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Abstract: From the late 1960s onwards, the groups of Barry Ninham and Adrian Parsegian, and
their many collaborators, made a number of essential contributions to theory and experiment of
intermolecular forces. In particular, they explored the semi-classical theory: Maxwell’s equations
and Planck quantization of light leads to Lifshitz and Casimir interactions. We discuss some selected
thought-provoking results from Ninham and his group. Some of the results have been conceived as
controversial but, we would say, never uninteresting.
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1. Introduction

Since the prediction of the Casimir effect in 1948, and its experimental confirmation
in the period after that, there has been a significant interest in studying the forces caused
by fluctuations both theoretically and experimentally [1,2]. Before reviewing some contri-
butions to Casimir physics from semi-classical electrodynamics theory, that is Maxwell’s
equations and Planck quantization of light leading to Lifshitz and Casimir interactions,
with particular emphasis on the paper by Barry Ninham and collaborators, we first present
some historical reflections. The history of intermolecular forces actually goes back to the
early history of science. Thomas Young notably wrote a paper on molecular forces in
1805 [3,4]. Young deduced that they had to obey 1/r6-power-law, where r is the average
distance between molecules. Reverend Pam Challis of Trinity College, in a major address
to the British Association 1836 [5], reviewed the state of molecular forces between colloidal
particles, suggested interferometry for direct measurements, quoting Augustin-Jean Fresnel,
and referred to the subject as “this the highest Department of Science” for which he coined
the term Mathematical Physics. The renowned article by James Clerk Maxwell in the nineth
edition of Encyclopaedia Britannica [6] discussed capillary action and molecular forces,
updated by Lord Rayleigh in the 11th edition [7]. Roger Boscovich (Rud̄er Bošković), a
Croatian Jesuit Priest based in Rome after whom the Rud̄er Bošković Institute in Zagreb
is named, developed a system of the world essentially inventing statistical mechanics
(his book [8] appeared around 1600). To do so, Boscovich needed a molecular potential.
His effective potential oscillated with the period a molecular diameter tailing off into a
gravitational 1/r2. The basis of the study of intermolecular forces was laid by Johannes
Diderik van der Waals in 1873 [9] (see English translation in Ref. [10]). He clarified the
concept of interparticle forces and how molecules interact. Quantum fluctuations create in-
termolecular forces that exist throughout macroscopic bodies. At the molecular separations
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of about a few nanometres or less, these interactions causing the attraction and repulsion
between molecules, are the familiar van der Waals forces.

As discussed by Boris Derjaguin, Irina Abrikossova, and Evgeny Lifshitz in their 1956
review paper [11], the correct understanding of the nature of molecular forces was initially
proposed by Peter (Pyotr) N. Lebedev, back in 1894 [11,12]: “There exist intermolecular
forces whose origin is closely connected with radiation processes.” In general, it is necessary
to understand van der Waals forces and understand their importance compared to other
molecular forces.

Fundamental and applied research on molecular forces continued until Fritz London
proposed the general theory of molecular forces in 1930 [13]. This theoretically improved the
understanding of molecular dispersion forces, and contributed to the interpretation of van
der Waals forces and other molecular forces. Also, the significant contributions of Lifshitz
should be addressed. In 1955, Lifshitz explained how the oscillating charge distribution in
molecules leads to the creation of attractive forces [14]. These explanations contribute to a
deeper understanding of molecular forces and their role in various phenomena.

Ever since Derjaguin and Abrikossova [11] performed their force measurements,
there has been a strong focus on the phenomena The first set of experiments, notably
measuring interactions between quartz and metal plates, studied only the so-called retarded
region. Experiments of David Tabor and Ralph Winterton [15] and subsequently of Jacob
Israelachvili and Tabor [16,17] fitted the measured force to a power law function of 1/Lp

(where L is the distance), where p varied from non-retarded (p = 3) to fully retarded (p = 4)
value. In these early experiments, a gradual transition was observed from non-retarded to
retarded interaction, as the distance between the surfaces increased from around 12 nm
upto 130 nm [16]. Surface force measurements [11,15–18] and theoretical clarifications
and extensions of the Lifshitz formula [19–23] to include, for example, magnetic [24] and
conducting particles [25,26], and liquids between unequal surfaces, were pioneered in the
1970s by the group of Ninham, Israelachvili, and their collaborators at the Department of
Applied Mathematics in the Australian National University.

