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Abstract: Contributions to the radiation-induced dispersion energy shift between two interacting
particles dependent on the electric octupole moment are calculated using a physical picture in which
moments induced by applied fluctuating electromagnetic fields are coupled via retarded interaction
tensors. The specific potentials evaluated include those found between an electric dipole-polarisable
molecule and either a mixed electric dipole–octupole- or purely octupole-polarisable molecule, and
those between two mixed electric dipole–octupole-polarisable molecules. Interaction energies are
obtained for molecular and pair orientationally averaged situations. Terms dependent on the octupole
weight-1 moment may be viewed as higher-order corrections to the leading dipole–dipole interaction
energy as also found in energy transfer and dispersion forces. A comprehensive polarisation analysis
is carried out for linearly and circularly polarised laser light incident parallel and perpendicular to
the inter-particle axis. Contributions to the optical binding energy arising when one of the pair is
polar and characterised by either a permanent electric dipole or octupole moment are also evaluated.
Neither of these energy shifts survive orientational averaging.

Keywords: optical binding energy; coupling of induced moments; octupole-dependent terms; real
and virtual photons

1. Introduction

For quite a few decades, Franco Persico admirably led the theoretical physics division
at the University of Palermo in Sicily. Together with his students and colleagues, he
made notable advances in the areas of quantum optics, strong field–matter interactions,
many-body forces and dressed states [1–4]. An often-employed theory that has yielded
solutions to many fundamental problems, including those involving atoms and molecules,
is quantum electrodynamics (QED) [5–8]. Electromagnetic radiation and matter are treated
equally in this framework, with both being subject to the principles of quantum mechanics.

A particularly interesting phenomenon that has been successfully explained by QED
theory is the radiation field-induced shift in the dispersion energy between two atoms
or molecules, colloquially termed the optical binding energy [9–11]. Thirunamachandran
first predicted this in 1980 [12]. He used QED to calculate the potential energy of a pair of
interacting particles in the ground state when subject to an intense laser field. This process
provides an example featuring both real and virtual photons. The former originate from the
applied radiation field and are scattered by the two objects, which are themselves coupled
through the exchange of a single virtual photon. Experimentally, this manifests as the
mutual attraction of neutral polarisable particles located in the focal area of a beam of light,
in the process generating optomechanical forces and torques via optical spanner or wrench
techniques that lead to the manipulation of pairs of particles [13], extending the earlier
trapping, control and movement of individual entities via optical tweezer methods which
culminated in the award of the 2018 Nobel Prize in Physics to Ashkin [14].

The original calculation of the change in the energy shift was carried out using time-
dependent perturbation theory and involved the summation over 48 diagrams of a so-called
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“dynamic” mechanism, where off-resonant laser light is absorbed and emitted at different
centres, and the later evaluation of an additional 48 diagrams required when the real
photons are scattered at the same site in a second so-called “static” mechanism [15].

The QED theory of this effect has also been extended to describe the optical binding
energy between a pair of optically active molecules [16–18]. To account for the discrim-
inatory change in the potential of such a system required dropping the electric dipole
approximation and including both the electric and magnetic dipole coupling terms. The
interference term between these two moments yields a contribution to the energy shift that
is dependent on the chirality of the molecule that changes sign on replacing one enantiomer
with its mirror-image structure. A diagrammatic time-dependent perturbation theory cal-
culation of the change in the energy shift is necessarily prohibitive for the case of two chiral
molecules due to the large number (192) of diagrams that need to be drawn, individually
evaluated and finally summed. The result was instead obtained by calculating the coupling
of the dipoles induced at each site by the time-varying electromagnetic fields. Similar to
London’s view of the origin of the dispersion force, this method was adopted by Power
and Thirunamachandran to evaluate the Casimir–Polder potential [19] and applied later
to the pair radiation-induced interaction energy [20,21], and the optical binding energy in
three- and N-body systems in the electric dipole approximation [22].

An often-overlooked contribution to many processes is the electric octupole coupling
term. While of a higher order relative to the magnetic dipole and electric quadrupole
interaction terms, when the octupole moment, E(3)

ijk , is decomposed into its irreducible

components of weight-1 and weight-3, E(31)
ijk and E(33)

ijk , respectively, the former has the
properties of a vector and may be viewed as a higher-order correction to the electric dipole
interaction term. Its effect on two- [23,24] and three- [25–27] body dispersion potentials
and the rate of resonance energy transfer [28,29] has been shown previously.

This partitioning may be written as

E(3)
ijk = E(31)

ijk + E(33)
ijk , (1)

where
E(31)

ijk = − e
30

→
q

2
[
→
q iδjk +

→
q jδik +

→
q kδij], (2)

and
E(33)

ijk = − e
6
[
→
q i

→
q j

→
q k −

1
5
→
q

2
(
→
q iδjk +

→
q jδik +

→
q kδij)], (3)

with e denoting the elementary charge,
→
q i being the i-th Cartesian component of the

electron coordinate, and Einstein’s summation convention is employed for Latin indices in
the space-fixed frame of reference or Greek subscripts in the molecular frame that repeat.
δij is the Kronecker delta.

We extend the coupling of fluctuating moments at each centre to calculate the ra-
diation field-induced energy shift between a pair of molecules involving electric dipole
and octupole coupling terms and compare results with purely electric dipole potentials
obtained previously [6,11,12] to see if higher-order corrections occur and what explicit form
they take. A complete polarisation analysis is also carried out for linearly and circularly
polarised light propagating in directions parallel and perpendicular to the inter-nuclear
separation distance vector to aid experimental investigation. Results are also obtained for
fully isotropic situations applicable to species in the fluid phase.

Sections 2–5 contain results for changes in the potential energy for the various octupole-
dependent molecules under study. Brief conclusions are proffered in Section 6.

2. Optical Binding Energy between an Electric Dipole-Polarisable Molecule and a
Mixed Dipole–Octupole-Polarisable Molecule

The picture to be adopted in the calculation of field-induced inter-particle energy shifts
involving molecules dependent upon the electric octupole coupling term is the one in which
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an applied electric field induces an electric multipole moment at a specific centre. This
depends on the polarisability characteristics of the reacting species. The induced moments
interact via their mutual multipole–multipole coupling tensor. The energy shift is then
obtained on taking the expectation value for both particles in the ground electronic state
and the radiation field in a state corresponding to a laser containing N photons. Results for
the Casimir–van der Waals dispersion potential are obtained immediately on letting N → 0,
which were previously calculated using diagrammatic perturbation theory techniques [30],
serving as a useful check of the work.

