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Abstract: In a conducting medium held at finite temperature, free carriers perform Brownian motion
and generate fluctuating electromagnetic fields. In this paper, an averaged Lorentz force density
is computed that turns out to be nonzero in a thin subsurface layer, pointing towards the surface,
while it vanishes in the bulk. This is an elementary example of rectified fluctuations, similar to the
Casimir force or radiative heat transport. The results obtained also provide an experimental way to
distinguish between the Drude and so-called plasma models.
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1. Introduction

The Hall effect is a known phenomenon in conducting media where a current in
a magnetic field generates a transverse voltage due to the Lorentz force. Due to the
large density of free carriers in conductors, significant magnetic fields are also internally
generated. The corresponding eddy currents have applications at low frequencies for non-
invasive material testing (e.g., reduced conductivity at cracks). Alongside currents induced
by oscillating magnetic fields, the Lorentz force also plays a role in this context [1–3].
At frequencies from the infrared through the near-ultraviolet (UV), the Lorentz force
is responsible for frequency mixing because it is a product of current and field. This
occurs at metal surfaces that provide the necessary broken symmetry and leads to, for
example, second-harmonic radiation [4–8]. A similar phenomenon is optical rectification
where typically a short and intense laser pulse generates a surge of an electronic current,
providing a source of THz radiation [9,10]. In samples with inversion symmetry, the electric
and magnetic fields of optical pulses may rectify to a quasi-DC (direct-current) electric
field that is assisting second-harmonic generation via the third-order Kerr nonlinearity [11].
Also in these applications, a relatively strong external field provides the force driving the
conduction electrons.

In this paper is being discussed the Lorentz (or thermal Hall) force that arises from
the Brownian motion of conduction electrons alone, without any external perturbation.
A surface is again needed and defines, with its normal, the distinguished direction of the
fluctuation-averaged (and hence DC) force. This can be understood as an electromagnetic
contribution to the surface or cleavage energy [12–14]. The thermal Hall force will generate
some space charge (depletion zone) below the surface and be balanced by the correspond-
ing electric field. Experimental indications would therefore be the temperature dependence
of the work function or a transient change in the surface charge density when the temper-
ature of conduction electrons is pushed up, for example, after absorption of a ultrashort
laser pulse [15–17].

The problem is addressed within the relatively simple setting of fluctuation electrody-
namics [18] and focussing on the local Drude approximation for the material conductivity.
The calculations provide an alternative viewpoint on the challenge of defining fluctuation-
induced forces inside a macroscopic medium [19]. The expression for the fluctuation-
averaged Lorentz force contains two terms, one of which would be absent if the so-called
plasma model were used for the metal permittivity. In line with previous suggestions
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related to low-frequency magnetic dipole radiation [20,21], the proposed thermal Hall force
therefore provides another experimental clue to understand the anomalous temperature
dependence of the Casimir force and the unusually large radiative heat transfer on the few
nm scale [22,23].

2. Model

The electromagnetic force density is given by the familiar expression

f = ρE + j × B (1)

with charge and current densities ρ and j, and electric and magnetic fields E and B, respec-
tively. For simplicity, pressure terms proportional to the gradient of the carrier density [5]
and viscous shear forces [24,25] are neglected here, that lead to spatial dispersion (equiva-
lently, a nonlocal conductivity). If an equilibrium state (with charge density ρ0 and zero
current) is perturbed, the two terms in Equation (1) are of first and second order, respec-
tively, in small deviations from equilibrium. The Coulomb force leads to the resonance
frequency Ωp with Ω2

p = eρ0/ε0me for electronic plasma oscillations (e and me are the
electron charge and (effective) mass and ε0 is the vacuum permittivity), while the Lorentz
force is responsible for second-harmonic generation [5].

