to use two identical disks placed
in one thermostat, one of which rotates at a controlled speed. In the peripheral region, the
disks have an annular metal coating with an effective area πDw. The non-inertiality of the
reference system of disk 2 does not appear in this case because the rotation frequency is
small compared to the characteristic frequencies of the fluctuation electromagnetic field.
Accordingly, the original expressions (2) and (3), for heating rates remain valid.

Physics 2024, 6, FOR PEER REVIEW  14 
 

 

 
Figure 9. A possible setup for measuring Casimir–Lifshitz friction force (side view). The thermal 
protection layer is shown in blue, the metal coating is shown in brown. When the upper disk ro-
tates, the circular sections of disks locating at a distance a move at a linear velocity of 0.5Ω𝐷 rela-
tive to each other. At rotation frequencies n = 1–104 rps (revolutions per second) and disk diameter 𝐷 = 0.1 m, the velocity range to be 0.3–3000 m/s. 

A possible measurement scenario in this case is the quasiequilibrium thermal mode, 
in which the temperatures of plates increase from the initial temperature 𝑇଴ at the same 
rate. It should be noted that the experimental design must take into account possible 
limitations on angular velocity imposed by the tensile strength of the material used. As-
suming that the main body of the plate is made of gold, a quite moderate assessment of 
the linear velocity of the far-distant annular parts of the plate yields 𝑉 < (𝜎଴/𝜌)଴.ହ, with 𝜎଴ = 1.5 × 10଼ N/m2 and 𝜌 = 1.93 × 10ସ kg/m3 being the tensile strength and density of 
gold [35]. By plugging the numerical numbers into the above condition, one obtains 𝑉~10ଶ m/s, or 𝑛 ~ 300 rps, which seems to be a well acceptable value. 

5. Concluding Remarks 
The Casimir–Lifshitz friction force mediated by the fluctuating electromagnetic field 

between metal plates moving with constant velocity relative to each other causes their 
heating. In a state out of thermal equilibrium, “anomalous” heating of the moving plate 
can be observed when it is heated for some time despite the higher temperature. How-
ever, the system rapidly reaches a state of thermal quasiequilibrium. At low temperatures 𝑇 ≪  𝜃஽, the Casimir–Lifshitz friction and heating of metal plates increase significantly 
(see Equations (29) and (30)) while the heat capacity decreases. In combination with a 
fairly high speed of movement, this provides a fairly short heating time, which is con-
venient for experiments (see Equation (41)). 

Funding: This research received no external funding. 

Data Availability Statement: Data can be obtained upon reasonable request. 

Acknowledgments: I am grateful to Carsten Henkel for fruitful remarks at the preliminary stage of 
the work and for providing data on the low-temperature resistivity of gold. 

Conflicts of Interest: The author declares no conflicts of interest. 

Appendix A. Evaluation of the Integral (24) 
Substituting 𝑡 = 𝑏 2 = 𝜁𝑦cos𝜙/2⁄  into Equation (22) takes into account that typically, 𝜁𝑦cos𝜙 2⁄ ≫ 1 (since 𝜁 ≫ 1, 𝑦~ 1 2𝜆~1⁄ ) and ห𝑤ଵ,ଶห ≈ ඥ𝑦ଶ + 1. Then |𝐷|ଶ takes the form |𝐷|ଶ ≈ ቀ𝑦 + ඥ𝑦ଶ + 1ቁସ exp(−2𝜆𝑦). (A1) 

With these simplifications, Formula (18) reads: 

Figure 9. A possible setup for measuring Casimir–Lifshitz friction force (side view). The thermal
protection layer is shown in blue, the metal coating is shown in brown. When the upper disk rotates,
the circular sections of disks locating at a distance a move at a linear velocity of 0.5 ΩD relative to each
other. At rotation frequencies n = 1–104 rps (revolutions per second) and disk diameter D = 0.1 m,
the velocity range to be 0.3–3000 m/s.

A possible measurement scenario in this case is the quasiequilibrium thermal mode, in
which the temperatures of plates increase from the initial temperature T0 at the same rate.
It should be noted that the experimental design must take into account possible limitations
on angular velocity imposed by the tensile strength of the material used. Assuming that the
main body of the plate is made of gold, a quite moderate assessment of the linear velocity of
the far-distant annular parts of the plate yields V < (σ0/ρ)0.5, with σ0 = 1.5×108 N/m2 and
ρ = 1.93× 104 kg/m3 being the tensile strength and density of gold [35]. By plugging the
numerical numbers into the above condition, one obtains V ∼ 102 m/s, or n ∼ 300 rps,
which seems to be a well acceptable value.
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5. Concluding Remarks

The Casimir–Lifshitz friction force mediated by the fluctuating electromagnetic field
between metal plates moving with constant velocity relative to each other causes their
heating. In a state out of thermal equilibrium, “anomalous” heating of the moving plate
can be observed when it is heated for some time despite the higher temperature. However,
the system rapidly reaches a state of thermal quasiequilibrium. At low temperatures
T � θD, the Casimir–Lifshitz friction and heating of metal plates increase significantly
(see Equations (29) and (30)) while the heat capacity decreases. In combination with a fairly
high speed of movement, this provides a fairly short heating time, which is convenient for
experiments (see Equation (41)).
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Appendix A. Evaluation of the Integral (24)

Substituting t = b/2 = ζycosφ/2 into Equation (22) takes into account that typically,
ζycosφ/2 � 1 (since ζ � 1, y ∼ 1/ 2λ ∼ 1 ) and |w1,2| ≈

√
y2 + 1. Then |D|2 takes

the form

|D|2 ≈
(

y +
√

y2 + 1
)4

exp(−2λy). (A1)

With these simplifications, Formula (18) reads:

FxV = −Kζ

2

∞∫
0

dy
y2(

y +
√

y2 + 1
)4 e−2λy

π/2∫
0

dφ
cosφ

ψ(y, φ)

ζycosφ∫
0

dtt(ζycosφ− t), (A2)

ψ(y, φ) =
(

1 + ζ2y2cos2φ/4
)(

1 + ζ2
(

1 + y2
)

cos2φ/4
)

. (A3)

The t -integral in Equation (A2) is just ζ3y3cos3φ/6, while the integral over φ is

Iφ =
ζ3y3

6

π/2∫
0

dφ
cos4φ

ψ(y, φ)
=

8y3

3ζ

π/2∫
0

dφ
cos4φ

(u2 + y2cos2φ)
(

u2 +
(

1 + y2)cos2
φ
) , (A4)

where u = 2/ζ. The integral in Equation (A4) is calculated explicitly using the table integral [35]

π/2∫
0

dφ

a2 + b2cos2φ
=

π

2
1

a
√

a2 + b2
. (A5)

Using Equation (A5) yields:

Iφ =
4πy3

3ζ

(
1

y2(1 + y2)
− 2

y2
√

y2ζ2 + 4
+

2
(1 + y2)

√
(1 + y2)ζ2 + 4

)
. (A6)

Substituting Equation (A6) into Equation (A2) yields Equation (24).



Physics 2024, 6 28

Appendix B. Evaluation of the Integral (26)

In the case α � 1, the main contribution to Equation (26) makes the values t < 1,
y ∼ 1/ 2λ ∼ 1. Then, from Equation (14), it follows that |w1,2| =

∣∣∣(y2 + t/(t + i)
)1/2

∣∣∣ ≈ y.
Using this, one finds:

|D|−2 ≈ 16y4exp(−2λy). (A7)

Meantime, from Equation (21) it follows that

(Imw1,2)
2 =

t2

4(1 + t2)(y2 + t2(1 + y2))
. (A8)

Substituting Equations (A7) and (A8) into Equation (26) yields:

Y(λ, α) =
α2

64

∞∫
0

dyye−2λy
∞∫

0

dt
t2

sinh(αt/2)2
1

(1 + t2)(y2 + t2(1 + y2))
. (A9)

Using the approximation t2

sinh(αt/2)2 → 4/α2 and the table integral [35]

∞∫
0

dx
1

(a2 + x2)

1
(b2 + x2)

=
π

2ab(a + b)
, (A10)

one obtains:

Y1(λ, α) ≈ χ(λ) =
π

32

∞∫
0

dy
e−2λy(

y +
√

1 + y2
) =

π

32

{
π

4λ
[H1(2λ)− N1(2λ)]− 1

4λ2

}
, (A11)

where H1(x) and N1(x) are the Struve and Neumann functions [35].

Appendix C. Evaluation of the Integral (31)

Let us rewrite Equation (13) in the form

Z(t, y, φ) =
2

exp(αt)− 1
− 2

exp(α|t−|)− 1
, t− = t− ζycosφ. (A12)

The integral in Equation (9) includes two exponential factors, defined by Equation (A12).
By changing the order of integration in the first term, one obtains:

I = 2ζ

∞∫
0

dyy4
π∫

0

dφcosφ

∞∫
0

dt
Imw1Imw2

|D|2
1

exp(αt)− 1
. (A13)

Similar to Appendix B, one can again take advantage of the behavior of the t - in-
tegral in Equation (A13) for α � 1, and ζ � 1, substituting 1

exp(αt)−1 ≈ 1/αt and using

Equation (A1) for |D|2. For Imw1Imw2, let us use Equation (21) with the replacement
|t− b| → ζy|cosφ| . Then Equation (21) takes the form

Imw1Imw2 = − t·ζ|cosφ|·sign(t− ζycosφ)

4[(1 + ζ2y2cos2φ)(1 + ζ2(1 + y2)cos2φ)(1 + t2)(y2 + t2(1 + y2))]
1/2 . (A14)

Inserting Equation (A14) into Equation (A13) yields:

I =
ζ2

α

∞∫
0

dy
y4e−2λy(

y +
√

y2 + 1
)4

(1 + y2)
1/2

π/2∫
0

dφψ1(y, φ)

∞∫
0

dtψ2(t, y), (A15)
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where
ψ1(φ, y) = cos2φ

[(
1 + ζ2y2cos2φ

)(
1 + ζ2

(
1 + y2

)
cos2φ

)]−1/2
, (A16)

ψ2(t, y) =
1[

(1 + t2)
(

y2

(1+y2)
+ t2

)]1/2 . (A17)

Substituting Equations (A16) and (A17) into Equation (A15) and taking into account
Equations (A10) and (35), the inner integrals are calculated yielding

Iφ(y) =
∞∫

0

dφ
cos2φ

ψ1(φ, y)
≈ π

2ζ2

[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
, (A18)

It(y) =
∞∫

0

dtψ2(t, y) =
1√

1 + y2
K

(
1√

1 + y2

)
, (A19)

where K(x) is the elliptic integral. Finally, substituting Equations (A18) and (A19) into
Equation (A15) yields:

I =
π

4α

∞∫
0

dy
y4e−2λy(

y +
√

y2 + 1
)4

(1 + y2)
1/2

K

(
1√

1 + y2

)[√
1 + ζ2y2 − 1

y2
√

1 + ζ2y2
+

√
1 + ζ2(1 + y2)− 1

(1 + y2)
√

1 + ζ2(1 + y2)

]
. (A20)

The second integral in Equation (9) by including t− in Equation (A12) gets to the same
result (but ultimately having the opposite sign) by introducing a new variable t′ = t− b,
and using the substitution |t′ + b| → ζy|cosφ| in Equation (21).
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