The first octupole-dependent case to be considered is the radiation field-induced

interaction energy between an electric dipole-polarisable molecule, A, positioned at
→
RA,

and a mixed electric dipole–octupole-polarisable molecule, B, located at
→
RB. In the presence

of a transverse electric displacement field,
→
d
⊥
(
→
r ), the electric dipole moment induced at

A, E(1)ind
i (A), is

E(1)ind
i (A) = ε−1

0 α11
ij (A; k)d⊥j (

→
RA), (4)

(with ε0 denoting the permittivity of the free space), where the dynamic pure electric dipole
polarisability tensor of A, at the frequency ω = ck, where k is the magnitude of the wave
vector, is given by

α11
ij (A; k) = ∑

a

E(1)0a
i (A)E(1)a0

j (A)

Ea0 − ℏck
+

E(1)0a
j (A)E(1)a0

i (A)

Ea0 + ℏck

. (5)

In Equation (5), E(1)0a
i (A) is the transition electric dipole moment matrix element

between the ground state |0> and the virtual state |a> of A, < 0|E(1)
i (A)|a >, with similar

expressions for other transition multipole moments, with |b> denoting the virtual electronic
states of B. In the denominator of Equation (5), the energy difference between states |0> and
|a> is Ea0 = Ea − E0. Due to the polarisability characteristics of B, two different multipole
moments are induced there, namely the electric dipole moment

E(1)ind
q (B) = ε−1

0 α13
qrst(B; k)∇s∇td⊥r (

→
RB), (6)

and the electric octupole moment

E(3)ind
rst (B) = ε−1

0 α13
qrst(B; k)d⊥q (

→
RB), (7)

where the frequency-dependent mixed electric dipole–octupole polarisability tensor is
defined as

α13
qrst(B; k) = ∑

b

E(1)0b
q (B)E(3)b0

rst (B)
Eb0 − ℏck

+
E(3)0b

rst (B)E(1)b0
q (B)

Eb0 + ℏck

. (8)

The multipole moments induced at each site couple via the relevant retarded multipole–
multipole interaction tensor. For the coupling of an electric multipole moment of order m
at A and order n at B, its generalised form is [29]

Vi1 j1 ...im jn(k,
→
R) = (−1)m km+n+1

4πε0
Fi1 j1 ...im jn(kR), (9)

where the tensor Fi1 j1 ...im jn is

Fi1 j1i2 ...im j2 ...jn(kR) =
1

km+n+1 (−∇2δi1 j1 +∇i1∇j1)∇i2 . . .∇im∇j2 . . .∇jn
eikR

R
, (10)
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with
→
R =

→
RB −

→
RA. Thus the two induced electric dipoles couple through the retarded

electric dipole–dipole interaction tensor, Vij(k,
→
R), and the induced dipole at A and the

induced octupole at B interact via the retarded electric dipole–octupole coupling tensor,

Virst(k,
→
R), giving rise to the following formula for the energy shift:

∆E11;13 = E(1)ind
i (A)E(1)ind

q (B)ReViq(k,
→
R) + E(1)ind

i (A)E(3)ind
rst (B)ReVirst(k,

→
R), (11)

with

ReVij(k,
→
R) = − k3

4πε0
ReFij(kR)

= 1
4πε0R3 [(δij − R̂iR̂j)k2R2 cos kR − (δij − 3R̂iR̂j)(kR sin kR + cos kR)],

(12)

and

ReVijkl(k,
→
R) = − k5

4πε0
ReFijkl(kR)

= 1
4πε0R5 [(δij − R̂iR̂j)R̂kR̂lk4R4 cos kR + [δij(δkl − 3R̂kR̂l)− (δijR̂kR̂l + δikR̂jR̂l + δil R̂jR̂k

+δjkR̂iR̂l + δjl R̂iR̂k + δkl R̂iR̂j) + 10R̂iR̂jR̂kR̂l)](k3R3 sin kR + k2R2 cos kR)

+[(δijδkl + δikδjl + δilδjk)− 5(δijR̂kR̂l + δikR̂jR̂l + δil R̂jR̂k + δjkR̂iR̂l

+δjl R̂iR̂k + δkl R̂iR̂j) + 35R̂iR̂jR̂kR̂l)](k2R2 cos kR − 3kR sin kR − 3 cos kR)].

(13)

Substituting Equations (4), (6) and (7) into Equation (11) provides an expression of the
energy shift explicitly in terms of the molecular polarisabilities (5) and (8) of A and B,

∆E11;13 = ε−2
0 α11

ij (A; k)α13
qrst(B; k)[d⊥j (

→
RA)∇s∇td⊥r (

→
RB)ReViq(k,

→
R)

+d⊥j (
→
RA)d⊥q (

→
RB)ReVirst(k,

→
R)].

(14)

Next, the expectation value of Formula (14) is taken over the state

|0A, 0B; N(
→
k , λ) >, (15)

corresponding to both molecules in the electronic ground state and the field containing N

photons of mode
→
k , λ, where

→
k is the direction of propagation of the applied radiation field

and λ is its index of polarisation. For the matter sub-system, this yields the ground state
polarisabilities (5) and (8). For the radiation field, use is made of the microscopic second
quantised transverse electric displacement field operator of QED [31,32], whose form for a
specific mode is

d⊥i (
→
r ) = i

(
ℏckε0

2V

)1/2
[e(λ)i (

→
k )a(λ)(

→
k )ei

→
k ·→r − e(λ)i (

→
k )a†(λ)(

→
k )e−i

→
k ·→r ], (16)

where
→
e
(λ)

(
→
k ) is the complex unit electric polarisation vector, a(λ)(

→
k ) is the photon anni-

hilation operator, a†(λ)(
→
k ) is the creation operator and V is the volume of the quantisation

box. Employing Equation (16) leads straightforwardly to the following expectation value
for the product of the m-th- and n-th-order gradients of the electric displacement field

evaluated at two spatially distinct points for a state containing |N(
→
k , λ) > photons:

< N(
→
k , λ)|∇k2 . . .∇km d⊥k1

(
→
RA)∇l2 . . .∇ln d⊥l1 (

→
RB)|N(

→
k , λ) >

=
(
ℏckε0

2V

)
kk2 . . . kkm kl2 . . . kln [i

m(−i)n(N + 1)e(λ)k1
(
→
k )e(λ)l1

(
→
k )e−i

→
k ·

→
R

+(−i)minNe(λ)k1
(
→
k )e(λ)l1

(
→
k )ei

→
k ·

→
R ].