According to the fundamental theory, the Lifshitz force can also be repulsive, which is
an interesting feature that has attracted quite some of attention [19,27,28]. Charles Anderson
and Edward Sabiski demonstrated this phenomenon in their research on liquid helium films
on smooth surfaces of calcium fluorite (CaF2), among other similar molecularly smooth
surfaces [29]. The thickness of the films in the experiment ranged from 10 Å to 200 Å,
and could be measured with an accuracy of a few percent in most cases. Several past
publications by Ninham have explored the history of intermolecular forces in more detail.
The book by Ninham and Pierandrea Lo Nostro [30] is of a particular interest.

We focus first on reviewing a study that our close and distinguished collaborator
Barry Ninham wrote in 1970 together with Adrian V. Parsegian and George H. Weiss [21].
The reason to highlight this paper is that it seems to us it is not recognized well enough
in the field. The theories of intermolecular dispersion forces have occupied such a vast
literature that one would suspect quite little should remain to be said. However, even
lately, new applications of the fundamental theory have arisen. We firstly address the
semi-classical theory itself, and then briefly discuss our contribution to the theory of
Casimir interaction between real metal plates at high temperatures/large separations. A
controversial, as well as especially intriguing, idea is briefly explored in the current paper,
highlighting that the high-temperature Casimir effect might have a role even in nuclear
physics [31]. To be more specific: it was shown in an unpublished note by Ninham and
Colin Pask [32] more than 50 years ago how Maxwell’s equations for the electromagnetic
field with Planck quantization of allowed modes appear to provide a semiclassical account
of nuclear interactions. The direct consequence if this idea has any relevance is that mesons
would emerge as plasmons, collective excitations in an electron–positron pair-sea [31].
We then proceed to present a study that was initiated by Ninham around 1970 on excited
state interaction between atoms [33]. Related self-energies and excited state interactions
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are, for example, essential in photobiochemistry. We finally wrap up our study with a few
concluding words.

2. The Ninham, Parsegian and Weiss Semi-Classical Derivation of Lifshitz Theory

The theory due to Lifshitz was readdressed by Lifshitz, Igor Dzyaloshinskii and Lev
Pitaevski [19] via some lengthy arguments that exploited Green’s function techniques
in quantum field theory. We outline the general ideas behind the considerably simpler
semi-classical theory of dispersion interactions. The paper [21], which we follow in this
Section with some changes in notation, expanded on general ideas presented by Nicolaas
van Kampen and collaborators [34]. Here, we point out that Ref. [34] only considered the
zero-temperature and non-retarded limit. We use the electrodynamics boundary conditions
given in the book [35] that the components of (Eω, Hω), Ex, Ey, εEz, Hx, Hy, and µHz
(with µ the permeability) are continuous at interfaces between the media, parallel to the
xy-plane at z = 0 and z = d. We are thus considering the simple enough case of two half-
spaces interacting across a media. We assume that the dielectric permittivities are different,
ε1(ω) ̸= ε2(ω) where ω denoteds the frequesncy), and the magnetic permeabilities equal to
one. The solutions (Y = ∑ω Yωe−iωt where Yω ∈ { Hω , Eω}) has normal mode frequencies
from the wave equation [21],

∇2Yω + (εω2/c2)Yω = 0, (1)

together with ∇ · Yω = 0. Here, c denotes the speed of light in the vacuum. For the
separate components of Eω and Hω , one assumes the form [21] Θ(z)ei(ux+vy), where u and
v are the wave vector components parallel to the surface, and Θ′′(z) = γ2Θ(z), where
the prime denotes the z-derivative. Here, γ2 = κ2 − [ω2ε(ω)/c2] and κ =

