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Abstract: Gold nanoparticles (AuNP) have received a growing attention due to their fascinating
physiochemical properties and promising range of biomedical applications including sensing, di-
agnosis and cancer photothermal ablation. AuNP enjoy brilliant optical properties and ability to
convert light into local heat and function as a “nanoheaters” to fight cancer. However, AuNP are
poor drug delivery systems as they do not have reservoirs or matrices to achieve an acceptable
drug loading efficiency. On the other end, liposome-based nanocarriers do not exhibit such optical
properties but are excellent platform for drug loading and they have been proven clinically with a
true presence in the market since the FDA approved Doxil® in 1995. Combining the brilliant optical
and photothermal properties of AuNP with the excellent drug loading capability of liposome should
yield nanocomposites that enjoy the features of both modalities and enable the development of novel
and smart drug delivery systems. Therefore, this review discusses the up-to date research on the
AuNP-liposome nanocomposites and the current available approaches and protocols for their prepa-
ration and characterization. Finally, the biomedical applications of AuNP-liposome nanocomposites
and proposed future directions in this field are discussed.

Keywords: gold; nanoparticles; plasmonic; liposomes; lipid; composites; encapsulation; drug
delivery; cancer

1. Introduction

Nanotechnology has gained a significant interest with broad potential applications
in various fields including environment, energy, engineering, and nanomedicine [1–5].
The principal justification of this interest is the unique physicochemical and biological
properties of the nanomaterials, which is substantially different at the nanoscale compared
to the bulk counterparts [6,7]. Despite the availability of a rich library of nanoparticles from
various materials with various shapes, sizes and surface chemistries, no “ideal” platform
exists. With this considered, scientists started exploring hybrid systems that combine two
or more nanoparticles in an attempt to utilize the best of each component [8].

Gold nanoparticles (AuNP) have received a growing attention due to their brilliant
optical properties and wide applications. Under the umbrella of nanomedicine, AuNP have
been explored and used for chemical sensing, biomedical diagnosis, drug delivery and
targeting, and many other pharmaceutical and biomedical applications [9–12]. This is due
to the unique physicochemical, electrical and optical properties of AuNP including their
extraordinary capability to absorb/scatter light in the visible-near infra-red (Vis-NIR) region
of the spectrum with very large optical extinction coefficients [2,13,14]. Moreover, AuNP
convert efficiently absorbed optical energy into local heat, which can be employed to ablate
nearby cancer cells or pathogenic organisms [2]. Ease of tunable synthesis and accessible
chemistries for surface modifications are additional advantages [15,16]. Furthermore,
AuNP possess excellent chemical stability, biocompatibility, and ability to be quantified
and visualized in complex biological matrices with sensitivity in vitro and in vivo [2,17,18].
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Collectively, the potential properties of AuNP could be applied to develop further targeted
and effective systems for future biomedical applications.

A tremendous amount of work has been carried out so far to master the synthe-
sis of AuNP with tunable size, shape and surface chemistry to explore their biomedical
applications. Excellent reviews on the synthesis and biomedical applications are avail-
able [2,19–23]. Another important direction is the utilization of AuNP in the preparation
of novel AuNP-containing composites, in which AuNP could be added to lipidic, poly-
meric, protein-based or inorganic materials to create a hybrid system that possess mixed
functionalities [8,24]. Usually, these nanocomposites hold innovative physicochemical
properties to offer new types of applications [8]. In the recent years, several AuNP-based
nanocomposites have been prepared including AuNP–carbon nanotubes nanocompos-
ites [25,26], AuNP-polymer nanocomposites [27,28], AuNP-graphene nanocomposites [29],
AuNP-metal oxide nanocomposites [30], AuNP-protein nanocomposites [31,32] and AuNP-
liposome nanocomposites [33,34]. In previous contributions, we described the facile prepa-
ration of AuNP-polymeric nanocomposites and the complete encapsulation of AuNP into
PLGA nanocarriers [35,36]. In the current review contribution, we focus on AuNP-liposome
nanocomposites. According to Scopus database, searching for review contributions on
AuNP-liposome nanocomposites resulted only in two review papers and one book chapter
with various focus (Used key words: TITLE (gold AND nano* AND liposome*); search con-
ducted on April 22, 2023) [37–39]. Therefore, this review aims to describe AuNP-liposome
nanocomposites with the following objectives:

1. Discuss the outstanding properties of AuNP (the guest) and liposomes (the host) to
justify the preparation of AuNP-liposome nanocomposite;

2. Discuss and illustrate various chemistries to prepare AuNP-liposome nanocomposites
and analytical tools to confirm and describe the prepared nanocomposites;

3. Highlight and discuss the reported biomedical applications of AuNP-liposome
nanocomposites and future directions.

2. Gold Nanoparticles: The Guest

Gold is a Nobel metal with outstanding optical properties at the nanoscale. Michael
Faraday’s gold colloid (1856) is considered the first preparation of AuNP which is currently
on display in Faraday Museum (The Royal Institution, London, UK) [40]. After a century
and a half, chemists and physicists developed tremendous wealth of knowledge on the
synthesis of much more sophisticated gold nanostructures and fundamentals to understand
their optical and photothermal properties [2,19–23].

The optical properties of AuNP arise from the exceptional interaction between photons
and electrons of gold at the nanoscale. In more details, the incident photons excite electrons
in the conduction band of AuNP resulting in collective oscillation of these electrons to match
the wavelength of the incident photons and then the resonating oscillation results in optical
extinction (the sum of both optical absorption and scattering). This phenomenon is termed
as the Localized surface plasmon resonance (LSPR) and typically observed for AuNP when
excited with light with a wavelength in the Visible-near infrared region (Vis-NIR) of the
spectrum [41]. LSPR explain the brilliant color of suspensions of AuNP [2]. For example,
when spherical AuNP with a diameter of 18 nm is excited with white light, it appears
red as these AuNP absorb the blue and green fractions and leave the red counterpart for
external eyes to see. The UV-vis spectrum of the same AuNP typically exhibit a plasmonic
absorption maximum around the 520 nm. The optical properties of the same AuNP will
significantly change if we change the particle’s diameter, shape, refractive index of the
medium or the aggregation state. This explains why as suspension of AuNP with a diameter
of 100 nm appears blue and not red. For gold nanorods (AuNR), excited electrons have
two probabilities to oscillate: (1) around the shorted axis resulting in a transverse plasmon
mode with a plasmonic absorption maximum around 520 nm; (2) around the longer axis
resulting in a longitudinal plasmon mode with a plasmonic absorption maximum in the far
visible to the NIR (650–1200 nm) depending on the ratio of the length to the width of the
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AuNR. The strong absorption of AuNR and other anisotropic gold-based nanostructures is
highly advantageous for photothermal application considering the deeper light penetration
in biological tissue in the NIR region. The absorbed optical energy by AuNP finally decays
as a local thermal energy to their close proximity of the excited nanoparticles. For example,
cancer cells can be ablated by the uptake of AuNP if excited by the proper light as a result
of the generated heat near to the surface of the nanoparticle. It worth to mention that the
first clinical trial on human to evaluate the effectiveness of gold-silica nanoshells in ablating
prostate cancer were conducted recently and resulted in a promising result [42].

Similar to many other types of inorganic nanomaterials, AuNP could be prepared
via top-down or bottom-up approaches [43]. In case of the top-down approach, physical
methods are employed to erode a bulk gold into AuNP including laser ablation [44], aerosol
technology [45], UV and IR irradiation [46], and ion sputtering [47]. By contrast, synthesis
of AuNP via the bottom-up approach starts from the atomic level (gold ions) and builds up
to reach nanoparticles at a desired size and shape employing proper chemistries. Chemical
techniques to prepare spherical AuNP relies on the reduction of Au ions using proper
reducing agents in the presence of capping agents [48]. Currently, these reactions are
well established and mechanistic perspectives as well as variables to control the resulting
AuNP are well identified. Examples of widely employed chemical protocols to prepare
AuNP are the Frens/Turkevich method (for 10–100 nm hydrophilic spherical AuNP) [49,50],
the Brust method (for 1–3 nm spherical hydrophobic AuNP) [51], the Murphy/El-Sayed
surfactant assessed seed-mediated method (for gold nanorods) [52–55] and the polyol-
galvanic method (to prepare gold hollow polyhedral nanoparticles) [56,57]. Other modified
protocols and green chemistry-based routes are available in the literature as well [58–61].
Collectively, AuNP enjoy the availability of well optimized, reproducible, tunable synthetic
routes to prepare a library of AuNP with various sizes and shapes using simple chemistries.
Currently, AuNP with variable size, shape and surface chemistry can be ordered from
various commercial suppliers.