(17)
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Concentrating on the first term of the energy shift (14), the expectation value of the
field-dependent factor is readily obtained from Equation (17),

< N(
→
k , λ)|d⊥j (

→
RA)∇s∇td⊥r (

→
RB)|N(

→
k , λ) >

= −
(
ℏckε0

2V

)
kskt[Ne(λ)j (

→
k )e(λ)r (

→
k )ei

→
k ·

→
R + (N + 1)e(λ)j (

→
k )e(λ)r (

→
k )e−i

→
k ·

→
R ],

(18)

which, after carrying out the polarisation sum using the identity [5]

Σ
λ

e(λ)i (
→
k )e(λ)j (

→
k ) = δij − k̂i k̂ j, (19)

yields

−
(

ℏck
2ε0V

)
α11

ij (A; k)α13
qrst(B; k)(δjr − k̂ j k̂r)kskt[Nei

→
k ·

→
R + (N + 1)e−i

→
k ·

→
R ]ReViq(k,

→
R). (20)

2.1. Orientationally Averaged Energy Shift

To obtain the isotropic interaction potential, a pair orientational average of the radia-
tion field vectors relative to the inter-particle displacement vector must be performed. The
contributing averages, denoted by angular brackets, may be extracted from the generalised
relation

< (δi1 j1 − k̂i1 k̂ j1)ki2 . . . kim k j2 . . . k jn e±i
→
k ·

→
R >= − km+n−2

(±i)m+n Im[Fi1 j1i2 ...im j2 ...jn(kR)], (21)

so that the average featuring in Equation (20) is

< (δjr − k̂ j k̂r)kskte±i
→
k ·

→
R >= −k2Im[Fjrst(kR)], (22)

where from Equation (10)

Im[Fijkl(kR)] =
[−(δij − R̂iR̂j)R̂kR̂l

sin kR
kR + [δij(δkl − 3R̂kR̂l)− (δijR̂kR̂l + δikR̂jR̂l + δil R̂jR̂k

+δjkR̂iR̂l + δjl R̂iR̂k + δkl R̂iR̂j) + 10R̂iR̂jR̂kR̂l)](
cos kR
k2R2 − sin kR

k3R3 )

+[(δijδkl + δikδjl + δilδjk)− 5(δijR̂kR̂l + δikR̂jR̂l + δil R̂jR̂k + δjkR̂iR̂l

+δjl R̂iR̂k + δkl R̂iR̂j) + 35R̂iR̂jR̂kR̂l)](− sin kR
k3R3 − 3 cos kR

k4R4 + 3 sin kR
k5R5 )].

(23)

Thus, contribution (20) becomes(
Ik2

2ε0c

)
α11

ij (A; k)α13
qrst(B; k)Im[Fjrst(kR)]Re[Viq(k,

→
R)], (24)

on defining the intensity of the incident field as I = (2N + 1)ℏc2k/V. On substituting
Equation (12), Equation (24) becomes

− Ik5

8πε2
0c

α11
ij (A; k)α13

qrst(B; k)Re[Fiq(kR)]Im[Fjrst(kR)]. (25)

The rotational averages for the two particles are given by the formulae [33]

< α11
ij (A; k) >=

1
3

δijδλµα11
λµ(A; k) = δijα

11(A; k), (26)

and
< α13

qrst(B; k) >=
2

15
δqrδstα

131

λλµµ(B; k) = δqrδstα
131

(B; k). (27)
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Note that a factor of 2/15 has been absorbed into the isotropic mixed dipole–octupole
polarisability, α131

. In these and subsequent results, Greek subscripts refer to Cartesian ten-
sor components in the body-fixed frame of reference. Interestingly, there is no contribution
to the orientationally averaged mixed electric dipole–octupole polarizability (8), due to the
octupole weight-3 term (3). After contracting tensors (25) becomes

− Ik5

8πε2
0c

α11(A; k)α131
(B; k)Re[Fij(kR)]Im[Fijkk(kR)]. (28)

Evaluating Re[Fij(kR)] and Im[Fij(kR)],

Re[Fij(kR)] = 1
k3 (−∇2δij +∇i∇j)

cos kR
R

= [−(δij − R̂iR̂j)
cos kR

kR + (δij − 3R̂iR̂j)(
sin kR
k2R2 + cos kR

k3R3 )],
(29)

and
Im[Fij(kR)] = 1

k3 (−∇2δij +∇i∇j)
sin kR

R
= [−(δij − R̂iR̂j)

sin kR
kR + (δij − 3R̂iR̂j)(− cos kR

k2R2 + sin kR
k3R3 )],

(30)

noting that Fijkk(kR) = Fij(kR), Equation (28) becomes

− I
8πε2

0cR5 α11(A; k)α131
(B; k)

×[k3R3 sin 2kR + 2k2R2 cos 2kR − 5kR sin 2kR − 6 cos 2kR + 3
kR sin 2kR].

(31)

Returning to Equation (14) and calculating the second term, the field part from Equa-
tion (18) is

< N(
→
k , λ)|d⊥j (

→
RA)d⊥q (

→
RB)|N(

→
k , λ) >

=
(
ℏckε0

2V

)
[Ne(λ)j (

→
k )e(λ)q (

→
k )ei

→
k ·

→
R + (N + 1)e(λ)j (

→
k )e(λ)q (

→
k )e−i

→
k ·

→
R ].

(32)

Substituting Equation (32) and employing Equation (19) produces(
ℏck

2ε0V

)
α11

ij (A; k)α13
qrst(B; k)(δjq − k̂ j k̂q)[Nei

→
k ·

→
R + (N + 1)e−i

→
k ·

→
R ]ReVirst(k,

→
R). (33)

From Equation (21), the pair orientational average is

< (δjq − k̂ j k̂q)e±i
→
k ·

→
R >= Im[Fjq(kR)] =

1
k3 (−∇2δjq +∇j∇q)

sin kR
R

, (34)

and is given by Equation (30). With ReVirst(k,
→
R) given by Equation (13), Equation (33)

becomes

− Ik5

8πε2
0c

α11
ij (A; k)α13

qrst(B; k)Im[Fjq(kR)]Re[First(kR)], (35)

which, after deploying Equations (26) and (27), becomes

− Ik5

8πε2
0c

α11(A; k)α131
(B; k)Im[Fij(kR)]Re[Fijkk(kR)], (36)

and a term identical to Equation (31) results. Hence, the isotropic energy shift induced
by an external electric field between an electric dipole-polarisable molecule and a mixed
electric dipole–octupole-polarisable one is twice expression (31),

∆E11;131
= − I

4πε2
0cR5 α11(A; k)α131

(B; k)

×[k3R3 sin 2kR + 2k2R2 cos 2kR − 5kR sin 2kR − 6 cos 2kR + 3
kR sin 2kR].