√
u2 + v2 is the

real component of the wave vector parallel to the slab of the intermediate film. Ninham,
Parsegian and Weiss showed [21] that normal modes (ωi) are solutions of transverse
magnetic (TM) and transverse electric (TE) dispersion relations,

D1(ω; d) = 1 − ∆2
TMe−2γ2d = 0 = D2(ω; d) = 1 − ∆2

TEe−2γ2d, (2)

where
∆TE =

γ2 − γ1

γ2 + γ1
; ∆TM =

ε1γ2 − ε2γ1

ε1γ2 + ε2γ1
. (3)

The two types of electromagnetic modes are TE and TM, and there are no TE evanes-
cent modes. This is put into question for the Drude-plasma model for real metal surfaces,
as discussed briefly in Section 3 below. The requirement of the surface-type solutions (those
that are well-behaved and vanish at infinity), Re(γ2) > 0 implies that κ ≥ (ω/c)Re(ε1/2

2 )
in what follows. Ultimately, the fundamental dispersion relations in Equation (2) combine
into a simple enough relation: D = D1D2 = 0. The Gibbs interaction free energy is given by

F(d, T) =
1

2π

∫ ∞

0
[Fd(r)− F∞(r)]rdr, (4)

where T denotes the tempoerature; the next step is to integrate over wave vector r,

Fd(r) = kT ∑
j

ln[2 sinh(βh̄ωj(r)/2)] (5)

(with k and h̄ are the Boltzmann and the reduced Planck constants, respectively, and
β = 1/(kT)) in the subsequent steps, the sum must be taken over all the available real roots
of Equation (2). From this it follows that

∑
j

g(ωj) =
1

2πi

∮
C

g(ω)[1/D(ω)][dD(ω)/dω]dω. (6)
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In the Formula (6), the path C includes the important points where D has zeros, but does not
include the poles of this function (for details, see [21]). To ensure the validity of Equation (6),
the functions g(z) and D(z) must exhibit analyticity or smoothness, where the contour C
includes the relevant zeros of D, and excludes poles of g(ω). Note that g(z) and D(z) are
assumed analytic for Equation (6) to hold. Since g(ω) = ln[2 sinh(βh̄ω/2)] has branch cuts,
it is convenient to expand it as

g(ω) = ln[2 sinh(βh̄ω/2)]

= ln
[
e

βh̄ω
2 − e−

βh̄ω
2

]
=

βh̄ω

2
+ ln

[
1 − e−βh̄ω

]
=

βh̄ω

2
−

∞

∑
n=1

1
n

e−nβh̄ω

(7)

and consider each term separately. To proceed formally, we choose the path in Equation (6)
starting from −i∞ to i∞ along the imaginary axis, then move around the right half-plane
along a semicircular path with an infinity radius. Since ε(|ω|) → 1 as |ω| → ∞, D(|ω|) = 1
on the semicircle and one can write

Fd(r) =
1

2πi

∫ −∞

∞
g(iξ)

d ln D(iξ; d)
dξ

dξ (8)

=
h̄
2 ∑

j
ωj +

h̄
2π

∞

∑
n=1

∫ ∞

−∞
cos(nβh̄ξ) ln Dr(iξ; d)dξ

− ih̄
2π

∞

∑
n=1

∫ ∞

0
sin(nβh̄ξ) ln

[
Dr(iξ; d)

Dr(−iξ; d)

]
dξ, (9)

where Dr refers to the real roots. Using standard mathematics we exploit the identity

∞

∑
n=1

cos(nx) = π
∞

∑
n=−∞

δ(x − 2πn)− 1
2

, (10)

where δ(·) is the Dirac delta function. When the delta functions are substituted into the
integrals, the integrations can be carried out:

h̄
2 ∑

j
ωj +

h̄
2π

∞

∑
n=1

∫ ∞

−∞
cos(nβh̄ξ) ln Dr(iξ; d)dξ =

kT
2

∞

∑
n=−∞

ln Dr(iξn; d), (11)

where the Matsubara frequency ξn = 2πkTn/h̄ so that

Fd(r) =
kT
2

∞

∑
n=−∞

ln Dr(iξn; d)− ih̄
2π

∞

∑
n=1

∫ ∞

0
sin(nβh̄ξ) ln

[
Dr(iξ; d)