AuNP were applied in various biomedical applications including imaging, diagnosis,
therapeutics, and drug delivery, as summarized in Figure 1 [35,62–65]. The unique optical
properties of AuNP are the origin and the basis of various sensing and imaging applications.
For example, the extensive and tunable light absorption of AuNP is the key in the early
used lateral flow rapid test strip that are available globally in community pharmacy and
in use for six decades to detect and test the level of human chorionic gonadotropic in
women’s urine. Optical responses upon AuNP aggregation or changing the local refractive
index are another bases of many optical-based sensing applications of AuNP. When AuNP
aggregate or even de-aggregate, they exhibit extremely different optical properties and this
explain why adding salt to ruby red suspension of AuNP turns it quickly to blue upon
aggregation. Explanation of these intriguing optical responses and applications in sensing
are thoroughly discussed in available review contributions in the literature [66–68].

Away from optical absorption, the extensive elastic light scattering from AuNP can
be employed in various optical scattering-based sensing applications. AuNP are excellent
light scattering agents in the Vis-NIR and they appear as bright stars under dark field
microcopy mode. These optical properties were employed to localize and track these tinny
nanoparticles using dark field microscopy [69–71]. Targeted AuNP that can recognize and
bind specifically to specific markers on cells and can be used as a reporters to sense and
visualize the targeted cells under dark field microscopy [72]. AuNP are excellent enhancers
to both fluorescence excitation and vibrational Raman scattering. In fact, fluorophore
or Raman active tags experience a tremendous enhancement in their fluorescence and
vibrational signals, respectively, if they are placed in the proper distance from AuNP. These
enhancements are the bases of many other brilliant sensing platforms and applications and
excellent reviews covering these fields are available in the literature [73–77].
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Other advantages of AuNP are the ease of visualization using electron microscopy
and quantification using mass spectrometry (ICP-MS: inductively coupled plasma-mass
spectrometry) with very high sensitivity and low intrinsic background levels in biological
samples. We have utilized this attribute to label polymeric nano-host and track their
localization inside a single cancer cell [35]. The ease of preparation in various sizes/shapes,
surface modification, visualization and quantification make AuNP as “ideal” nanoprobes to
understand the fate of nanoparticles, their biodistribution and pharmacokinetics parameters
in vitro and in vivo [14,78].

Anisotropic AuNP that display strong plasmonic absorption in the Vis-NIR and strong
photothermal conversion has been explored as potential candidates to fight cancer. The
ability to manipulate the surface of these “nano-heaters” is a clear advantage to control
their distribution in living organisms and accumulation into cancer regions. From the first
pioneering work on utilizing AuNR to ablate cancer cells in vitro [79–81] twenty years ago
all the way to the recent first clinical trial on human [42], the literature is rich of outstanding
reviews on the photothermal effect of gold nanostructures and its fundamentals and
applications [11,13,82–90].

3. Liposome Nanoparticles: The Host

In the recent years, liposomes have gained attention from researchers for their poten-
tial and diverse applications. In the 1940s, J.Y. Johnson has discovered the first artificially
manufactured phospholipid vesicles (i.e., liposomes) for use as model in the pharmaceu-
tical industry [91–93]. In the upcoming years, similar methods for creating liposomes
were proposed by different researchers [94,95]. Liposomes are among the first nanocarrier
systems to receive FDA-approvals (since 1995 for Doxil®) and one of the most biocompati-
ble, convenient and least expensive nanocarrier systems to prepare with true presence in
market and clinic [95–98]. Many factors play a major role in the preparation procedure of
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liposomes, including lipid and drug concentrations, stirring rate during preparation, and
the use of organic solvent/antisolvent [99]. These factors are important to control because
they may influence size and number of bilayers (lamellarity) of liposome, which in turn
have major effects on drug encapsulation inside the liposomal nanocarrier, release rates an
overall pharmacokinetics [91].

Preparation techniques of liposomes are linked with several advantages including
their suitability for encapsulating thermo-sensitive drugs, avoidance of using toxic or-
ganic solvents, ability to remove the solvent completely, and offering a procedure that
is environment-friendly [91,99]. There is a growing need to develop new drug delivery
nanocarriers including liposomes because drugs that are marketed in the current phar-
maceutical dosage forms are not fully efficient in treating some diseases [100]. Moreover,
liposomes have been widely applied throughout the years for delivering hydrophobic
drugs with improved bioavailability and controlled release profiles [101]. For instance, doc-
etaxel is known as a very powerful antineoplastic and antiangiogenic agent [102]; however,
its clinical applications are limited because of its poor water-solubility and high toxic-
ity [103]. This issue was addressed through loading docetaxel into liposomal nanocarriers,
solubilizing the drug, and achieving a controlled drug release formulation [104]. Doxil®,
Myocet®, and Ambisome® are examples of liposomal-based therapies, in addition to many
other products that are currently in use in the market [105–109]. Moreover, liposomes are
widely applied for biomedical applications since they are biocompatible and biodegradable,
have high tissue penetration, can serve as relatively safe drug nanocarriers, and can be
manufactured and scaled up using established methods [91,100].

Biomedical applications of liposomes include breast cancer therapy [110], hepatocellu-
lar carcinoma [111], cancer Imaging [112], and Rheumatoid arthritis (RA) [113]. However,
low solubility of drug-loaded liposomes can result in poor drug loading, high polydisper-
sity of the nanoparticles, and unfeasibility for large-scale production; all these are among
the drawbacks linked with the current preparation methods of liposomes [91,99,114]. In the
recent years, liposomes gained an increased focus on developing liposome-based nanocom-
posite complexes that would reserve both exclusive properties of inorganic nanoparticles
and the lipidic assembly compromising them [115]. In this regard, many studies tended to
develop AuNP-liposome nanocomposites as an attempt to develop effective and potential
nanocomposites for future biomedical applications.

4. AuNP-Liposome Nanocomposites: Rationale of Preparation

From material chemistry perspective, nanocomposites are hybrid material that are
made of more than one types of materials to combine the advantages of composing com-
ponents and/or to overcome the limitations/challenges associated with one or more of
them [99,116,117]. It is worth to mention that the term “nanocomposite” implies that at least
one component to be at the nanoscale. For example, carbon nanofiber and clay nanoplates
are employed to reinforce various types of polymers and manipulate their mechanical
properties while silver nanoparticles can be doped into textile matrix to provide them
with antibacterial properties. Other systems imply the use of two or more materials at
the nanoscale such as nano-in nano structures [35,36,118,119], where the discussed system
in this review (AuNP-liposome nanocomposites) fall into this category [120–124]. For
example, AuNP are poor drug delivery candidates based on the lack of a reservoir or a
matrix to load therapeutics. In fact, loading of therapeutics are limited to the surface of the
AuNP, and thus the loading capacity is intrinsically less than other nanocarriers (lipidic
or polymeric) on weight per weight bases [125]. However, AuNP have excellent optical
and thermal properties and has been proven as an excellent light absorber in the UV-vis
region of the spectrum with excellent photothermal conversion efficiency to generate local
heat that can be employed to fight nearby cancer cells or to induce drug delivery from
the hosting matrix. On the other end, liposome nanocarriers in general enjoy a comple-
menting feature such as the ease of therapeutic loading to acceptable loading capacities
and efficiencies. In fact, liposomes are one of the first nanoparticles to get FDA approvals
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(Doxil® in 1995) [108], and has been employed as a carrier for many therapeutics in the
clinic [126,127]. Moreover, both hydrophilic and hydrophobic drugs can be loaded into
the aqueous reservoir (Doxil®) or the bilayer membrane (Ambisome®) of the liposome,
respectively [108,128]. Considering the features of both AuNP and liposome nanocarriers,
it stimulates an interesting approach to prepare nanocomposite of both. One of the early
works in this direction described the loading of electron-rich AuNP as a probe into lipo-
somes to enable the visualization of the resulting AuNP-liposome nanocomposite under
electron microscopy and thus understanding the liposome-cell interactions [129]. Moreover,
encapsulation of AuNP as “nanoprobes” into liposome nanocarriers should help in quanti-
fying the hosting lipid nanocarriers uptake into the cells using inductively coupled plasma
mass spectrometry (ICP-MS) analysis. Other driving force is to load NIR-absorbing AuNP
into liposomes to enable the fabrication of NIR-responsive lipid nanocarriers that can load
therapeutics at acceptable loading capacity and release their payload on demand upon
NIR laser irradiation [37,130–132]. In another direction, combining anticancer therapeutics
and AuNP in the same liposome nanocarriers might enable synergistic anticancer activity
via combing both chemo- and photo-thermal modalities [133]. Finally it is worth to men-
tion that AuNP-liposome nanocomposite can be employed to improve the colloidal and
physical stability of both the AuNP and liposomes [134–136]. For example, Runmei et al.
have inhibited the aggregation of AuNP through preparing nanosized AuNP-liposome
nanocomposite to increase steric hindrance [137]. AuNP modification by phospholipids
has been stated to be capable of mitigating the acute cytotoxicity of metallic nanoparti-
cles [138], and manipulating their endocytosis into cells [139]. Lee et al. reported the facile
synthesis of AuNP with tunable optical properties inside the aqueous cavity of liposomes
and confirmed the improved colloidal stability and cellular uptake of the AuNP-liposome
nanocomposite compared to AuNP alone [139]. Collectively, AuNP-liposome nanocom-
posites would provide a new approach to combine both advantages from liposomes and
AuNP, enabling their potential applications in various biomedical fields.