(37)
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It is interesting to compare expression (37) with the analogous result between a pair of
electrically-polarisable molecules [12]:

∆E11;11 = − I
8πε2

0cR3 α11(A; k)α11(B; k)

×[kR sin 2kR + 2 cos 2kR − 5 sin 2kR
kR − 6 cos 2kR

k2R2 + 3 sin 2kR
k3R3 ].

(38)

It can be seen that the coefficients of the terms within square brackets match each
other and agree with those occurring in the Casimir–Polder dispersion potential, allowing
Equation (37) to be viewed as a higher-order correction to the leading pure electric dipole
contribution to the radiation-induced dispersion energy. Asymptotic limits of the result
Equation (37) readily follow. In the near zone, kR << 1, yielding an inverse separation
distance dependence

∆E11;131

NZ ∼ −11
15

Ik4

πε2
0cR

α11(A; k)α131
(B; k), (39)

while at the opposite extreme of the far zone, kR >> 1, resulting in a modulated inverse
square behaviour on relative separation

∆E11;131

FZ ∼ − Ik5

4πε2
0cR2

α11(A; k)α131
(B; k) sin 2kR. (40)

2.2. Polarisation Analysis

It is possible to obtain expressions for the change in energy shift that illustrate the
dependence on different polarisation states and configurations of the incoming radiation
field. This offers enhanced possibilities for experimental control and detection. Going back
to the first term of Equation (14) and inserting relation (18) produces

−
(

ℏck
2ε0V

)
α11

ij (A; k)α13
qrst(B; k)[Ne(λ)j (

→
k )e(λ)r (

→
k )ei

→
k ·

→
R

+(N + 1)e(λ)j (
→
k )e(λ)r (

→
k )e−i

→
k ·

→
R ]ksktReViq(k,

→
R).

(41)

For large occupation numbers of the photon field, it is sufficient to approximate N + 1
by N so that Equation (41) becomes, after molecular orientational averaging,

− Ik5

4πε2
0c

α11(A; k)α131
(B; k)e(λ)i (

→
k )e(λ)j (

→
k )

×[(δij − R̂iR̂j)
cos kR

kR − (δij − 3R̂iR̂j)(
sin kR
k2R2 + cos kR

k3R3 )] cos(
→
k ·

→
R).

(42)

One possibility is for the propagation direction of the laser to be parallel to the

inter-molecular join, resulting in the polarisation vector being perpendicular to
→
R. Then,

→
k ·

→
R = kR. A second possibility is for the laser to be oriented orthogonal to

→
R, in which

case the polarisation vector is parallel to the inter-particle separation distance vector. This

results in cos(
→
k ·

→
R) = 1. In addition, the laser may be linearly or circularly polarised. We

examine each of these four possible combinations for each of the examples considered.

(a) Linearly polarised light.

(i) k̂||R̂; ê⊥R̂ : In this scenario, Equation (42) becomes

− I
4πε2

0cR5
α11(A; k)α131

(B; k)[k4R4 cos2 kR − k3R3 sin kR cos kR − k2R2 cos2 kR], (43)
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giving rise to near- and far-zone limiting forms

Ik2

4πε2
0cR3

α11(A; k)α131
(B; k), (44)

and

− Ik4

4πε2
0cR

α11(A; k)α131
(B; k) cos2 kR, (45)

displaying R−3 and (cos2kR)/R dependences, respectively.
(ii) k̂⊥R̂; ê||R̂ : Expression (42) then becomes

− I
2πε2

0cR5
α11(A; k)α131

(B; k)[k3R3 sin kR + k2R2 cos kR], (46)

from which inverse cubic short-range and modulated inverse square long-
range dependences on R are found.

(b) Circularly polarised light. To proceed, use is made of the relation

e(L/R)
i (

→
k )e(L/R)

j (
→
k ) =

1
2
[δij − k̂i k̂ j ∓ iεijk k̂k], (47)

where the upper and lower signs refer to left (L)- and right (R)-handed circular
polarisations, and εijk is the Levi-Civita tensor. Note that only the i,j-symmetric part
of (47) persists, since the geometric tensor appearing in Equation (42) is i,j-symmetric.

(i) k̂||R̂; ê⊥R̂ : For this case, an identical contribution to that arising from this
configuration with linearly polarised light is found, namely Equation (43).
Identical asymptotic behaviour follows.

(ii) k̂⊥R̂; ê||R̂ : In this scenario, Equation (42) results in

− I
4πε2

0cR5
α11(A; k)α131

(B; k)[k4R4 cos kR + k3R3 sin kR + k2R2 cos kR], (48)

yielding modulated inverse R behaviour in the far zone and R−3 dependence
in the near zone.
For the second term of Equation (14), substituting Equation (32), taking N + 1
~ N and carrying out the molecular rotational averages with relations (26) and
(27), produces

I
ε0c

α11(A; k)α131
(B; k)e(λ)i (

→
k )e(λ)j (

→
k )ReVijkk(k,

→
R) cos(

→
k ·

→
R). (49)

Noting that

ReVijkk(k,
→
R) = − k5

4πε0
Re[Fijkk(kR)] =

k5

4πε0
Re[Fij(kR)], (50)

Equation (49) is found to be identical to Equation (42). Hence, identical polar-
isation analysis results and limiting forms follow, with expressions (43)–(46)
and (48) all doubling up.

3. Energy Shift between Two Mixed Electric Dipole–Octupole-Polarisable Molecules

The next dispersion potential induced by an electromagnetic field to be considered
is that between two identical electric dipole–octupole-polarisable molecules A and B. At
B, the two induced moments are given by Equations (6) and (7), with analogous formulae
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applicable to particle A. Similar and dissimilar moments couple to each other, leading to an
energy shift formula that is the sum of four terms:

∆E13;13 = E(1)ind
i (A)E(1)ind

q (B)ReViq(k,
→
R) + E(1)ind

i (A)E(3)ind
rst (B)ReVirst(k,

→
R)

+E(3)ind
jkl (A)E(1)ind

q (B)ReVjqkl(k,
→
R) + E(3)ind

jkl (A)E(3)ind
rst (B)ReVjrklst(k,

→
R)

= ε−2
0 α13

ijkl(A; k)α13
qrst(B; k)[∇k∇ld⊥j (

→
RA)∇s∇td⊥r (

→
RB)ReViq(k,

→
R)

+∇k∇ld⊥j (
→
RA)d⊥q (

→
RB)ReVirst(k,

→
R)

+d⊥i (
→
RA)∇s∇td⊥r (

→
RB)ReVjqkl(k,

→
R) + d⊥i (

→
RA)d⊥q (

→
RB)ReVjrklst(k,

→
R)],

(51)

where the mixed electric dipole–octupole polarisability is given by Equation (8).