Dr(−iξ; d)

]
dξ. (12)

Noteworthy for dielectric functions depending on ω2 only, one term in Equation (12)
turns out to be zero by symmetry and Equation (12) reduces to

Fd(r) = kT
∞

∑
n=0

′ ln Dr(iξn; d) (13)

The prime notation here represents that the term corresponding to n = 0 is multiplied
by 1/2. This equation is, for instance, valid for the so-called plasma model discussed in
Section 3 just below.
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3. A High-Temperature Semi-Classical Application: The Drude-Plasma Controversy

The Casimir interaction between real metal surfaces has caused controversy in the field
of Casimir physics. The paper [21] discussed above could be relevant to this problem. As is
known [36,37], a real metal has a finite static conductivity. The so-called Drude model is a
suitable model for the optical and dielectric properties of a real metal for small frequencies.
The dielectric function can be described within the Drude model as

ε(ω) = 1 +
4πiσ(ω)

ω
= 1 −

ω2
pl

ω(ω + iγ)
. (14)

Setting the dissipation parameter γ equal to zero is commonly called using the
plasma model,

ε(ω) = 1 −
ω2

pl

ω2 . (15)

Notably, for metal surfaces using the Drude dielectric function, the condition used
to pass from Equation (12) to Equation (13) is not fulfilled. However, the dissipation
parameter has an actual physical basis. It is not zero for any real metal. Its origin is via
scattering of carriers against impurities within the lattice. Importantly, when using the
plasma model, one by quite a simple ad hoc decision neglects these effects and, as a result,
the static conductivity becomes infinite. In Ref. [36] it is demonstrated how including
the dissipation parameter has a critical effect on the predicted interaction at large surface
separations, where temperature effects impact the results strongly. The plasma model
predicts a result coinciding with that of the classical Gedanken experiment by Casimir
between two perfectly reflecting half-spaces, while the Drude model predicts that this
result is reduced by a factor of two. To understand how these drastic effects occur, one
needs to look at the TM and TE normal modes involved in the problem. When dissipation
is included, there are also TE evanescent modes. At separations where the temperature is
essential, the contribution to the interaction from these TE evanescent modes completely
cancels those from the TE propagating modes. It is known that experimental results
in general agree better with the zero-temperature results between real metal surfaces
and well enough with the zero-temperature result for the Casimir Gedanken experiment.
The agreement is better still with the theoretical room-temperature result obtained when
using the so-called plasma model. This was the seed of the long-standing controversy in
the field. The finite temperature Casimir effect between metallic surfaces is a complex
phenomenon, and care has to be taken about the electrostatic patch potentials, which have
caused uncertainties in the actual interpretation of the data in experiments. Different
theoretical groups have found fundamentally different results [36,38]. A particularly
useful aspect of the original Lamoreaux experiment [39] was that it was carried out at
large enough separations where finite temperature corrections can be expected. Steve
Lamoreaux with collaborators later presented results using a similar experimental setup
where separations were varied from 0.7 to 7 µm [40]. The theoretical predictions based
upon the Drude model were found to agree with the observed results to acceptable accuracy.
Let us stress, however, that other experiments [41–45] (more references can be found in
the recent review by Vladimir Mostepanenko and Galina Klimchitskaya [46]), yielded
results in quite good accordance with the plasma model rather than the Drude model.
The reason for contradictory results (both theoretical and experimental) is not known to
the authors of the present paper. There is still a need for more experiments and theoretical
analysis focusing on Casimir–Lifshitz forces in different systems that include interacting
conducting (metallic) objects. However, it is not the purpose of the current study to explore
this problem. For one side of this long story (and relevant references), we refer to a very
recent paper by Mostepanenko and Klimchitskaya [46]; see also [47]. For another side
of the story, one could, for example, consult the well-explaining paper by Sernelius [37].
More information can be found in elsewhere [48–51]. But, perhaps, a correct calculation
for high-temperature/large-separation Casimir force between real metal surfaces has still
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not been carried out. The solution might from a fundamental point of view, if perhaps not
necessary from a practical point of view, involve both the use of our Equation (12) and the
inclusion in the theory of any intervening plasma as in the following Section 4.