5. AuNP-liposome Nanocomposites: Architectures, Chemistry of Preparation and
Analytical Characterization
5.1. Unveiling the Architectures of AuNP-Liposome Nanocomposites

We refer to the term “architecture” herein as the spatial assembly of AuNP and lipo-
somes, which can take various forms: AuNP in the aqueous core of the liposome, AuNP
on the outermost shell of the liposome, AuNP in the bilayer or even mixed assemblies.
These architectures depend on the size, shape and surface chemistry of AuNP as well as the
hosting liposomes and the employed chemistries/methods to prepare the nanocomposites.
The starting materials for AuNP in the AuNP-liposome nanocomposites can be either
pre-prepared AuNP or gold ions that need to be reduced in-situ. Hydrophilic pre-prepared
AuNP can be assembled on the outermost layer of the liposomes (Figure 2A) if enough
attractions (electrostatic or covalent) are provided [140]. If a suspension of the Hydrophilic
pre-prepared AuNP was used as the hydration media to prepare the liposomes (details fol-
low in next sections), AuNP can be encapsulated into the aqueous core as demonstrated in
Figure 2B [141]. Alternatively to using pre-prepared hydrophilic AuNP, ionic or molecular
precursors of gold can be used as a starting material followed by the successful encapsula-
tion of these precursor into the aqueous cores of liposomes and ultimately the reduction
into AuNP [139]. Hydrophobic pre-prepared AuNP can be incorporated into the bilayer
membrane as shown in Figure 2C [142] for ultrasmall AuNP with a diameter approaching
the lipid membrane thickness (about 3–5 nm) and capped with hydrophobic capping agent
(i.e., alkanethiols) [142,143]. From this discussion, it is apparent that the spatial assembly
of AuNP “in or on” liposomes can be achieved via controlling the properties of AuNP
(hydrophilicity, size and surface charge) as well as the employed method of preparation as
we will detail in the next section.
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5.2. Chemistries to Prepare AuNP-Liposome Nanocomposite

Before we discuss the available chemistries to prepare AuNP-liposome nanocompos-
ites, it is important to discuss briefly the preparation of the hosting liposome followed
by a discussion related to when and how AuNP can be introduced. Typical formation of
liposomes via thin film hydration method is shown in Figure 3 [144]. Briefly, the thin film
hydration method implies the dissolution of lipids in a volatile organic solvent, followed
by rotary evaporation of the solvent to form dried lipid film. Further, the lipid film swells
by hydration in an aqueous medium and multilamellar vesicle starts to form. To obtain,
uniform unilamellar vesicles, the suspension is passed through a polycarbonate filter with
defined pore size [145]. AuNP can be introduced at different stages. Figure 3A, shows the
introduction of pre-prepared hydrophilic AuNP as an aqueous suspension to hydrate the
dried lipid film, which results in the encapsulation of AuNP into the aqueous core of the
formed liposomes. Figure 3B, shows the introduction of AuNP at much later stage, where
the liposome is already formed and thus the resulting architecture will be mostly assembled
AuNP on the liposome outer shell (i.e., covalent or electrostatic binding). Chemistries
described in Figure 3 requires hydrophilic AuNP with size typically smaller than the size
of the liposome and typically results in poor encapsulation yield [139]. After the formation
of AuNP-liposome nanocomposite, unencapsulated AuNPs could be removed using sev-
eral purification methods including repeated slow-speed centrifugation or density-based
fractionation [37,146,147].

For hydrophobic AuNP with small size (i.e., alkanethiol-capped AuNP with diameter
less than 5 nm), AuNP can be introduced in the first step and suspended in the organic
solvent with the dissolved phospholipid as shown in Figure 4. Upon drying, phospho-
lipid and hydrophobic AuNP will form a dried film, which upon hydration will result in
liposome that encapsulate the small AuNP in the bilayer membrane [142]. It is worth to
mention that this protocol can only be applied for small AuNP that individually do not
exhibit optical properties in the Vis-NIR [148,149]. Moreover, the incorporation of AuNP in
the bilayer may result in significant impact on the stability of the hosting liposome and frag-
mentation into micelles [139]. Furthermore, the fundamental drawback of this technique is
that it possesses low encapsulation efficiency, which necessitates an extra step for removing
the free AuNP [109]. In addition, drug incorporation after liposomal preparation was
correlated with higher encapsulation efficiency compared to drug incorporation during the
liposomal formation, which guarantees improved drug bioavailability in the targeted site
of action [94]. It is noteworthy to mention that the choice of the material incorporation (i.e.,



J. Nanotheranostics 2023, 4 208

either after or during liposomal formation) depends on several standards, including the
properties of the incorporated material (i.e., hydrophilic or lipophilic), the targeted profile of
the drug release, and therapeutic applications of the prepared liposome-based nanocompos-
ite [150–154]. Although production methods of liposome-based nanocomposites received
significant efforts for scaling-up these fabrication techniques, some concerns include the
poor colloidal stability profile, low encapsulation efficiencies, toxicity coming from the
organic solvents used during synthesis process, and high costs of large-scale fabrication are
associated with the production of liposome-based nanocomposites [94]. However, these
limitations are variable based on the production techniques followed during the liposomal
formation process. In other words, some liposome production methods (i.e., Freeze Drying,
Reverse-Phase Evaporation, and Membrane Contactor) are among the useful techniques
that are efficient for large-scale fabrication of liposome-based nanocomposites.
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Alternatively, liposomal dried film can be rehydrated with a reducing agent and then
gold ions can be introduced and selectively reduced inside the aqueous core of the lipo-
somes as shown in Figure 5A, which could be called in-liposome reduction approach [139].
Lee et. al. utilized this approach with sodium citrate or ascorbic acid as reducing agents
and tetrachloroaurate ions as the gold precursors, while the reduction was carried out at
room temperature overnight. Employing the in-liposome reduction approach, the research
group prepared seven types of AuNP-liposome nanocomposites with tunable size, metal
compositions and optical properties [139]. On-liposome reduction approach is another
pathway where gold undergoes reduction on the surface of pre-synthesized liposomes
(Figure 5B) [122]. Table 1 summarizes the reported chemistries used to prepare AuNP-
liposome nanocomposites and the physiochemical properties of each component and the
resulting products.

In the preparation of AuNR, shape-directing agents (i.e., CTAB) are used to promote
the anisotropic growth of AuNR. Unfortunately CTAB has cytotoxic profile which limits
the biomedical applications of CTAB-capped AuNR [155–157]. In this regard, Gudlur et al.
reported the CTAB-free preparation of AuNR using cationic liposomes as a substituent
for the CTAB in order to improve the biocompatibility of AuNR [158]. The authors used
cationic pre-prepared liposomes that were mixed with gold precursor (HAuCl4) in the
presence of silver salt, reducing agent (ascorbic acid), and followed by heating at 40 ◦C
to prepare anisotropic AuNR-liposome nanocomposite. Interestingly, AuNR-liposome
nanocomposite potentially induced a significant photothermal ability by hyperthermia-
induced cell death in different cancer cell lines, and thus resulting in enhanced cellular
uptake compared to CTAB-mediated AuNR. However, the actual role of liposomes in the



J. Nanotheranostics 2023, 4 210

synthesis process of AuNR is still unknown, and much research needs to be conducted to
validate this emerging method.