3.1. Isotropic Potential

We begin by evaluating the first term of Equation (51). Inserting m = n = 3 into
expression (17) produces

< N(
→
k , λ)|∇k∇ld⊥j (

→
RA)∇s∇td⊥r (

→
RB)|N(

→
k , λ) >

=
(
ℏckε0

2V

)
kkklkskt[Ne(λ)j (

→
k )e(λ)r (

→
k )ei

→
k ·

→
R + (N + 1)e(λ)j (

→
k )e(λ)r (

→
k )e−i

→
k ·

→
R ].

(52)

Substituting relation (52) into the first term of Equation (51), performing the polarisa-
tion sum using the identity (19) and carrying out the following pair orientational average
using the result (21),

< (δjr − k̂ j k̂r)kkklkskte±i
→
k ·

→
R >= k4Im[Fjrklst(kR)]

= 1
k3 (−∇2δjr +∇j∇r)∇k∇l∇s∇t

sin kR
R ,

(53)

we obtain

− ℏck8

8πε2
0V

(2N + 1)α13
ijkl(A; k)α13

qrst(B; k)Re[Fiq(kR)]Im[Fjrklst(kR)], (54)

which, after molecular rotational averaging, becomes

− Ik7

8πε2
0c

α131
(A; k)α131

(B; k)Re[Fij(kR)]Im[Fijkkll(kR)]. (55)

Noting from Equation (10) that Fijkkll(kR) = Fij(kR), Equation (55) becomes

− I
8πε2

0cR7 α131
(A; k)α131

(B; k)

×[k5R5 sin 2kR + 2k4R4 cos 2kR − 5k3R3 sin 2kR − 6k2R2 cos 2kR + 3kR sin 2kR].
(56)

For the second term of Equation (51), its field-dependent factor is evaluated by insert-
ing m = 3 and n = 1 into Equation (17), giving

< N(
→
k , λ)|∇k∇ld⊥j (

→
RA)d⊥q (

→
RB)|N(

→
k , λ) >

= −
(
ℏckε0

2V

)
kkkl [Ne(λ)j (

→
k )e(λ)q (

→
k )ei

→
k ·

→
R + (N + 1)e(λ)j (

→
k )e(λ)q (

→
k )e−i

→
k ·

→
R ],

(57)
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along with the pair average (22) and rewriting ReVjrst(k,
→
R) using relation (13), produces,

after molecular averaging,

− Ik7

8πε2
0c

α131
(A; k)α131

(B; k)Re[Fijkk(kR)]Im[Fijll(kR)], (58)

which can be seen to be identical to result (55) on noting that Fijkk(kR) = −Fij(kR). For the
third term of Equation (51), substituting m = 1 and n = 3 into Equation (17) for the field–field
spatial correlation function, similar evaluation steps used for the second term of Equation
(51) lead to a contribution that is identical to expression (58). For the fourth and final term
of Equation (51), substituting m = n = 1 into Equation (17) gives, for the expectation value
of the product of displacement fields at A and B,

< N(
→
k , λ)|d⊥i (

→
RA)d⊥q (

→
RB)|N(

→
k , λ) >

=
(
ℏckε0

2V

)
[Ne(λ)i (

→
k )e(λ)q (

→
k )ei

→
k ·

→
R + (N + 1)e(λ)i (

→
k )e(λ)q (

→
k )e−i

→
k ·

→
R ].

(59)

Carrying out the polarisation sum using Formula (19) and the angular average via the
relation (34), and obtaining the following from Equations (9) and (10)

ReVjrklst(k,
→
R) = − k7

4πε0
Re[Fjrklst(kR)]

= − 1
4πε0

(−∇2δjr +∇j∇r)∇k∇l∇s∇t
cos kR

R ,
(60)

the fourth term is found to be identical to Equation (56). Adding all four identical terms
yields the following expression for the field-induced potential:

∆E131;131
= − I

2πε2
0cR7 α131

(A; k)α131
(B; k)

×[k5R5 sin 2kR + 2k4R4 cos 2kR − 5k3R3 sin 2kR − 6k2R2 cos 2kR + 3kR sin 2kR],
(61)

which may also be interpreted as a higher-order correction term to the leading pure electric
dipole shift. Inverse R behaviour is predicted in the near zone

∆E131;131

NZ ∼ 14
15

Ik6

πε2
0cR

α131
(A; k)α131

(B; k), (62)

and modulated inverse R2 dependence at very long range

∆E131;131

FZ ∼ − Ik5

2πε2
0cR2

α131
(A; k)α131

(B; k) sin 2kR. (63)

3.2. Polarisation Analysis

We consider the same polarisation and propagation directions as earlier. Inserting
Equation (52) into the first term of Equation (51) gives(

ℏck
2ε0V

)
α13

ijkl(A; k)α13
qrst(B; k)kkklkskt[Ne(λ)j (

→
k )e(λ)r (

→
k )ei

→
k ·

→
R

+(N + 1)e(λ)j (
→
k )e(λ)r (

→
k )e−i

→
k ·

→
R ]ReViq(k,

→
R).

(64)

Approximating N + 1 by N, carrying out the molecular averages and substituting for

ReViq(k,
→
R) from Equation (12) yields

− Ik7

4πε2
0c

α131
(A; k)α131

(B; k)e(λ)i (
→
k )e(λ)j (

→
k )

×[−(δij − R̂iR̂j)
cos kR

kR + (δij − 3R̂iR̂j)(
sin kR
k2R2 + cos kR

k3R3 )] cos(
→
k ·

→
R),

(65)
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with the three other terms of Equation (51) producing identical results to Equation (65).

(a) Linearly polarised light.

(i) k̂||R̂; ê⊥R̂: For this configuration, Equation (65) becomes

I
πε2

0cR7 α131
(A; k)α131

(B; k)

×[k6R6 cos2 kR − k5R5 sin kR cos kR − k4R4 cos2 kR],
(66)

with inverse cubic separation distance behaviour found in the near zone and a
(cos2 kR)/R dependence in the far zone.