This paper considers the average of the Lorentz force with respect to thermal fluctua-
tions of charges and fields and derives an integral formula for its temperature-dependent
DC profile below the surface of a Drude conductor. The starting point is Rytov’s fluctu-
ation electrodynamics [18], where the electric current density, j(x) = j(r, t), is a random
variable representing both quantum and thermal fluctuations at the position r and time
t. Its symmetrized correlation function is given by the (local) temperature T (fluctuation–
dissipation theorem):

⟨ji(x), jk(x′)⟩ = 1
2 ⟨ji(x)jk(x′) + jk(x′)ji(x)⟩ − ⟨ji(x)⟩ ⟨jk(x′)⟩

= δikδ(r − r′)
∞∫

0

dω

2π
cos ω(t − t′)Sj(r, ω) , (2)

with Sj(r, ω) = 2h̄ω Re σ(r, ω) coth
h̄ω

2kBT
, (3)

Here the indices take values i, k = x, y, z, and the brackets ⟨· · · ⟩ denote the fluctuation
average. The conductivity σ(r, ω) is assumed to be local and isotropic, ω denotes the
angular frequency, δik the Kronecker delta, δ(·) the Dirac delta function, and kB and h̄ are
the Boltzmann and the reduced Planck constants.

The Rytov currents generate a magnetic field whose vector potential, A, solves in the
transverse gauge the Ampère–Maxwell equation,

−∇2A − µ0ω2ε(r, ω)A = µ0j⊥ , (4)

with the permittivity ε(r, ω) = ε0 + iσ(r, ω)/ω, the vacuum permeability µ0 and the
transverse current j⊥. In a homogeneous and isotropic system, one expects ⟨j × B⟩ = 0,
since there is no preferred direction (see also Ref. [19]). The focus in the following is on the
simple enough half-space geometry, with the metal filling z ≥ 0. Parallel to the surface, a
Fourier expansion with wave vector Q = (qx, qy) is applied where rotational invariance
around the surface normal may be assumed. At fixed Q, the vector potential is given by a
Green tensor

A(Q, z) =
∫ ∞

0
dz′ G(Q, z, z′) · j(Q, z′) (5)

with G(Q, z, z′) =
iµ0

2q
(
T̄ e−iqz +RT̄ e+iqz) eiqz′ for z < z′

and G(Q, z, z′) =
iµ0

2q
(
T e−iqz′ +RT̄ e+iqz′) eiqz for z′ < z , (6)
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where q2 = µ0ω2ε(ω)− Q2. This q with Re q, Im q ≥ 0 provides the normal component of
the wave vectors q = Q + qez, q̄ = Q − qez for reflected and incident waves, respectively.
The tensors T and T̄ are projectors transverse to q and q̄, respectively. The tensor R
describes the fields reflected from the inner surface. It is diagonal when expanded into
principal transverse polarisations—p for the transverse magnetic and s for the transverse
electric modes—and contains the reflection amplitudes rp and rs, respectively. The average
of the vector product j × B with respect to the Rytov currents gives with the local and
isotropic correlation (2), a vector structure proportional to

⟨j∗ × [q × (T̄ · j)]⟩ ∝ tr(T̄) q − T̄ · q (7)

with similar expressions involving q̄, RT̄, etc. If the tensor T corresponds to q, the last term
vanishes by transversality. After the integral over the in-plane angle of Q, only components
normal to the surface remain.

Working through the polarisation vectors (see Appendix A.1 for details), it is indeed
found that the fluctuation-averaged Lorentz force density ⟨j × B⟩ = f ez is orthogonal to
the surface and is given by

f = − µ0

4π

∞∫
0

dω Sj(ω)Re
∞∫

0

Q dQ e2iqz(rp + rs
)

. (8)

Here, the current spectrum Sj is given in Equation (3). The following calculations use the
Drude model for the conductivity

σ(ω) =
σ0

1 − iωτ
(9)

with the DC conductivity σ0 and the scattering (collision) rate 1/τ. This model describes
quite well any conducting material between DC and below additional resonance frequen-
cies. The latter may correspond to optically active phonons (typically in the infrared) or
interband transitions (in the visible and above) and depend on the material [26]. The
so-called plasma model corresponds to the limit σ0, τ → ∞ at a fixed plasma frequency of
Ω2

p = σ0/(ε0τ). Physical realisations of this model are superconducting materials below
their gap frequency and at temperatures much below critical. Its characteristic feature is a
entirely imaginary conductivity, except at zero frequency. The weight of the corresponding
δ-function,

Re σ(ω) =
σ0/τ2

1/τ2 + ω2 → π ε0Ω2
p δ(ω), (10)

has been attributed to the density of superconducting carriers (Cooper pairs) [27] and is
generally temperature-dependent.