Table 1. Examples of reported AuNP-liposome nanocomposites.

AuNP Characteristics Nanocomposite Preparation
Chemistry Nanocomposite Characteristics Outcomes and Remarks References

• Sodium citrate or
ascorbic acid as
reducing agents

• Liposomes encoded with
the reducing agent were
resuspended in the gold
precursor to form
AuNP-liposome by
electrostatic attraction

• Size of 28–161 nm
• Spherical shape
• Enhanced colloidal

stability

• Selective encapsulation
of reducing agent in to
liposomes allows
self-crystallization of
AuNP within
the liposome

[139]

• 10–50 nm with
• Glycerol as a

reducing agent
• Stable AuNP for two

months without an
added stabilizer

• AuNP were covalently
immobilized on the
thiol-functionalized
surface of the liposome
prepared by thin film
hydration method

• Size of 190 nm
• Spherical shape

• The percentage of
glycerol has no influence
on the size and the
polydispersity index

• Possible
immuno-sensing
applications

[140]

• 25 nm
PEGylated using
Polyethylene glycol

• Zeta potential of
−29.6 mV

• Cationic liposomes
prepared by thin-layer
evaporation method were
decorated using anionic
PEGylated AuNP using
electrostatic interactions

• Size of 180–389 nm
• Zeta potential of 43–51 mV

• Potential biomedical
applications related to
drug delivery

[159]

• 6 nm capped with
Cetyltrimethylam-
monium bromide
(CTAB)

• Negatively charged
liposomes prepared by
thin film hydration
method were
electrostatically bound to
the positive AuNP

• Size of 177.3 nm
• Zeta potential of 4.4 mV
• 87.44% loading capacity of

doxorubicin inside the
AuNP-liposome
nanocomposites

• Possible application for
cancer therapy

[160]

• 19 nm capped with
procyanidin

• Negatively charged
AuNPs were
electrostatically bound to
the positively charged
liposomes prepared by
thin film hydration method

• Size of 200–350 nm
• zeta potential of –26.01 mV
• Spherical shape
• Stable profile after AuNP

incorporation
• Excellent light–controlled

drug release

• Combination between
Doxorubicin-loaded
AuNP-liposome
nanocomposites and
laser irradiation

• supports their medical
application for
cancer therapy

[161]

• Sodium citrate as a
reducing agent

• Functionalized with
carboxyl groups
and silver

• Negative AuNP were
covalently linked (using
EDC and NHS) * to the
positive amino-modified
liposomes surfaces
prepared by thin film
hydration method

• Size of 215.5 nm
• Zeta potential of −11.6 mV
• 90% encapsulation of

Doxorubicin with
increased drug release
under laser stimulation

• Potential biomedical
applications related to
cancer therapy

[162]

• 14.1 nm coated
with Citrate

• Negative AuNP were
electrostatically adsorbed
onto the zwitterionic
liposome surface by the
gel-liquid phase transition
of the lipid membrane

• Size of 105 nm
• Stable size over 1 week of

incubation at room
temperature

• Spherical morphology

• Protecting agents
possess a key factor on
linear self-assembly of
AuNP within the
liposome surface

[163]

• Size of 2−8 nm with
ascorbic acid as a
reducing agent

• In situ reduction of AuNP
on the liposome surface

• Size of 100−120 nm
• Spherical shape

• Biodistribution studies
confirm no cytotoxic
profile of the
AuNP-liposome
nanocomposites

[122]
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Table 1. Cont.

AuNP Characteristics Nanocomposite Preparation
Chemistry Nanocomposite Characteristics Outcomes and Remarks References

• Size of 20–40 nm
with sodium citrate
as a reducing agent

• AuNP were noncovalently
encapsulated inside
liposomes prepared by
thin film hydration method

• Size of 60–80 nm
• Spherical shape
• Zeta potential of −10.4 mV

• Induction of time and
dose dependent death of
breast cancer cells

[164]

• Ascorbic acid as a
reducing agent

• In situ reduction of
positive AuNP on the
negative liposome surface
prepared by thin film
hydration method

• Size of 100–150 nm
• Spherical shape
• Zeta potential of 20 mV

• Potential biomedical
applications for
acne treatment

[165]

* EDC: 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide; NHS: N-hydroxysuccinimide.

5.3. Analytical Characterization of AuNP-Liposome Nanocomposites

Transmission electron microscopy (TEM) is a typical tool to visualize the architecture
of AuNP-liposome nanocomposites and confirm the spatial distribution of AuNP whether
on the outermost shell of the liposome (Figure 6Ai), inside the aqueous core (Figure 6Aii), or
within the liposome bilayer (Figure 6Aiii). However, negative staining is usually required,
and thus staining-related artifacts are possible challenge. Another challenge is related to
the two-dimensional nature of the TEM imaging, which makes it difficult to confirm if
the nanoparticles are “on” or “in” the liposome. A more complex tool is the Cryogenic
transmission electron microscopy (Cryo-TEM), where thin film of liposome suspension is
frozen under liquid nitrogen temperature [166]. The resulting vitrified ice film is extremely
thin and can be imaged directly by EM (Figure 6Aiv). Alternative indirect method is the use
of the sodium cyanide test, in which the successful coating of the AuNP with lipids can be
tested using the oxidation capacity of cyanide to the encapsulated AuNP and the protection
role of the lipid bilayer [167]. In this assay, the lipidic shell that coats the AuNP surface acts
as a non-ion-permeable barrier that protects the golden core from exposure to cyanide ions
as shown in Figure 7. For encapsulated AuNP, addition of cyanide will prevent or delay
the oxidation of the protected AuNP, and thus the original color of the suspension will
be maintained compared to control naked AuNP [167]. If AuNP is “on” the liposome or
simply suspended in the same media without effective encapsulation, then added cyanide
can oxidize the AuNP and the suspension color will disappear. Moreover, brilliant color
of nanogold and its unique plasmonic optical extinction in the Visible-NIR region of the
spectrum can be followed to confirm the formation of AuNP-liposome nanocomposites
(Figure 6B,C) [130]. Coloration of liposome is a visual evidence supporting the formation of
AuNP-liposome nanocomposites. Elemental analysis using energy dispersive spectroscopy
(EDS) can be employed to further support the formation of AuNP-liposome nanocom-
posites, looking for the gold fingerprints as shown in Figure 6D [133]. Quantitively, gold
content can be measured using inductively coupled mass spectrometry (ICP-MS) and
reported as weight percent of the nanocomposite (Figure 6E) [168]. The various analytical
modalities that can be used to confirm the presence, quantify and visualize the encapsu-
lated AuNP are justifications to use AuNP as labels for liposomes, and thus to understand
the biological interactions and fate of labeled liposomes. It is noteworthy to highlight
the need to compare information gathered by complementary techniques to confirm the
properties of the prepared AuNP-liposome nanocomposites. For instance, morphological
information obtained from SEM and TEM could be further correlated with the optical
absorption spectra of the nanocomposite where coloration of liposomes and AuNP and its
unique plasmonic optical extinction in the Visible-NIR region could confirm the formation
of the AuNP-liposome nanocomposites and its size that correlates with unique wave-
lengths [122,130,169]. Moreover, correlating the data obtained by FTIR, XPS, and ICP-MS
could provide insights on the overall structure, composition, and surface properties of the
AuNP-liposome nanocomposites [133,170].
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6. Biomedical Applications of the AuNP-Liposome Nanocomposites

Due to their unique “combined” properties we have discussed thus far, AuNP-
liposome nanocomposites have been evaluated for several biomedical applications in-
cluding imaging, sensing, cancer therapy, and light-responsive drug delivery. The fol-
lowing discussion will highlight these applications in brief with selected examples from
the literature.