(ii) k̂⊥R̂; ê||R̂: In this scenario, Equation (65) becomes

2I
πε2

0cR7
α131

(A; k)α131
(B; k)[k5R5 sin kR + k4R4 cos kR], (67)

with asymptotically limiting forms R−3 at very short range, and (sin kR)/R2

in the far zone.

(b) Circularly polarised radiation.
We again employ the i,j-symmetric part of identity Equation (47) for chiral light.

(i) k̂||R̂; ê⊥R̂: Equation (65) becomes

I
πε2

0cR7 α131
(A; k)α131

(B; k)

×[k6R6 cos2 kR − k5R5 sin kR cos kR − k4R4 cos2 kR],
(68)

which is identical to Equation (66).
(ii) k̂⊥R̂; ê||R̂: Equation (65) becomes

I
2πε2

0cR7
α131

(A; k)α131
(B; k)[k6R6 cos kR + k5R5 sin kR + k4R4 cos kR], (69)

with R−1 cos kR behaviour in the far zone and an R−3 limit in the near zone.

4. Field-Induced Potential between an Electric Dipole-Polarisable Molecule and an
Electric Octupole-Polarisable Molecule

The final radiation-induced energy shift to be calculated that depends on electric
octupole coupling and involves the scattering of a real photon at different centres is that
between an electric dipole-polarisable molecule, A, and its pure octupole analogue, B. This
potential is of the same order of magnitude as that considered in the previous section, and
therefore should be included for consistency. The electric dipole induced at A is given
by Equation (4), with pure electric dipole polarisability (5). By dint of the polarisability
characteristic of B, only an electric octupole moment is induced there,

E(3)ind
ijk (B) = ε−1

0 α33
ijklmn(B; k)∇m∇nd⊥l (

→
RB), (70)

with the electric octupole polarisability defined as

α33
ijklmn(B; k) = ∑

b

E(3)0b
ijk (B)E(3)b0

lmn (B)

Eb0 − ℏck
+

E(3)0b
lmn (B)E(3)b0

ijk (B)

Eb0 + ℏck

. (71)
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The two moments couple via the tensor ReVijkl(k,
→
R) written in Equation (13), giving

rise to an interaction energy of the form

∆E11,33 = E(1)ind
i (A)E(3)ind

klm (B)ReViklm(k,
→
R)

= ε−2
0 α11

ij (A; k)α33
klmpqr(B; k)d⊥j (

→
RA)∇q∇rd⊥p (

→
RB)ReViklm(k,

→
R).

(72)

Substituting relation (18), carrying out the polarisation sum using Equation (19) and
performing the pair average via the result (22), and rewriting the coupling tensor using
Equation (13), the energy shift expression (72) becomes

∆E11;33 = − I
8πε2

0c
α11

ij (A; k)α33
klmpqr(B; k)[ 1

k3 (−∇2δjp +∇j∇p)∇q∇r
sin kR

R ]

×[(−∇2δik +∇i∇k)∇l∇m
cos kR

R ].
(73)

To obtain the isotropic potential energy, use is made of the result (26) for the orienta-
tional average of the electric dipole polarisability, while for pure octupole polarisability, we
employ the result [23,33]

< α33
klmpqr(B; k) >= 14

210 [δkpδlmδqrα33
λµµλνν(B; k) + 2(δkpδlqδmr + δkpδlrδmq

+δkqδlpδmr + δkqδlrδmp + δkrδlpδmq + δkrδlqδmp)α33
λµνλµν(B; k)].

(74)

Noting that [23]
α33

λµµλνν(B; k) = α3131

λµµλνν(B; k), (75)

and
α33

λµνλµν(B; k) =
3
5

α3131

λµµλνν(B; k) + α3333

λµνλµν(B; k), (76)

the energy shift expression (73) becomes

∆E11;33 = − 2Ik7

6720×8πε2
0c

α11(A; k){ 7
5 Re[Fijkk(kR)]Im[Fijll(kr)]α3131

λµµλνν(B; k)

+[−Re[Fijkk(kR)]Im[Fijll(kr)] + 5Re[Fijkl(kR)]Im[Fijkl(kr)]

+10Re[Fijkl(kR)]Im[Fikjl(kr)]]α3333

λµνλµν(B; k)
}

.

(77)

Evaluating the product of geometric tensors finally results in

∆E11;33 = − I
19200πε2

0cR7 α11(A; k)α3131

λµµλνν(B; k)

×[k5R5 sin 2kR + 2k4R4 cos 2kR − 5k3R3 sin 2kR − 6k2R2 cos 2kR + 3kR sin 2kR]

− I
6720πε2

0cR7 α11(A; k)α3333

λµνλµν(B; k)

×[k5R5 sin 2kR + 12k4R4 cos 2kR − 90k3R3 sin 2kR − 486k2R2 cos 2kR

+1863kR sin 2kR + 4950 cos 2kR − 8755
kR sin 2kR − 9450

k2R2 cos 2kR + 4725
k3R3 sin 2kR]

. (78)

Inspection of expression (78) shows that this contribution to the optical binding energy
depends on both octupole weight-1 and weight-3 terms. As in the previous examples
considered, the weight-1-dependent term may be viewed as a higher-order correction to
the leading pure electric dipole contribution, the coefficients preceding each term in square
brackets being identical. The second term of Equation (78) is proportional to E33

λµν, which
is a third-rank tensor with 27 independent components. The coefficients within square
brackets of this term are identical to that found in the dispersion potential between an
electric dipole-polarisable molecule and an octupole-polarisable one [23].
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Polarisation Analysis

Substituting relation (18) into Equation (72) and performing the molecular orientational
averages yields

∆E11;33 = − I
105ε0c α11(A; k){ 7

5 e(λ)i (
→
k )e(λ)j (

→
k )klklReVijkk(k,

→
R)α3131

λµµλνν(B; k)

+[−e(λ)i (
→
k )e(λ)j (

→
k )klklReVijkk(k,

→
R) + 5e(λ)i (

→
k )e(λ)j (

→
k )kkklReVijkl(k,

→
R)

+10e(λ)i (
→
k )e(λ)k (

→
k )k jklReVijkl(k,

→
R)]α3333

λµνλµν(B; k)]
}

cos(
→
k ·

→
R).

(79)

(a) Linearly polarised beam.