The reflection coefficients from the “inner” side of a metal–vacuum interface are in the
Fresnel approximation:

rp =
εv − ε0q
εv + ε0q

,

rs =
q − v
q + v

, v =
√
(ω/c)2 − Q2 , (11)

where c denotes the speed of light.
The calculation above focussed on the contribution from fluctuating currents. Within

fluctuation electrodynamics, another contribution arises from fluctuating fields [18]. To pro-
vide a straightforward motivation for this additional term, consider a toy model with just
two normal mode amplitudes a and b. By construction, these amplitudes are uncorrelated.
Two generic fields A and B can be written as a linear combination of the normal modes:
A = c1a + c2b and B = d1a + d2b. Their correlation function is

⟨A∗B⟩ = c∗1d1 ⟨a∗a⟩+ c∗2d2 ⟨b∗b⟩ . (12)

To relate the coefficients in this expression with measurable quantities, the term c1a = Afl is
attributed to “fluctuations” and c2b = Aind to an “induced” field; and similarly, d1a = Bind
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and d2b = Bfl. Such an identification appears naturally when equations of motion are
linearised around an equilibrium, in particular, in the context of Langevin equations. With
these notations, the correlation reads

⟨A∗B⟩ = d1

c1
⟨A∗

fl Afl⟩+
c∗2
d∗2

⟨B∗
flBfl⟩ =

∂Bind
∂Afl

⟨A∗
fl Afl⟩+

∂A∗
ind

∂B∗
fl

⟨B∗
flBfl⟩ . (13)

In the last step, the ratio d1/c1 is expressed by the linear response of variable B to A and vice
versa. With respect to the calculation performed so far, the term ⟨A∗

fl Afl⟩ in Equation (13)
corresponds to current fluctuations, and ∂Bind/∂Afl describes the magnetic field generated
by them. The second term, ⟨B∗

flBfl⟩, corresponds to magnetic field fluctuations that are
now addressed.

The current responds to Bfl via the associated electric field and Ohm’s law jind = σ Efl.
The thermal Lorentz force is thus determined by the average Poynting vector ⟨Efl ×Bfl⟩. The
spectrum of field fluctuations is provided by the fluctuation–dissipation theorem, assuming
thermal equilibrium at temperature T. For the purposes of the calculations here, T coincides
with the electron temperature because the field responds quite quickly to its sources,
in virtue of its wide continuous mode spectrum. Working through the corresponding
calculations (Appendix A.2), one finds that an expression similar to Equation (8) has to be
added to the Lorentz force. The full result has the explicit form

(total) f (z, T) = − h̄µ0

2π
Re

∞∫
0

dω ω σ(ω) coth
h̄ω

2kBT

∞∫
0

Q dQ e2iqz(rp + rs
)
. (14)

Equation (14) is the main result of the present paper. Let us discuss its properties in Section 3
just below.

3. Discussion
3.1. General Features

A net force appears only due to the reflection from the surface at z = 0, as expected
from broken rotational symmetry. Similar to the Casimir effect, the Lorentz force contains a
specific quantum contribution that is UV-dominated, since coth 1

2 βω → 1 at high frequen-
cies. In practice, the UV transparency of the material makes this contribution finite. Indeed,
from the sum of the two Fresnel amplitudes,

rs + rp =
2vq(ε − ε0)

(εv + ε0q)(q + v)
, (15)

it appears explicitly that the integrand decays sufficiently fast at high frequencies. This is
illustrated in Figures 1 and 2 where the integrand of Equation (14) is plotted.