6.1. Imaging

The employment of gold in biomedical imaging is attributed to its ability to exhibit
unique optical imaging properties and being excellent contrast for TEM-based and X-ray
based imaging. For instance, Sanzhakov et al. have developed a AuNP-liposome nanocom-
posites for tumor imaging [33]. The accumulation of AuNP-liposome nanocomposite was
tracked in mice using computed tomography (CT) scanner to evaluate the contribution
of targeting moiety on the uptake into tumor in vivo and to confirm that PEGylation of
AuNP-Phospholipid nanocomposite improves the accumulation of AuNP in the tumor
site (Figure 8). In another study, AuNP-liposome nanocomposite (150–200 nm) have been
prepared and illustrated a good CT contrast with better signals compared to commercially
available AuNP (15 and 40 nm) (Figure 8), and thus proposing a novel approach for cancer
imaging [173]. Similarly, the signal from AuNP-liposome nanocomposite was strong and
stable inside the tumor after injection, signifying the potential stability and tissue retention
of the construct [174,175].
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6.2. Sensing

AuNP have been widely applied in biosensing for biomedical purposes including DNA
hybridization [176,177], DNA–protein interactions [178,179], and cell transfections [180,181]
due to their optical properties, their simple preparation techniques, and the ease of sur-
face modification. Currently available detection techniques for bacteria, primarily nucleic
acid-based methods, could achieve low detection limits. In this regard, a simple and
nanoscale assay based on AuNP-liposome nanocomposites was developed for bacterial de-
tection purposes [182]. For example, a simple colorimetric assay based on AuNP-liposome
nanocomposites was developed to detect bacterial toxins. For example, Listeriolysin (LLO)
is a toxin produced by the bacterium Listeria monocytogenes and acts primarily on lipid
membranes to induce pores. Liposomes loaded with cysteine were used as the natural
recognition element in this assay, in which the presence of LLO induces the liberation of
cysteine from liposomes, and consequently induce aggregation of the suspended AuNP re-
sulting in a strong optical response (a colorimetric transformation from red to purple/blue)
as demonstrated in Figure 9. The intensity of the produced color correlates with the LLO
concentration, and thus, proposing a simple and rapid quantitative nanoscale assay for
further development of portable sensors. In a similar colorimetric assay-based attempt,
amine-functionalized AuNP-liposome nanocomposite was fabricated as an attempt to de-
tect thrombin molecule by triggering a color change from blue to red [183]. The employed
AuNP-liposome nanocomposites possessed an improved sensitivity by almost 3 folds in the
existence of AuNP compared with the condition without AuNP. As an attempt to enhance
the plasmonic biosensing using AuNP-liposome nanocomposites, detection of the bacterial
toxin has significantly improved reaching a limit of detection (LOD) of 0.1 ng/mL [184].
Moreover, the proposed nanocomposite illustrated strong properties for optical biosensing
as well as demonstrating a long shelf life, and conserved efficiency for over four weeks.
Additionally, a unique AuNP-liposome nanocomposites was proposed for electrochemical
investigation of lipopolysaccharide in food samples in which it plays a role as a signal
amplifier, a signal output component and a molecular recognizer [185].

6.3. Phototherapy and Laser-Triggered Drug Delivery

Perhaps, the strongest justification and greatest interest for preparing AuNP-liposome
nanocomposites is the preparation of laser-triggered drug release systems and combining
chemotherapy from loaded therapeutics with photothermal effect from the excited AuNP.
First, AuNP are optically active and exhibit strong photothermal conversion efficiency
in the NIR as discussed in previous sections. However, AuNP has poor intrinsic drug
loading capability due to the absence of reservoir or matrix for loading. At the other end,
liposomes are excellent carriers for vast range of therapeutics with proven biocompatibility
and presence in clinics. The fabrication of AuNP-liposome nanocomposites should bring
the best of both: (1) excellent drug loading into the liposomes and (2) light responsiveness
which can trigger the release of loaded therapeutics. Excellent examples are reported in the
literature using various types of liposomes and AuNP [123,124,186–188]. This approach
was first reported in 2007 by Lauri and co-workers who encapsulated hydrophilic and
hydrophobic AuNP into the lipid bilayer or the aqueous reservoir of liposomes, respec-
tively [124]. At physiological temperature, the AuNP-liposome nanocomposites remained
intact while upon irradiation, a rapid release of the encapsulated fluorescent marker was
observed. It is important to note that in this novel and one of the first proof of concept
evaluations, UV light was employed which is not preferred for biomedical applications as
the tissue penetration at this wavelength is poor. In 2008, Zasadzinski and co-workers pre-
pared an NIR-responsive AuNP-liposome nanocomposites using hollow gold nanoshells
(HGN) [189]. Interestingly, the triggered release rate was dependent on the attachment
route of HGN to liposomes (in-liposome, on- liposome or even freely and independently
outside the liposomes), the laser power and the irradiation time. The mechanism of release
upon laser irradiation was explained by the microbubble formation upon heating and the
resulting lipid membrane disturbance and fragmentation of the liposomes. Following these
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two pioneering works, many research groups reported the use of light-responsive AuNP-
liposome nanocomposites both in vitro and in vivo (Figure 10) [37,121,122,132,190,191].
Indeed, combination of AuNP and liposome is not only a tool to induce a triggered drug
release, but to achieve synergistic anticancer activity. For example, Gao and co-workers
reported a synergistic antitumor effect in tumor-bearing mice from combing wedelolactone
(loaded anticancer agents into the liposomes) and NIR-absorbing AuNP and reported up to
95.73% inhibition rate (Figure 11) [192]. Away from light, AuNP-liposome nanocomposite
can be fabricated to trigger their payload therapeutics in the presence of other stimuli. For
example, bacterial toxins were utilized to deliver antimicrobial agents specifically to the
sites of bacterial infections [34].
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hydrophilic and hydrophobic AuNP into the lipid bilayer or the aqueous reservoir of 

Figure 9. Graphical illustration of the solution-based (A) and paper-based (B) Assays for detecting the
Pore-Forming Toxin Listeriolysin O (LLO). Adapted with permission from [182], copyright American
Chemical Society 2020.
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Figure 10. (A) Fluorescent micrograph images of the photothermal-mediated therapy using AuNP-
liposome nanocomposites and laser against MCF-7-fluc2-turboFP tumor cells (absence of red color
represents cell death as shown by the arrow). (B) Pre- and post- injecting liposome-AuNP nanocom-
posite treatment bioluminescence images of mice bearing HT1080-fluc2-turboFP tumor xenograft
showing the significant tumor suppression from the combined photothermal and chemothermal
treatment. (A,B) Reproduced with permission from [122], copyright American Chemical Society 2015.
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Figure 11. (A) Thermal images of tumor-bearing mice after exposure to NIR irradiation and injection
with wedelolactone (anticancer agent) loaded AuNP-liposome nanocomposites. (B) Changes in the
tumor volume in the tumor-bearing mice in different treatment groups. (C) Weights of the tumor in
different treatment groups (* means p < 0.05 and ** means p < 0.01). (D) Images showing the removed
tumors from the mice bearing S180 tumor after 2 weeks of treatment. All graphs were reproduced
with permission from [192], copyright Elsevier 2019.

7. Biodistribution and Pharmacokinetics of AuNP-Liposome Nanocomposites

The fate of AuNP is significantly influenced by their physiochemical characteristics
such as size, shape and surface chemistry [193]; thus, tuning these properties during fabrica-
tion could earn it the desired biodistribution and pharmacokinetics profile. The non-specific
adsorption of plasma proteins (opsonization) to AuNP [194] and subsequent recognition
and elimination by the reticuloendothelial system (RES) are among the main challenges in
achieving the desired biodistribution profile [195]. The instant uptake from the plasma by
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the immune system when administered intravenously affects their residence time in blood
circulation, and thus their therapeutic function. Hence, an effective strategy to preserve the
nanoparticle characteristics and enhance its biodistribution and pharmacokinetics profile is
desired. Zhang et al. reported the preparation of AuNP-liposome nanocomposites in ‘clus-
ter bomb’ structures with unique load release pattern as an effective strategy to improve the
pharmacokinetic properties of loaded paclitaxel (PTX) [196]. This system can be visualized
as a hybrid system in which a part of PTX was covalently linked to AuNP (slow-release
carrier) and another part was physically encapsulated into the liposome carrier (fast release
carrier). The ratio of free to covalently attached PTX was simply tuned by mixing liposome
encapsulating free PTX and PTX-conjugated AuNP. This nanocomposite exhibited a “burst”
release of PTX from liposomes in the site of action and maintained a slower release rate
from the PTX-conjugated AuNP. The described “multi-order” release of PTX enabled rapid
Cmax values and steadily elevated AUC0−t values. This example demonstrates the added
benefit of preparing a hybrid system of AuNP and liposome to tune the pattern and rate of
drug release, and thus to control the collective pharmacokinetics of therapeutics.