4. Another Intriguing Semi-Classical Story: Casimir Interaction Energy across a Plasma

Researchers have been looking into Casimir forces over time because of a fundamental
role of those forces in electron stability, particle physics, and nuclear interactions [52–54].
We recently looked at a Casimir–Yukawa problem that is similar to the classic story of
electron stability, often known as “the Casimir mousetrap” [54]. This problem explores
how negative charges on an electron surface create a repulsive force between surface parts,
which has to be counteracted by an attractive force to retain a finite electron radius. Casimir
proposed that the attractive Poincaré stresses could be caused by the zero-point energy
present in electromagnetic vacuum fluctuations [54]. Nevertheless, the study of Timothy
Boyer and others showed that although the interaction’s magnitude was correct, it had
the wrong sign and resulted in a repulsive force [54]. Other relevant models, such as the
dielectric ball, also exhibit their respective problems, some of which are still triggering
discussions recently. Around 50 years ago, Ninham and Pask [32] found that the zero-
temperature Casimir vacuum fluctuation energy was enough to provide the binding energy
of nucleons in a nucleus. At finite temperatures, the expression (4) discussed in Section 2
reads [19]

F(d, T) =
kT
π

∞

∑
n=0

′
∫ ∞

0
dq q ln[1 − e−2d

√
q2+ξ2

n/c2
]. (16)

Explicitly, in vacuum (i.e., in the complete absence of an intervening electron–positron
plasma), the following useful expansion [31,52,55,56] were derived,

F(d, T) ≈ −π2 h̄c
720d3 − ζ(3)k3T3

2πh̄2c2
+

π2dk4T4

45h̄3c3
+ · · · , (17)

where zeta function ζ(3) ≈ 1.202. One observes that the initial term corresponds to the
attractive zero temperature Casimir result. The third term in this expression corresponds to
a black body radiation energy (in vacuum and at equilibrium). More than twenty years ago,
Ninham and one of the authors of this paper discussed how this term opposes the attractive
Casimir term [52]. The remaining term is a chemical potential term that in the Gibbs free
energy is well recognized as being due to an electron–positron plasma formed from the
photons inside the nuclear gap (e− + e+ ↔ γ) [57]. The second term can be analysed using
the known density of an electron–positron plasma [57],

ρ− + ρ+ =
3ζ(3)k3T3

π2h̄3c3
. (18)

For a pair of perfectly conducting plates, the Casimir interaction energy across an
electron–positron plasma is

F(d, T) =
kT
π

∞

∑
n=0

′
∫ ∞

0
dqq ln

[
1 − e−2d

√
q2+(ξn/c)2+κ2

]
, (19)

Recall that κ = ωp/c, where ωp denotes the plasma frequency. For any separation at
high enough temperatures, or for any finite temperature at large enough separations, it
follows [52,55,56] an expansion of the form,