In the zero-temperature limit, it is expedient to shift the frequency integration to
the imaginary axis, ω = iξ. In this representation, relatively large frequencies and wave

vectors are exponentially damped by the factor e2iqz ≈ exp[−2(z/c)
√

Ω2
p + ξ2 + c2Q2]

(this approximation assumes ξ ≫ 1/τ). An approximate estimate of the double integral
yields a scaling of the average Lorentz force density according to

T = 0 : f (z, 0) ∼
h̄Ωp

λ̄p z3 , (16)

where λ̄p = c/Ωp represents the plasma wavelength.
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Figure 1. Integrand of the average Lorentz force due to quantum fluctuations (T = 0, arbitrary units)
for (a) short and (b) large distances, as indicated. A Wick rotation to imaginary frequencies ξ has
been applied. Parameters: plasma frequency Ωp ≈ 210/τ (typical for Au). The dashed lines in (a,b)
mark the values ξ = c/z, ξ = cQ (light cone), ξ = Q2/(µ0σ0) (magnetic diffusion), ξ = 1/τ, and
Q = 1/z. To reduce the dynamics of the data points, the integrand has been multiplied by z3. See
text for more details.
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Figure 2. Spectrum of the thermal Lorentz force density (arbitrary units, real frequencies): (a,b) in-
tegrand of Equation (14), with the T = 0 contribution subtracted and (b) with only the imaginary
part of the conductivity kept (similar to the plasma model); (c) the spectrum f (z, ω) before evalu-
ating the ω-integral. Sign changes occur at the red dashed-dotted lines. Parameters: temperature
kBT = 1.25 h̄/τ, plasma frequency Ωp ≈ 210/τ (as in Figure 1), distance z = 1.5 λ̄p in (a,b). The
dashed lines in (a,b) mark the values Q = 1/z, h̄ω = kBT, and in solid orange the light cone ω = cQ.
The dashed line in (c) indicates h̄ω = kBT. To reduce the dynamics of the data points in (c), the force
has been multiplied by z2.

We expect both the plasma and the Drude model to give comparable contributions,
unless distances larger than cτ ≫ λ̄p are considered. In addition, for frequencies in the
visible range and above, it is mandatory to take into account deviations from the Drude (or
plasma) models, using, e.g., tabulated optical data [28]. A more detailed discussion is left
for future studies.

Deep in the bulk, z → +∞, the exponential e2iqz makes the force vanish. Since the
medium wave vector q in Equation (14) is complex, one may expect an oscillatory behavior.
The exponential e2iqz becomes approximately real deeply below the light cone (Q ≫ ω/c).
The typical long-range behaviour in the infrared is q ≈ (1 + i)/δ with the skin depth
δ2 = 2/(µ0σ0ω). This corresponds to the diffusive propagation of magnetic fields in a
conducting medium.

The limit z → 0 is beyond the local (Drude or plasma) model because rp tends towards
a constant at large Q, destroying convergence. This is eliminated when using a nonlocal
(q-dependent) conductivity whose magnitude drops for short-wavelength fields. The
leading-order behaviour in the local approximation is discussed in Section 3.2 just below.
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3.2. Thermal Hall Force

In what follows, the quantum contribution is subtracted, coth(h̄ω/2kBT)− 1 = 2n̄(ω/T),
so that the thermal component of the Lorentz force is proportional to the Bose–Einstein dis-
tribution n̄(ω/T). The latter is dominated by frequencies with h̄ω ≲ kBT (mid infrared and
below, see Figure 2c). The plots in Figure 2a,b illustrate that the integrand of Equation (14)
in the (Q, ω)-plane (Figure 2a) would change sign if only the term due to field fluctuations
were kept (Figure 2b).