The clearance of AuNP and generally inorganic nanoparticles is determined mainly
by their size (Figure 12). Small size particles of less than 5.5 nm (a molecular weight of
approximately less than 50 kD) stay in the circulation for a shorter duration due to the
renal glomerular filtration process into urine [197]. As shown in Figure 12, incorporating
small AuNP (i.e., 20 nm as shown in a red rectangle in Figure 12) into larger liposomes
(i.e., 150 nm as shown in a red rectangle in Figure 12) shift very significantly the hybrid
system’s clearance (mainly hepatic) by ten folds. Hence, encapsulated AuNP are protected
from clearance and stay in circulation for longer periods of time, which could reach up to
14 days [122,198]. Upon the degradation of AuNP-liposome nanocomposites, the resulting
smaller AuNP particles could then be eliminated by renal routes (if they are less than
5.5 nm in diameter). Rengan et al. reported the preparation of biodegradable NIR-
responsive AuNP-liposome nanocomposites by the “on-liposome” reduction method dis-
cussed in previous sections. Their synthesis resulted in the formation of “golden shell”
that is composed from assembled ultrasmall AuNP (2–8 nm in diameter) that support
collectively the photothermal effect in the NIR [122]. Remarkably, the described hybrid
system liberated ultrasmall AuNP upon degradation, which was renally eliminated as
confirmed in vivo by ICP-MS analysis of urine.

Another factor that has been shown to influence the clearance of AuNP-liposome
nanocomposites systems was the surface charge. For example, cationic AuNP-liposome
nanocomposites system, coated with positively-charged 1,2-dipalmitoyl-sn-glycerol-3-
phosphocholine (DPPC), exhibited enhanced excretion of AuNP-liposome through the
negatively charged glomerular basement membrane and gold was detected in urine. This
charge repulsion mechanism in the kidney controls the filtration of molecules, in which
those with a negative charge are repelled; while the positively charged molecules are
filtered [122,199].

Generally, once AuNP are injected intravenously, they are captured by RES through
macrophages and delivered to the liver, spleen, and lungs. Various approaches were em-
ployed to provide a stealth character to AuNP including modification of the nanoparticle’s
surface with PEG, zwitterionic ligands, cell membranes and proteins [200–202]. Recently,
liposomes were proposed as a carrier to alter the cellular uptake, biodistribution and
pharmacokinetics of AuNP. For example, Nam et al. [203] and Zhang et al. [196] prepared
pegylated AuNP-liposome nanocomposites in order to prolong their circulation. Although
PEG-AuNP-liposome nanocomposites were able to escape the immune system, in vivo
experiments demonstrated the majority of the injected dose accumulated in the liver and
spleen, but in 1.5 folds lower concentrations than the conventional AuNP.

Overall, different formulations of AuNP-liposome nanocomposites revealed different
kinetics than the conventional AuNP. AuNP-liposome nanocomposites synthesized with
biodegradable lipid accumulate gradually in the liver and are subjected to biological
degradation by lipid enzymes resulting in losing the spherical morphology and free AuNP
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redistributing back to plasma and excreted in urine [122]. On the other hand, AuNP-
liposome nanocomposites coated with PEG have more stable physiochemical properties
and pharmacokinetic profile with enhanced permeability and retention (EPR) effect in
tumors [193,204], as the half-life was shown in vivo to reach up to 25 hours, staying in the
body for up to 14 days [122].
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are compared because experimental designs, such as labeling probes and sampling time schedules,
were different. The graph was reproduced with permission from [193], copyright Elsevier 2022.

8. Outlook and Remarks

As discussed above, there are clear driving forces to prepare the AuNP-liposome
nanocomposites. Such hybrid nanosystem brings the best of both counterparts: the brilliant
optical properties, photothermal effect and imaging modalities for AuNP and the biocom-
patibility and excellent drug loading of liposomes. The result is a hybrid nanosystem that
can be visualized using various imaging platforms, trigger release upon demand with
external NIR laser and exhibit superior pharmacokinetics compared to AuNP or liposome
alone. The literature is rich of chemical routes to prepare and characterize AuNP-liposome
nanocomposites with controlled size, architectures (AuNP special attachment to liposome)
and functionality. This topic is still in its early stages and simple synthetic approaches
to prepare AuNP-liposome nanocomposites with a capability to be scaled into industrial
batches is still to be evaluated and confirmed. Moreover, combining non-biodegradable
AuNP into FDA-liposome could bring a regulatory challenge to the composite, especially
when the AuNP are larger than being renally cleared as discussed in previous sections.
Thus, the chronic safety profile as well as a complete evaluation of the pharmacokinetics
of AuNP-liposome nanocomposites should be a subject of upcoming research directions.
Overall, from the obtained results in the literature, it is indicated that with further opti-
mization and assessment, AuNP-liposome nanocomposites represent a highly promising
approach to fabricate a smart sensing and drug delivery platforms for advanced biomedical
and clinical applications in the future.



J. Nanotheranostics 2023, 4 220

Author Contributions: Conceptualization, A.M.A.; writing—review and editing, S.I., R.I., A.E., O.R.,
A.M.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Qatar University (Grant number QUT2RP-CPH-23/24-147).

Acknowledgments: Authors acknowledge the financial support from Qatar University.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From

Chemical–Physical Applications to Nanomedicine. Molecules 2020, 25, 112. [CrossRef]
2. Dreaden, E.C.; Alkilany, A.M.; Huang, X.; Murphy, C.J.; El-Sayed, M.A. The golden age: Gold nanoparticles for biomedicine.

Chem. Soc. Rev. 2012, 41, 2740–2779. [CrossRef] [PubMed]
3. Mosleh-Shirazi, S.; Abbasi, M.; Moaddeli, M.R.; Vaez, A.; Shafiee, M.; Kasaee, S.R.; Amani, A.M.; Hatam, S. Nanotechnology

Advances in the Detection and Treatment of Cancer: An Overview. Nanotheranostics 2022, 6, 400–423. [CrossRef] [PubMed]
4. Salvador-Morales, C.; Grodzinski, P. Nanotechnology Tools Enabling Biological Discovery. ACS Nano 2022, 16, 5062–5084.

[CrossRef]
5. Chandra, S.; Hu, T. From Prevention to Therapy: A Roadmap of Nanotechnologies to Stay Ahead of Future Pandemics. ACS

Nano 2022, 16, 9985–9993. [CrossRef] [PubMed]
6. Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.;

Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol.
2018, 16, 71. [CrossRef] [PubMed]

7. Dutta, D.; Das, B.M. Scope of green nanotechnology towards amalgamation of green chemistry for cleaner environment: A review
on synthesis and applications of green nanoparticles. Environ. Nanotechnol. Monit. Manag. 2020, 15, 100418. [CrossRef]

8. Seaberg, J.; Montazerian, H.; Hossen, M.N.; Bhattacharya, R.; Khademhosseini, A.; Mukherjee, P. Hybrid Nanosystems for
Biomedical Applications. ACS Nano 2021, 15, 2099–2142. [CrossRef]

9. Meesaragandla, B.; Komaragiri, Y.; Schlüter, R.; Otto, O.; Delcea, M. The impact of cell culture media on the interaction of
biopolymer-functionalized gold nanoparticles with cells: Mechanical and toxicological properties. Sci. Rep. 2022, 12, 16643.
[CrossRef]

10. Bai, X.; Wang, Y.; Song, Z.; Feng, Y.; Chen, Y.; Zhang, D.; Lin, F. The Basic Properties of Gold Nanoparticles and their Applications
in Tumor Diagnosis and Treatment. Int. J. Mol. Sci. 2020, 21, 2480. [CrossRef]

11. Goddard, Z.R.; Marín, M.J.; Russell, D.A.; Searcey, M. Active targeting of gold nanoparticles as cancer therapeutics. Chem. Soc.
Rev. 2020, 49, 8774–8789. [CrossRef]

12. Mokammel, M.A.; Islam, M.J.; Hasanuzzaman, M.; Hashmi, S. Nanoscale Materials for Self-Cleaning and Antibacterial Applications;
Elsevier: Amsterdam, The Netherlands, 2019. [CrossRef]

13. Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal
therapy. J. Adv. Res. 2010, 1, 13–28. [CrossRef]