F(d, T) = − kTκ

4π

e−2κd

d

[
1 +

1
2dκ

]
− (kT)2e−2ηd

h̄c
e−ρ∗ηd

d
+O(e−4ηd), (20)

where ρ∗ = ρ e2h̄2/(πmek2 T2), η = 2kT/(h̄c) and κ is defined above. Both the n = 0 and
n > 0 terms behave similarly to the Yukawa potential [31,56]. Both provide contributions
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to the Casimir–Yukawa binding energy, depending on the separation (about 0.9 MeV from
the n = 0 term and about 3.6 MeV from the n > 0 term), and surprisingly close to the
experimentally observed binding energy per nucleon (1.1 MeV to about 8.8 MeV) [31].
The idea that there ought to be some kind of link between electromagnetic and nuclear
forces goes back to Richard Feynman (via private communication in the late 1960s between
Ninham and Freeman Dyson, who told Ninham that Richard Feynman had believed there
ought to be a connection between electromagnetic theory and nuclear interactions). This
idea was first explored by Ninham and Pask in early 1970s [32]. We have revived and
expanded on this idea in a series of publications [52,55,56]. The explicit derivation of
meson mass, nuclear binding energy and lifetimes [58] were recently discussed at length
in Ref. [31].

5. Semi-Classical Derivation of Resonance Interaction between Exited State Atom Pair

The semi-classical formalism was also able to describe in detail the ground state van
der Waals potentials between a pair of molecules, or between a molecule and a surfaces [23].
Here, as one in some sense more controversial example [33,59–62], we explore what pre-
dictions come out from semi-classical theory for the resonance interaction energy between
two identical atoms in an excited configuration. The results in this Section were, in the
zero-temperature limit, derived about 50 years ago by Ninham, John Mitchell, and others,
and finally, after deep contemplation and a final extension to finite temperatures [33],
published 20 years ago. Notably, the results are, in the non-retarded limit, identical to
the perturbation theory results [60–63], but in the retarded and finite-temperature limits,
non-oscillatory results are found. This contrast against the oscillatory long-range retarded
resonance interaction obtained from perturbation theory [60,61].

The normal mode expression used to calculate ground state van der Waals interactions
in the case of two identical atoms in air,

1 − α(1|ω)α(2|ω)T(d|ω)2 = 0, (21)

can be separated into one anti-symmetric and one symmetric part. Here, T(d|ω) is the
field susceptibility [59] in a material with dielectric function ε(ω), and α(j|ω) represent the
polarizability of atom j. The excited symmetric state has a substantially shorter lifetime
than the excited anti-symmetric state, which can cause the system to end up in an excited
anti-symmetric state [33]. The first-order dispersion energy of such an anti-symmetric state
comes from

U(d) = h̄[ωr(d)− ωr(∞)], (22)

where ωr denotes resonance frequency. The solution of Equation (21) is the pole of
the anti-symmetric part (of the underlying Green’s function). We change the integration
path around this pole to obtain an expression for the first order excited state resonance
interaction energy,

U(d) = (h̄/π)
∫ ∞

0
dξ ln[1 + α(1|iξ)T(d|iξ)]. (23)

As pointed out in the past, any finite temperature systems can approximately be dealt
with in the same way as for the corresponding ground state problem [55,64]. The tempera-
ture (T) dependence follows when replacing the integration over imaginary frequencies by
a summation over discrete frequencies [14]. The leading term, at large separation when the
modes in the (±;x) branch are excited, is

U(d, T) ≃ ±2kT
d3

∞

∑
n=0

′α(iξn)e−xn[1 + xn + x2n2], (24)
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where x = 2πkTd/(h̄c). In a standard way we approximate the polarizability with α(0) at
large enough separations. Within this approximation, the resonance free-energy is [33],

U(d, T) ≃ ± 2kTα(0)
2d3(ex−1)3 [1 + e3x − ex(1 + 2x − 2x2) + e2x(−1 + 2x + 2x2)]. (25)

For small values of x, this free energy of resonance interaction goes as 1/d4. How-
ever, for any finite temperature, the long-range interaction within the Ninham model is
dominated by the n = 0 term. This term is here

U(d, T)n=0 = ±kTα(0)/d3. (26)

This manifestation of the correspondence principle is identical in nature to the result
obtained for the retarded van der Waals interaction between two ground-state atoms [55,64].
This highlights that the quantum nature of light has an essential role behind the softening
of intermolecular interactions between ground state or excited state atoms (and indeed in
the same way for Lifshitz interactions between macroscopic surfaces).