Note that in the plasma model, where the conductivity is entirely imaginary, the
integrand is nonzero only above the light cone (ω > cQ) and approximately above the
plasma frequency Ωp. Otherwise, the medium wave vector q is entirely imaginary, and the
reflection coefficients rs and rp turn out to be real. This highly suppresses the thermal con-
tribution to the average Lorentz force, since for typical temperatures, one has h̄Ωp ≫ kBT.
It is therefore instructive to evaluate the contribution from the singular DC conductivity
of Equation (10). In calculations along imaginary frequencies, using a generalised plasma
model, this term generates a permittivity ε(iξ) ∼ Ω2

p/ξ2, either by inserting Equation (10)
into Kramers–Kronig relations or, more cautiously, by first isolating the zero-frequency
pole [29,30]. However, a physical interpretation in terms of current fluctuations for super-
conductors is not clear enough. Fields penetrate into a superconducting medium down to
approximately the same depth (the plasma wavelength λ̄p) as the layer where the thermal
Lorentz force is nonzero, see Figure 3. However, one would expect from the Meißner
effect that in the bulk of a sample, there are neither static currents nor magnetic fields.
In Ref. [31], Francesco Intravaia and the present author suggested to interpret the fluctu-
ation electrodynamics of a medium with Equation (10) in terms of an “ideal conductor”
model. Its bulk is filled with “frozen currents” and concomitant magnetic field loops.
Inserting the conductivity (10) into Equation (14), one obtains for the thermal Lorentz force
the expression

(ideal conductor) ∆ f (z, T) = − kBT
λ̄2

p

∞∫
0

dQ e−2Qz Q κ

κ + Q
+ exp. small terms (17)

with κ2 = (Ωp/c)2 + Q2. The integral here has the asymptotic form 1/(8z2) (or 1/(4z2))
for z ≪ λ̄p (for z ≫ λ̄p), the same scaling as the Coulomb force due to image charges. The
exponentially small terms arise from frequencies h̄ω ≳ h̄Ωp ≫ kBT. The resulting force is
shown as dashed-dotted lines in Figure 3.
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Figure 3. Distance dependence of the DC force density, normalised to T/z2 and with flipped sign,
for different temperatures, calculated for an ideal conductor (17) (black dashed-dotted curve) and a
Drude conductor with finite damping time τ (colour curves). The straight dashed gray lines show the
short-distance and large-distance limits of Equation (17) and the short-distance limit of Equation (18).
The parameters are as in Figure 2: for typical conductors such as Au, the parameters correspond to
h̄/τ ≈ 400 K and λ̄p = c/Ωp ≈ 20 nm.
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In good metallic conductors, the reflection coefficients are dominated by |rp| ≈ 1,
while rs ≈ − 1

4 (ε − 1)(ω/cQ)2 → 0 for Q ≫ |ε|ω/c, ω/c (evanescent waves). This allows
for an approximate evaluation of the Q-integral in Equation (14). In the leading order, rs is
dropped, and one obtains again the scaling law f ∼ −1/z2. It has been checked that this
captures well the short-distance behaviour of the force density, f (z, T) ≈ −c2(T)/z2 with a
prefactor given by

c2(T) ≈
h̄µ0σ0

4π

∞∫
0

dω
ω n̄(ω/T)
1 + ω2τ2

=
kBT

8πλ̄2
p

(
β log

β

2π
− π − β ψ(β/2π)

)
. (18)

Here, β = h̄/(kBT τ) and ψ(·) is the digamma function. Recall that τ is the scattering time
in the Drude conductivity, and n̄(ω/T) the Bose–Einstein distribution. This expression
is shown in Figure 4 after dividing out the scale factor kBT/λ̄2

p: one observes only quite
minor dynamics, even though the product kBTτ/h̄ varies over three orders of magnitude.
The agreement with the full numerical integration is particularly good at the short distance
z = 0.2 λ̄p.

The distance dependence at a fixed temperature can be found from Figure 3 where
the combination − f (z, T) z2/(kBT) is shown. The force decays into the bulk with strongly
damped oscillations, of which there remains only a crossing of the curves for different
temperatures at a depth z ≈ 3.5 λ̄p. Beyond this depth, the linear scaling with temperature
becomes exact. The rectified Lorentz force is thus restricted to a few plasma penetration
depths, typically about 100 nm. The ideal conductor also gives a scaling linear in T, but the
weak modifications relative to the 1/z2 power law display the opposite trend.