14. Alkilany, A.M.; Lohse, S.E.; Murphy, C.J. The Gold Standard: Gold Nanoparticle Libraries To Understand the Nano–Bio Interface.
Accounts Chem. Res. 2012, 46, 650–661. [CrossRef] [PubMed]

15. Carnovale, C.; Bryant, G.; Shukla, R.; Bansal, V. Identifying Trends in Gold Nanoparticle Toxicity and Uptake: Size, Shape,
Capping Ligand, and Biological Corona. ACS Omega 2019, 4, 242–256. [CrossRef]

16. Stetsenko, M.O.; Rudenko, S.P.; Maksimenko, L.; Serdega, B.K.; Pluchery, O.; Snegir, S.V. Optical Properties of Gold Nanoparticle
Assemblies on a Glass Surface. Nanoscale Res. Lett. 2017, 12, 348. [CrossRef] [PubMed]

17. Sulaiman, G.M.; Waheeb, H.M.; Jabir, M.S.; Khazaal, S.H.; Dewir, Y.H.; Naidoo, Y. Hesperidin Loaded on Gold Nanoparticles as a
Drug Delivery System for a Successful Biocompatible, Anti-Cancer, Anti-Inflammatory and Phagocytosis Inducer Model. Sci. Rep.
2020, 10, 9362. [CrossRef]

18. Jia, Y.-P.; Ma, B.-Y.; Wei, X.-W.; Qian, Z.-Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017, 28,
691–702. [CrossRef]

19. Shi, X.; Perry, H.L.; Wilton-Ely, J.D.E.T. Strategies for the functionalisation of gold nanorods to reduce toxicity and aid clinical
translation. Nanotheranostics 2021, 5, 155–165. [CrossRef] [PubMed]

20. Eustis, S.; El-Sayed, M.A. Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance
and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 2005, 35,
209–217. [CrossRef]

21. Huang, X.; O’Connor, R.; Kwizera, E.A. Gold Nanoparticle Based Platforms for Circulating Cancer Marker Detection.
Nanotheranostics 2017, 1, 80–102. [CrossRef]

22. Andreiuk, B.; Nicolson, F.; Clark, L.M.; Panikkanvalappil, S.R.; Rashidian, M.; Harmsen, S.; Kircher, M.F. Design and synthesis of
gold nanostars-based SERS nanotags for bioimaging applications. Nanotheranostics 2022, 6, 10. [CrossRef] [PubMed]

23. Grzelczak, M.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 2008,
37, 1783–1791. [CrossRef]

https://doi.org/10.3390/molecules25010112
https://doi.org/10.1039/C1CS15237H
https://www.ncbi.nlm.nih.gov/pubmed/22109657
https://doi.org/10.7150/ntno.74613
https://www.ncbi.nlm.nih.gov/pubmed/36051855
https://doi.org/10.1021/acsnano.1c10635
https://doi.org/10.1021/acsnano.2c04148
https://www.ncbi.nlm.nih.gov/pubmed/35793456
https://doi.org/10.1186/s12951-018-0392-8
https://www.ncbi.nlm.nih.gov/pubmed/30231877
https://doi.org/10.1016/j.enmm.2020.100418
https://doi.org/10.1021/acsnano.0c09382
https://doi.org/10.1038/s41598-022-20691-w
https://doi.org/10.3390/ijms21072480
https://doi.org/10.1039/D0CS01121E
https://doi.org/10.1016/b978-0-12-803581-8.11585-1
https://doi.org/10.1016/j.jare.2010.02.002
https://doi.org/10.1021/ar300015b
https://www.ncbi.nlm.nih.gov/pubmed/22732239
https://doi.org/10.1021/acsomega.8b03227
https://doi.org/10.1186/s11671-017-2107-8
https://www.ncbi.nlm.nih.gov/pubmed/28499336
https://doi.org/10.1038/s41598-020-66419-6
https://doi.org/10.1016/j.cclet.2017.01.021
https://doi.org/10.7150/ntno.56432
https://www.ncbi.nlm.nih.gov/pubmed/33564615
https://doi.org/10.1039/B514191E
https://doi.org/10.7150/ntno.18216
https://doi.org/10.7150/ntno.61244
https://www.ncbi.nlm.nih.gov/pubmed/34976578
https://doi.org/10.1039/b711490g


J. Nanotheranostics 2023, 4 221

24. Rahmati, S.; Doherty, W.; Babadi, A.A.; Mansor, M.A.C.; Julkapli, N.; Hessel, V.; Ostrikov, K. Gold–Carbon Nanocomposites for
Environmental Contaminant Sensing. Micromachines 2021, 12, 719. [CrossRef] [PubMed]

25. Shi, P.; Xue, R.; Wei, Y.; Lei, X.; Ai, J.; Wang, T.; Shi, Z.; Wang, X.; Wang, Q.; Soliman, F.M.; et al. Gold nanoparti-
cles/tetraaminophenyl porphyrin functionalized multiwalled carbon nanotubes nanocomposites modified glassy carbon
electrode for the simultaneous determination of p-acetaminophen and p-aminophenol. Arab. J. Chem. 2020, 13, 1040–1051.
[CrossRef]

26. Kim, G.H.; Kim, K.; Nam, H.; Shin, K.; Choi, W.; Shin, J.H.; Lim, G. CNT-Au nanocomposite deposition on gold microelectrodes
for improved neural recordings. Sens. Actuators B Chem. 2017, 252, 152–158. [CrossRef]

27. Zhang, R.-C.; Sun, D.; Zhang, R.; Lin, W.-F.; Macias-Montero, M.; Patel, J.; Askari, S.; McDonald, C.; Mariotti, D.; Maguire, P. Gold
nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for
fuel cell electrocatalytic application. Sci. Rep. 2017, 7, 46682. [CrossRef]

28. Afzali, M.; Mostafavi, A.; Shamspur, T. Developing a novel sensor based on ionic liquid molecularly imprinted polymer/gold
nanoparticles/graphene oxide for the selective determination of an anti-cancer drug imiquimod. Biosens. Bioelectron. 2019,
143, 111620. [CrossRef]

29. Yu, Y.; Si, J.; Yan, L.; Li, M.; Hou, X. Enhanced nonlinear absorption and ultrafast carrier dynamics in graphene/gold nanoparticles
nanocomposites. Carbon 2019, 148, 72–79. [CrossRef]

30. Zhang, C.; Zhang, Y.; Miao, Z.; Ma, M.; Du, X.; Lin, J.; Han, B.; Takahashi, S.; Anzai, J.-I.; Chen, Q. Dual-function amperometric
sensors based on poly(diallydimethylammoniun chloride)-functionalized reduced graphene oxide/manganese dioxide/gold
nanoparticles nanocomposite. Sens. Actuators B Chem. 2016, 222, 663–673. [CrossRef]

31. Bolaños, K.; Kogan, M.J.; Araya, E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J.
Nanomed. 2019, 14, 6387–6406. [CrossRef]

32. Li, T.; Wang, Y.; Wang, M.; Zheng, L.; Dai, W.; Jiao, C.; Song, Z.; Ma, Y.; Ding, Y.; Zhang, Z.; et al. Impact of Albumin Pre-Coating
on Gold Nanoparticles Uptake at Single-Cell Level. Nanomaterials 2022, 12, 749. [CrossRef] [PubMed]

33. Sanzhakov, M.; Kudinov, V.; Baskaev, K.; Morozevich, G.; Stepanova, D.; Torkhovskaya, T.; Tereshkina, Y.A.; Korotkevich, E.;
Tikhonova, E. Composite phospholipid-gold nanoparticles with targeted fragment for tumor imaging. Biomed. Pharmacother.
2021, 142, 111985. [CrossRef]

34. Pornpattananangkul, D.; Zhang, L.; Olson, S.; Aryal, S.; Obonyo, M.; Vecchio, K.; Huang, C.-M.; Zhang, L. Bacterial Toxin-
Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection. J. Am. Chem. Soc.
2011, 133, 4132–4139. [CrossRef] [PubMed]

35. Alkilany, A.M.; Rachid, O.; Alkawareek, M.Y.; Billa, N.; Daou, A.; Murphy, C.J. PLGA-Gold Nanocomposite: Preparation and
Biomedical Applications. Pharmaceutics 2022, 14, 660. [CrossRef]

36. Alkilany, A.M.; Abulateefeh, S.R.; Murphy, C.J. Facile Functionalization of Gold Nanoparticles with PLGA Polymer Brushes and
Efficient Encapsulation into PLGA Nanoparticles: Toward Spatially Precise Bioimaging of Polymeric Nanoparticles. Part. Part.
Syst. Charact. 2018, 36, 1800414. [CrossRef]