(i) k̂||R̂; ê⊥R̂: Inserting the geometric tensors produces

∆E11;33(||)
lin = I

420πε2
0cR7 α11(A; k){ 7

5 α3131

λµµλνν(B; k)

×[k4R4 cos2 kR + k5R5 sin kR cos kR − k6R6 cos2 kR]

−4α3333

λµνλµν(B; k)[k6R6 cos2 kR − 6k5R5 sin kR cos kR − 21k4R4 cos2 kR

+45k3R3 sin kR cos kR + 45k2R2 cos2 kR]
}

,

(80)

with asymptotic limits

∆E11;33(||)
lin (FZ) = − Ik6

420πε2
0cR

α11(A; k){7
5

α3131

λµµλνν(B; k) + 4α3333

λµνλµν(B; k)},

(81)
and

∆E11;33(||)
lin (NZ) = − 3Ik2

7πε2
0cR5

α11(A; k)α3333

λµνλµν(B; k), (82)

with the last of these limits independent of E31

λµν.

(ii) k̂⊥R̂; ê||R̂: Now,

∆E11;33(⊥)
lin = − I

420πε2
0cR7 α11(A; k){ 14

5 α3131

λµµλνν(B; k)[k4R4 cos kR + k5R5 sin kR]

−12α3333

λµνλµν(B; k)[k5R5 sin kR + 6k4R4 cos kR − 15k3R3 sin kR − 15k2R2 cos kR]},
(83)

with limiting forms

∆E11;33(⊥)
lin (FZ) = − Ik5

420πε2
0cR2

α11(A; k){14
5

α3131

λµµλνν(B; k)− 12α3333

λµνλµν(B; k)}, (84)

and

∆E11;33(⊥)
lin (NZ) =

180Ik2

420πε2
0cR5

α11(A; k)α3333

λµνλµν(B; k). (85)

(b) Circularly polarised radiation.

(i) k̂||R̂; ê⊥R̂: For this arrangement, ∆E11;33(||)
L/R = ∆E11;33(||)

lin , given by Equation
(80), and with identical asymptotic limits (81) and (82).

(ii) k̂⊥R̂; ê||R̂: This results in

∆E11;33(⊥)
L/R = − I

840πε2
0cR7 α11(A; k){ 7

5 α3131

λµµλνν(B; k)

×[k4R4 cos kR + k5R5 sin kR + k6R6 cos kR]

−α3333

λµνλµν(B; k)[k6R6 cos kR − 14k5R5 sin kR + 31k4R4 cos kR

−135k3R3 sin kR − 135k2R2 cos kR]},

(86)
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with far- and near-zone asymptotes

∆E11;33(⊥)
L/R (FZ) = − Ik6

840πε2
0cR

α11(A; k){7
5

α3131

λµµλνν(B; k)− α3333

λµνλµν(B; k)}, (87)

and

∆E11;33(⊥)
L/R (NZ) = − 135Ik2

840πε2
0cR5

α11(A; k)α3333

λµνλµν(B; k). (88)

The last expression is again independent of the octupole weight-1 term.

5. Octupole-Dependent Contributions to Optical Binding Arising from the
Static Mechanism

The three examples presented thus far involve the scattering of the real photon at
different molecular sites. This is frequently referred to as the dynamic mechanism. We
now consider the situation in which the incident laser light is emitted and absorbed by
the same particle, either A or B. This is often termed the static mechanism. As well as the
static electric dipole moment, higher-order response tensors participate in the induction of
multipole moments. In the case of the induced electric dipole moment, this is given by

E(1)ind
i (ξ) = E1(s)

i (ξ) + ε−1
0 α11

ij (ξ; k)d⊥j (
→
Rξ) + ε−1

0 α13
ijkl(ξ; k)∇k∇ld⊥j (

→
Rξ)

+ε−2
0 β111

ijk (ξ; k, k′)d⊥j (
→
Rξ)d⊥k (

→
Rξ) + ε−2

0 β113
ijklm(ξ; k, k′)d⊥j (

→
Rξ)∇l∇md⊥k (

→
Rξ) + . . .

(89)

where E1(s)
i is the static electric dipole moment, α11

ij (ξ; k) is the pure electric dipole polaris-

ability and given earlier by Equation (5), α13
ijkl(ξ; k) is the mixed electric dipole–octupole

polarisability tensor defined by Equation (8), β111
ijk (ξ) is the pure electric dipole first hyper-

polarisability tensor and β113
ijklm(ξ) is the electric dipole–dipole–octupole first hyperpolaris-

ability tensor of molecule ξ. Similarly, for the induced octupole moment,

E(3)ind
ijk (ξ) = E3(s)

ijk (ξ) + ε−1
0 α13

lijk(ξ; k)d⊥l (
→
Rξ) + ε−1

0 α33
lmnijk(ξ; k)∇m∇nd⊥l (

→
Rξ)

+ε−2
0 β113

mlijk(ξ; k, k′)d⊥m(
→
Rξ)d⊥l (

→
Rξ)

+ε−2
0 β333

pqrlmnijk(ξ; k, k′)∇q∇rd⊥p (
→
Rξ)∇m∇nd⊥l (

→
Rξ) + . . .

(90)

where α33
lmnijk(ξ; k) is the pure electric octupole polarisability (71) and β333

pqrlmnijk(ξ) is the
pure electric octupole first hyperpolarisability tensor.

Let A be purely electric dipole-hyperpolarisable and B be described by a permanent
electric octupole moment. From Equations (89) and (90), the interaction energy coupling
the electric dipole induced at A and the octupole induced at B can be written as

∆E111;3 = E(1)ind
i (A)E(3)ind

jkl (B)Vijkl(k,
→
R)

= ε−2
0 β111

ijk (A)E3(s)
lmn (B)d⊥j (

→
RA)d⊥k (

→
RA)Vilmn(0,

→
R).

(91)

On account of B being polar, with its ground state permanent octupole moment

appearing to leading order, the static coupling tensor Vilmn(0,
→
R) features in Equation (91).