0.1 1 10 100 103
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2 p
/k

B
T

z = 0.2 p

z = 0.5 p
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Figure 4. Temperature dependence of the amplitude c2(T) of the rectified Lorentz force density
f ≈ −c2(T)/z2 at short distances, normalised to kBT/λ2

p, calculated using Equation (18) (solid line)
and with the numerical integration of Equation (14) with the T = 0 contribution subtracted (symbols).
Material parameters as in Figure 2. Here, τ is not temperature-dependent.

3.3. Physical Consequences

Among the physical consequences suggested by these calculations, Section 1 men-
tioned a temperature-dependent shift ∆ϕ(T) in the work function of a metal. Indeed, the
Lorentz force is pulling charges towards the surface. To calculate the corresponding energy
gain, one needs to regularise the 1/z2 divergence as z → 0. This is physically achieved by
adopting a non-local dielectric function (spatial dispersion), as discussed in Refs. [26,32,33].
A characteristic length scale related to the compressibility of the electron gas is the Debye
screening length, ℓD = vF/Ωp, where vF is typically of the order of the Fermi velocity.

If one integrates the Lorentz force density from z = ∞ down to a cutoff at z = ℓD and
divides by the equilibrium carrier density n0, the following estimate is obtained
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∆ϕ(T) ≈ − c2(T)
n0ℓD

≈ −0.06 kBT
e2

ε0h̄c
h̄/λ̄p

mvF
. (19)

Both ratios on the right-hand side of Equation (19) are less than unity: the first ratio is
4π/137 ≈ 0.0917, and for gold, the second ratio results to ≈0.00380. However, a Kelvin
probe locked to a periodic temperature modulation may prove to be sufficiently sensitive.

A complementary phenomenon is the induced subsurface space charge that screens
the thermal Lorentz force, restoring electro-chemical equilibrium. From the Coulomb law,
its cumulative density ∆Q/A per unit area is of the order of

∆Q
A

≈ ε0

en0
lim

z→ℓD
f (z) ≈ −0.06

e
λ̄2

p

kBT
mv2

F
. (20)

This is again, as just above, a quite small charge, barely an elementary charge per square
micron for gold. If this charge shows fluctuations in the MHz frequency band, however, these
may be detectable with miniaturised ion traps because the corresponding fluctuations in the
Coulomb force work against the laser cooling of the ion to its motional ground state [34].

4. Conclusions

In this paper, a thermal Hall effect has been explored that arises from the correlation
between current density and magnetic field in a conducting medium at finite temperature.
It turns out that in a thin layer below the material surface (its thickness being comparable
to the Meißner penetration depth, λ̄p), the Lorentz force density, averaged over thermal
fluctuations, is nonzero and points towards the surface, similar to the interaction with
image charges. It has been found that a Drude model gives a distinct prediction compared
to the so-called plasma model because the corresponding force spectra have opposite signs
(see Figure 2a,b). The thermal Hall voltage is relatively small, however.

The next step could be the regularisation on short-length scales, using a spatially
dispersive permittivity and suitable boundary conditions. Another interesting perspective
is the fluctuation spectrum of the Lorentz force around its thermal average that arises from
fourth-order correlations of Rytov currents. This may provide an alternative, physical
picture for the unusual electric field fluctuations observed in ion traps (anomalous heating)
that are often attributed to surface contaminations [34].
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Appendix A. Details of the Calculation

Appendix A.1. Polarisation Vectors

The following transverse polarisation vectors are used to expand the transverse pro-
jection tensor T = es ⊗ es + ep ⊗ ep:

es = Q̂ × ez , ep = (qQ̂ − Qez)/k , (A1)

where Q̂ is the unit vector parallel to Q, and k = ω[µ0ε(ω)]1/2. For the wave vector q̄ of
the incident wave (orthogonal projector T̄), the mirror images are used