37. Veeren, A.; Ogunyankin, M.O.; Shin, J.E.; Zasadzinski, J.A. Liposome-Tethered Gold Nanoparticles Triggered by Pulsed NIR
Light for Rapid Liposome Contents Release and Endosome Escape. Pharmaceutics 2022, 14, 701. [CrossRef] [PubMed]

38. Wu, G.; Mikhailovsky, A.; Khant, H.A.; Zasadzinski, J.A. Synthesis, Characterization, and Optical Response of Gold Nanoshells
Used to Trigger Release from Liposomes. Methods Enzymol. 2009, 464, 279–307. [CrossRef]

39. Kojima, C.; Hirano, Y.; Kono, K. Preparation of Complexes of Liposomes with Gold Nanoparticles. Methods Enzymol. 2009, 464,
131–145. [CrossRef]

40. Edwards, P.P.; Thomas, J.M. Gold in a Metallic Divided State—From Faraday to Present-Day Nanoscience. Angew. Chem. Int. Ed.
2007, 46, 5480–5486. [CrossRef]

41. Dieringer, J.A.; McFarland, A.M.; Shah, N.C.; Stuart, D.A.; Whitney, A.V.; Yonzon, C.R.; Young, M.A.; Zhang, X.; Duyne, R.P.V.
Introductory Lecture: Surface enhanced Raman spectroscopy: New materials, concepts, characterization tools, and applications.
Faraday Discuss. 2006, 132. [CrossRef]

42. Rastinehad, A.R.; Anastos, H.; Wajswol, E.; Winoker, J.S.; Sfakianos, J.P.; Doppalapudi, S.K.; Carrick, M.R.; Knauer, C.J.; Taouli, B.;
Lewis, S.C.; et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc. Natl.
Acad. Sci. USA 2019, 116, 18590–18596. [CrossRef]

43. Amina, S.J.; Guo, B. A Review on the Synthesis and Functionalization of Gold Nanoparticles as a Drug Delivery Vehicle. Int. J.
Nanomed. 2020, 15, 9823–9857. [CrossRef]

44. Amendola, V.; Polizzi, S.; Meneghetti, M. Laser Ablation Synthesis of Gold Nanoparticles in Organic Solvents. J. Phys. Chem. B
2006, 110, 7232–7237. [CrossRef]

45. Raliya, R.; Saha, D.; Chadha, T.S.; Raman, B.; Biswas, P. Non-invasive aerosol delivery and transport of gold nanoparticles to the
brain. Sci. Rep. 2017, 7, srep44718. [CrossRef]

46. Hainfeld, J.F.; O’Connor, M.J.; Lin, P.; Qian, L.; Slatkin, D.N.; Smilowitz, H.M. Infrared-Transparent Gold Nanoparticles Converted
by Tumors to Infrared Absorbers Cure Tumors in Mice by Photothermal Therapy. PLoS ONE 2014, 9, e88414. [CrossRef]

47. Hatakeyama, Y.; Onishi, K.; Nishikawa, K. Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition
technique. RSC Adv. 2011, 1, 1815–1821. [CrossRef]

https://doi.org/10.3390/mi12060719
https://www.ncbi.nlm.nih.gov/pubmed/34205255
https://doi.org/10.1016/j.arabjc.2017.09.008
https://doi.org/10.1016/j.snb.2017.04.142
https://doi.org/10.1038/srep46682
https://doi.org/10.1016/j.bios.2019.111620
https://doi.org/10.1016/j.carbon.2019.03.054
https://doi.org/10.1016/j.snb.2015.08.114
https://doi.org/10.2147/IJN.S210992
https://doi.org/10.3390/nano12050749
https://www.ncbi.nlm.nih.gov/pubmed/35269237
https://doi.org/10.1016/j.biopha.2021.111985
https://doi.org/10.1021/ja111110e
https://www.ncbi.nlm.nih.gov/pubmed/21344925
https://doi.org/10.3390/pharmaceutics14030660
https://doi.org/10.1002/ppsc.201800414
https://doi.org/10.3390/pharmaceutics14040701
https://www.ncbi.nlm.nih.gov/pubmed/35456535
https://doi.org/10.1016/s0076-6879(09)64014-3
https://doi.org/10.1016/s0076-6879(09)64007-6
https://doi.org/10.1002/anie.200700428
https://doi.org/10.1039/B513431P
https://doi.org/10.1073/pnas.1906929116
https://doi.org/10.2147/IJN.S279094
https://doi.org/10.1021/jp0605092
https://doi.org/10.1038/srep44718
https://doi.org/10.1371/journal.pone.0088414
https://doi.org/10.1039/c1ra00688f


J. Nanotheranostics 2023, 4 222

48. Hühn, J.; Carrillo-Carrion, C.; Soliman, M.G.; Pfeiffer, C.; Valdeperez, D.; Masood, A.; Chakraborty, I.; Zhu, L.; Gallego, M.;
Yue, Z.; et al. Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal
Nanoparticles. Chem. Mater. 2016, 29, 399–461. [CrossRef]

49. Xia, H.; Xiahou, Y.; Zhang, P.; Ding, W.; Wang, D. Revitalizing the Frens Method To Synthesize Uniform, Quasi-Spherical Gold
Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm. Langmuir 2016, 32, 5870–5880. [CrossRef] [PubMed]

50. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973,
241, 20–22. [CrossRef]

51. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D.J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase
Liquid–Liquid system. J. Chem. Soc. Chem. Commun. 1994, 1994, 801–802. [CrossRef]

52. Sánchez-Iglesias, A.; Winckelmans, N.; Altantzis, T.; Bals, S.; Grzelczak, M.; Liz-Marzán, L.M. High-Yield Seeded Growth of
Monodisperse Pentatwinned Gold Nanoparticles through Thermally Induced Seed Twinning. J. Am. Chem. Soc. 2016, 139,
107–110. [CrossRef] [PubMed]

53. Nikoobakht, B.; El-Sayed, M.A. Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth
Method. Chem. Mater. 2003, 15, 1957–1962. [CrossRef]

54. Chang, H.-H.; Murphy, C.J. Mini Gold Nanorods with Tunable Plasmonic Peaks beyond 1000 nm. Chem. Mater. 2018, 30,
1427–1435. [CrossRef]

55. Ye, X.; Gao, Y.; Chen, J.; Reifsnyder, D.C.; Zheng, C.; Murray, C.B. Seeded Growth of Monodisperse Gold Nanorods Using
Bromide-Free Surfactant Mixtures. Nano Lett. 2013, 13, 2163–2171. [CrossRef]

56. Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science 2002, 298, 2176–2179. [CrossRef]
57. Li, C.; Shuford, K.L.; Chen, M.; Lee, E.J.; Cho, S.O. A Facile Polyol Route to Uniform Gold Octahedra with Tailorable Size and

Their Optical Properties. ACS Nano 2008, 2, 1760–1769. [CrossRef]
58. Lee, K.X.; Shameli, K.; Miyake, M.; Kuwano, N.; Khairudin, N.B.B.A.; Mohamad, S.E.B.; Yew, Y.P. Green Synthesis of Gold

Nanoparticles Using Aqueous Extract of Garcinia mangostana Fruit Peels. J. Nanomater. 2016, 2016, 8489094. [CrossRef]
59. Ramakrishna, M.; Babu, D.R.; Gengan, R.M.; Chandra, S.; Rao, G.N. Green synthesis of gold nanoparticles using marine algae

and evaluation of their catalytic activity. J. Nanostruct. Chem. 2015, 6, 77–82. [CrossRef]
60. Iranmanesh, S.; Bonjar, G.H.S.; Baghizadeh, A. Study of the biosynthesis of gold nanoparticles by using several saprophytic fungi.

SN Appl. Sci. 2020, 2, 1851. [CrossRef]
61. He, S.; Guo, Z.; Zhang, Y.; Zhang, S.; Wang, J.; Gu, N. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas

capsulata. Mater. Lett. 2007, 61, 3984–3987. [CrossRef]
62. Bansal, S.A.; Kumar, V.; Karimi, J.; Singh, A.P.; Kumar, S. Role of gold nanoparticles in advanced biomedical applications.

Nanoscale Adv. 2020, 2, 3764–3787. [CrossRef] [PubMed]
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