A corresponding term arises on interchanging A and B, so that

∆E111;3 = 1
2 ε−2

0 [β111
ijk (A)E3(s)

lmn (B)d⊥j (
→
RA)d⊥k (

→
RA)Vilmn(0,

→
R)

+E3(s)
ijk (A)β111

lmn(B)d⊥m(
→
RB)d⊥n (

→
RB)Vil jk(0,

→
R)],

(92)

with the factor of ½ due to index symmetry, allowing for A and B to be identical or distinct.
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Taking the expectation value of Equation (92) over the ground state of both particles

and the radiation field with state |N(
→
k , λ) > photons as before, noting that

< N(
→
k , λ)|d⊥i (

→
Rξ)d⊥j (

→
Rξ)|N(

→
k , λ) >

=
(
ℏckε0

2V

)
[Ne(λ)i (

→
k )e(λ)j (

→
k ) + (N + 1)e(λ)i (

→
k )e(λ)j (

→
k )] ∼ Nℏckε0

V e(λ)i (
→
k )e(λ)j (

→
k ),

(93)

on taking N >> 1, the first term of expression (92) is(
Nℏck
2ε0V

)
e(λ)j (

→
k )e(λ)k (

→
k )β111

ijk (A)E(3)00
lmn (B)Vilmn(0,

→
R). (94)

The molecular factors are averaged using the results [33] for a third-rank Cartesian
tensor

< β111
ijk (A) >=

1
6

εijkελµνβ111
λµν(A), (95)

and
< E(3)00

lmn (B) >=
1
6

ε lmnερστE(3)00
ρστ (B), (96)

yielding the isotropic potential

1
36

I
2ε0c

εijkε lmnελµνερστe(λ)j (
→
k )e(λ)k (

→
k )β111

λµν(A)E(3)00
ρστ (B)Vilmn(0,

→
R). (97)

This vanishes because the laser polarisation factor is symmetric in j,k while the Levi-
Civita tensor is antisymmetric in this pair. The second term of Equation (92) similarly
vanishes. Hence,

< ∆Eβ111−E3

static >= 0. (98)

A second situation occurs when A is electric dipole–dipole–octupole-first-hyperpolarisable
and B is characterised by a permanent electric dipole moment. From Equations (89) and
(90), coupling of an induced electric octupole at A with an induced electric dipole at B, and
between induced electric dipoles at each centre, leads to

∆E113;1 = E(3)ind
ijk (A)E(1)ind

l (B)Vil jk(k,
→
R) + E(1)ind

p (A)E(1)ind
q (B)Vpq(k,

→
R)

= 1
2 ε−2

0 [β113
ijkmn(A)E1(s)

l (B)d⊥m(
→
RA)d⊥n (

→
RA)Vil jk(0,

→
R)

+β113
ijkps(A)E1(s)

q (B)d⊥s (
→
RA)∇j∇kd⊥i (

→
RA)Vpq(0,

→
R) + A ↔ B].

(99)

Examining the first term of Equation (99), substituting the relation (93) produces(
Nℏck
2ε0V

)
e(λ)m (

→
k )e(λ)n (

→
k )β113

ijkmn(A)E(1)00
l (B)Vil jk(0,

→
R). (100)

Now,

< N(
→
k , λ)|d⊥r (

→
RA)∇m∇nd⊥l (

→
RA)|N(

→
k , λ) >

= −
(
ℏckε0

2V

)
kmkn[Ne(λ)r (

→
k )e(λ)l (

→
k ) + (N + 1)e(λ)r (

→
k )e(λ)l (

→
k )]

∼ −
(

Nℏckε0
V

)
kmkne(λ)r (

→
k )e(λ)l (

→
k ),

(101)

on taking N + 1 ~ N, so that the second term of Equation (99) is

−
(

Nℏck
2ε0V

)
e(λ)s (

→
k )e(λ)i (

→
k )k jkkβ113

ijkps(A)E(1)00
q (B)Vpq(0,

→
R). (102)
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Both Equations (100) and (102) vanish on orientational averaging because [34] (p. 66)

< E(1)00
i (ξ) >= 0. (103)

Hence,
< ∆Eβ113−E1

static >= 0. (104)

To this order of approximation, no term dependent on a single octupole moment
contributes to the static optical binding mechanism.

6. Conclusions

While the dominant contribution to the change in energy shift between two interacting
neutral polarisable molecules induced by an intense radiation field is that proportional
to the electric dipole polarisablility of each species, interesting effects arise when higher
multipole moment terms are accounted for. When magnetic dipole coupling terms are
included, for instance, the contribution to the potential that is dependent on both transition
electric and magnetic dipole moments of either or both species is discriminatory, changing
sign when one enantiomer is switched to its isomer of opposite handedness. In this work,
new terms contributing to the optical binding energy that are dependent upon one or two
electric octupole moments at each centre were calculated. These include the field-induced
energy shift between an electric dipole-polarisable molecule and a second that is either
mixed electric dipole–octupole-polarisable or purely electric octupole-polarisable, and
between two mixed electric dipole–octupole-polarisable molecules.

Results were obtained for both particles randomly oriented relative to each other,
and for all directions of propagation of the incident beam relative to the inter-nuclear
displacement vector. The first and third examples mentioned above were found to depend
only on the octupole weight-1 moment, which has three independent components and the
properties of a vector. They may be viewed as higher-order corrections to the leading electric
dipole–dipole energy shift. The second system’s potential depended on both octupole
weight-1 and weight-3 terms, with the former also interpreted as a higher-order correction.
All three of these examples fell under the dynamic mechanism classification of the process
as the laser beam is absorbed at one site and emitted at the other. Also examined were
two examples that belong to the static mechanism categorisation. In this case, the beam of
light is absorbed and emitted at the same centre. This necessitates one molecule—the one
emitting or absorbing only a virtual photon—being polar, and possessing a static multipole
moment. In one case, this was a permanent electric dipole moment so that the other particle
was characterised by its mixed electric dipole–dipole–octupole first hyperpolarisability. In
the second case, the polar molecule was described by its ground state permanent octupole
moment while the other molecule possessed purely electric dipole first hyperpolarisability.
Both energy shifts vanished after orientational averaging. For the surviving isotropic
potentials, a complete polarisation analysis was also performed. Linearly and circularly
polarised incident radiation propagating parallel and perpendicular to the inter-nuclear
axis were four scenarios considered that could stimulate possible experimental detection.

Instead of perturbation theory, which is prohibitive when considering higher-order
multipole moments due to the excessive number of diagrams that need to be drawn and
summed to yield the matrix element or energy shift for a process, especially one like
optical binding that is intrinsically higher-order in its number of light–matter couplings,
an alternative computational method was employed. This involved first calculating the
multipole moments induced at each centre by the applied electromagnetic field based
on the polarisability characteristics of the responder. These moments then couple via
their respective retarded multipole–multipole interaction tensor. An expectation value
taken over the ground electronic state of each molecule with the radiation field in the state
containing N photons yielded the field-induced energy shift. The respective dispersion
potential readily follows on letting N = 0.
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