ēs = es , ēp = (qQ̂ + Qez)/k . (A2)
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This leads to the following compact form of the transverse reflection tensor [35]

RT̄ = rs es ⊗ ēs + rp ep ⊗ ēp . (A3)

As a consistency check, consider the limit of normal incidence where both polarisations
behave in the same way. According to Equation (7), one needs the trace of this tensor:

trRT̄ = rs + rp (q2 − Q2)/k2 (A4)

and the image of the reflected wave vector:

RT̄ · q = 2rp ep qQ/k . (A5)

This expression is nonzero because q̄ and q differ by one mirror reflection from the surface.
Let us perform the angular integration over the in-plane angle φ of Q. The reflection

coefficients only depend on its magnitude Q. One has∫ dφ

2π
q = q ez ,

∫ dφ

2π
ep = −(Q/k)ez , (A6)

so that after integrating over φ, Equation (7) becomes∫ dφ

2π

[
tr(RT̄) q −RT̄ · q

]
= q

[
rs + rp (q2 − Q2)/k2

]
ez + 2q rp (Q2/k2) ez = q

(
rs + rp

)
ez . (A7)

One still has to multiply Equation (A7) with the phase factor eiq(z+z′) from the Green
function (6). The terms without the reflection coefficients (homogeneous medium) cancel
thanks to the first integral in Equation (A6): the limits z′ ↘ z and z′ ↗ z are combined and
the local current correlation function (2) exploited to evaluate the z′-integral. Taking into
account the symmetrised correlation function, eventually introduces a real part [36], and
one obtains Equation (8).

Appendix A.2. Average Poynting Vector

As outlined after Equation (11), the contribution of field rather than current fluctua-
tions involves the calculation of the correlation function ⟨E∗(r, ω)× B(r, ω′)⟩. Using the
Faraday equation to express the magnetic field, one has to evaluate

⟨E∗(r, ω)× [∇′ × E(r′, ω′)]⟩ = ∇′⟨E∗(r, ω) · E(r′, ω′)⟩ − ⟨[E∗(r, ω) · ∇′] E(r′, ω′)⟩ , (A8)

eventually taking the limit r′ → r. The electric field autocorrelation is given by the fluctua-
tion–dissipation theorem [18,37,38]:

⟨E∗
i (r, ω)Ej(r′, ω′)⟩ = 4πh̄ δ(ω − ω′)

eh̄ω/kBT − 1
ImGij(r, r′, ω) . (A9)

Let us assume here for simplicity the medium to be reciprocal so that Gij(r, r′, ω) =
Gji(r′, r, ω). Recall that this Green tensor determines the electric field E(r, ω) radiated
by a monochromatic point dipole of amplitude d located at position r′ in the medium,
E = G · d.

The Green tensor splits into a part relevant for a homogeneous bulk medium that only
depends on the difference r − r′. Its derivative vanishes for r′ → r. The remaining part near
a planar surface can be written with reflection coefficients (Weyl expansion, z, z′ ≥ 0) [35]:

Grefl(r, r′, ω) = iµ0ω2
∫ d2Q

(2π)2
ei(q·r−q̄·r′)

2q
RT̄ . (A10)

Performing the derivatives of Equation (A8) under the imaginary part of this expression,
leads to a quite similar calculation as in Appendix A.1 and results in
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∇′ Im trGrefl(r, r′, ω)− ∑
i,j

∂

∂x′i
ImGrefl

ij (r, r′, ω) ej

= −ez
µ0

4π
ω2 Im

∞∫
0

dQ Q e2iqz(rs + rp
)

. (A11)

The final steps are to multiply Equation (A11) by −iσ∗/ω to convert E∗ into j∗ and
∇× E into B (see Equation (A8)) and to take the real part to obtain the symmetrised correlation.
This makes the imaginary part of the conductivity appear. Writing the frequency integral over
positive frequencies only, leads in conjunction with Equation (8) to the final result (14).
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