6. Discussions and Future Outlooks

This concise review primarily aims to engage an insightful discussion concerning
the semi-classical theory of interactions with ground and excited state van der Waals,
Lifshitz, and Casimir forces. This paper also aims to shed new light on a small, but missing,
element of information that might provide some understanding to settle the Drude-plasma
controversy. To be more precise, as we have already discussed in the study by Ninham,
Parsegian, and Weiss [21], the conventional Lifshitz theory left out one extra term. Further
investigations of the Casimir effect at high-temperatures/short-range regimes may offer
more evidence for its potential influence in both meson and atom–atom physics. The
modern research on van der Waals, Lifshitz, and Casimir interactions was pioneered by
Ninham and Parsegian more than 50 years ago. Their respective groups demonstrated
how to use the complicated Lifshitz theory and how to derive it in a much-simplified
way. Researchers from around the world have developed the field for the last 50–60 years
(notably, Russian researchers, including Yurii Barash and Vitaly Ginzburg [65], presented
some classic works that are similar to those that came from Ninham’s group in Australia).
However, it is still an intensive active research field [36,46]. The field was, for instance,
energized by Michael Elbaum and Michael Schick, who predicted that ice can have a
nanometer sized premelted water layer on an ice surface caused by van der Waals, Lifshitz,
intermolecular forces [66]. In general surface charges, ions, and impurities can induce water
films many orders of magnitude thicker [67–69]. The effects caused by ionic interactions
are in general complicated enough, due partly to the fact that the polarizability of ions
leads to a non-linear coupling of van der Waals and ionic forces leading to the macroscopic
double-layer and Lifshitz forces acting across salt solutions [70–75]. An impact from such
intermolecular forces has also been proposed for frost heaving [76] and thunder cloud
charging [77–79]. Ice melting at surfaces and interfaces could be relevant as habitats for
life on planets and moons in permafrost regions, but also on other planets and moons in
the solar system and beyond [80] (for more discussions on planetary science, see [81–83]).
The reverse reaction with ice forming on a water surface via Lifshitz interactions was ruled
out by the study of Elbaum and Schick [84]. However, in contrast, recent re-investigations
of the optical properties of water and ice suggest such a role [85,86]. Following along
these lines, we investigated how the Lifshitz interaction can contribute to some geophysical
effects, including ice layer formation on gas hydrate surfaces [87]. We have recently
proposed such dispersion interactions as potential energy sources behind a secondary ice
growth mechanism on partially melted ice clusters within mist, fog, and potentially also
in clouds [88]. The contributions from intermolecular forces to geophysics is an evolving
research field with essential contributions from Luis McDowell and collaborators [86,89].
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Dispersion interactions between particles and surfaces occur at finite temperatures
and in the presence of a background plasma. This is not only of vital importance for various
biological applications and catalysis, but it may also surprisingly enough be of interest
for hidden aspects in fundamental quantum electrodynamics. All interactions between
particles take place in the presence of the plasma of the fluctuating electron–positron
pairs; constantly created and annihilated. This is particularly true for the interaction
between nuclear particles. Strong similarities were found, suggesting a potential role for
screened Casimir forces as one major contribution to the nuclear interaction. When non-
relativistic plasma [56] is used, the relativistic energy, mc2, enters the interaction energy in
a quite an intriguing way: it replaces the temperature. This indicates that there could be
some interesting physics hidden in this problem, and we may need to use the relativistic
mass from the beginning. To make further progress, one seems may need to extend
these quite simple consideration to include a relativistic plasma response function and to
include magnetic (spin) susceptibilities. These are problems of the same importance as
occurring in physical chemistry [90]. A fundamental ansatz commonly used, assumes that
all electrostatic interactions (generally analysed in a nonlinear theory) and electrodynamic
interactions (often treated within a linear approximation) can be treated separately. This,
in general, is in violation of the fundamental physical laws [90]. For further progress, one
needs to carefully ponder the foundations of the theory of these attractive and repulsive
intermolecular interactions [91].
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