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Abstract: This paper introduces an approach to enhance the efficiency of urban intersections by
integrating Visible Light Communication (VLC) into a multi-intersection traffic control system. The
main objectives include the reduction in waiting times for vehicles and pedestrians, the improvement
of overall traffic safety, and the accommodation of diverse traffic movements during multiple signal
phases. The proposed system utilizes VLC to facilitate communication among interconnected vehicles
and infrastructure. This is achieved by utilizing streetlights, headlamps, and traffic signals for
transmitting information. By integrating VLC localization services with learning-driven traffic signal
control, the multi-intersection traffic management system is established. A reinforcement learning
scheme, based on VLC queuing/request/response behaviors, is utilized to schedule traffic signals
effectively. Agents placed at each intersection control traffic lights by incorporating information
from VLC-ready cars, including their positions, destinations, and intended routes. The agents devise
optimal strategies to improve traffic flow and engage in communication to optimize the collective
traffic performance. An assessment of the multi-intersection scenario through the SUMO urban
mobility simulator reveals considerable benefits. The system successfully reduces both waiting
and travel times. The reinforcement learning approach effectively schedules traffic signals, and
the results highlight the decentralized and scalable nature of the proposed method, especially in
multi-intersection scenarios. The discussion emphasizes the possibility of applying reinforcement
learning in everyday traffic scenarios, showcasing the potential for the dynamic identification of
control actions and improved traffic management.

Keywords: traffic management; intersection controlled by light; queue length; transmitters using
white LEDs; silicon carbide light detectors; on–off keying (OOK) modulation method; density of
pedestrians; model based on reinforcement learning

1. Introduction

Visible Light Communication (VLC) represents a cutting-edge technological paradigm,
revolutionizing data communication through the innovative modulation of the intensity
of the light produced by Light-Emitting Diodes (LEDs) [1,2]. This dynamic technology
has a considerable impact on various applications, thanks to its straightforward design,
operational efficiency, and wide geographic coverage. In the field of vehicular commu-
nications, VLC seamlessly integrates into the environment, as vehicles, streetlights, and
traffic signals entirely adopt LEDs for illumination and signaling commitments [3]. This
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integration extends to the use of exterior automotive and infrastructure lighting, such
as streetlamps, traffic signaling, and head and tail lamps, for both communication and
illumination purposes [4,5]. While VLC does have directional constraints, it is possible that
the use of VLC in combination with other communication technologies will overcome this
limitation. For instance, VLC can be employed for high-speed, short-range communication,
while other wireless technologies such as Wi-Fi or cellular networks can complement VLC
for broader coverage and omnidirectional connectivity.

Traffic lights equipped with VLC transmitters can not only control traffic but also trans-
mit data to vehicles and roadside sensors, maximizing the utility of existing infrastructure.
Utilizing VLC technology to optimize traffic signal efficiency represents a novel approach
to urban intersection management. VLC offers advantages such as high data rates, security,
and interference-free communication, which can revolutionize traditional traffic signal
systems. VLC systems can be designed to provide precise localization capabilities, allowing
traffic control devices to accurately determine the position and movement of vehicles and
pedestrians. This enables more precise control of traffic flow, including adaptive signal
timing and dynamic lane control.

The advent of VLC localization paves the way for advancing security, efficiency, and
scalability in multi-intersection traffic signal control, particularly within the context of
mixed traffic flows [5]. To tackle the hurdles of coordination, scalability, and integration,
our solution involves implementing a traffic signal control system based on distributed
reinforcement learning, specifically designed for Vehicular Visible Light Communication
(V-VLC). The model’s concept is inherently versatile and can be applied to any outdoor
pedestrian setting, provided there is access to street database and traffic data. A vali-
dation of the mobility model was undertaken using Lisbon’s city center as a case study,
affirming its efficacy [6]. Incorporating learning-based control algorithms introduces adapt-
ability and intelligence into traffic signal optimization. By leveraging machine learning
or artificial intelligence techniques, the system can continuously adapt and improve its
performance based on actual traffic conditions and historical data, leading to enhanced
efficiency and responsiveness.

The main goal of the paper is to help with the progress of Intelligent Transport Systems
(ITS) technology, with a focus on optimizing traffic safety and efficiency. This endeavor
involves leveraging enhanced situation awareness and reducing accidents through various
communication modes, incorporating Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure
(V2I), and Infrastructure-to-Vehicle/Pedestrian (I2V/P) communication [7–9]. Recognizing
the shortcomings of the conventional control of the traffic light cycle, marked by extended
delays, our focus shifts towards dynamic adaptations driven by real-time traffic data. The
final goal is to enhance safety and traffic flow at intersections by deploying cooperative
drive strategies [10,11]. The combination of VLC technology and learning-based control
represents a synergistic approach to urban intersection optimization. By integrating these
two innovative technologies, the system can achieve greater efficiency, reliability, and adapt-
ability than traditional traffic management systems, ultimately leading to improved traffic
flow, reduced congestion, and enhanced safety in urban areas. The proposed approach
may also offer scalability and sustainability benefits, as VLC infrastructure can be relatively
easy to deploy and maintain, while learning-based control algorithms can adapt to varying
traffic patterns and environmental conditions over time, contributing to long-term urban
mobility solutions.

The structure of the paper is as follows: Following the introduction, Section 2 provides
an in-depth examination of the V-VLC system, outlining its architecture, communication
protocol, and coding/decoding techniques. Section 3 presents experimental results, system
evaluations, and a Proof of Concept (PoC) through a phasing traffic flow diagram based
on V-VLC. In Section 4, we delve into an agent-based dynamic traffic control simulation
using SUMO, an urban mobility simulator tool. Finally, Section 5 summarizes the paper’s
findings and conclusions, highlighting the transformative potential of V-VLC in traffic
signal control and intersection management.
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2. Traffic Controlled Multi-Intersections
2.1. Multi-Intersection Complexity

The differences between vehicles and pedestrians, including disparities in speed,
size, and movement patterns, introduce additional complexities. Interactions between
pedestrians and vehicles can impede each other, leading to reduced traffic flow efficiency
and potential safety hazards. Striking an optimal balance between these two components
of traffic presents a significant challenge that necessitates thoughtful consideration [12,13].

In the context of multi-intersection scenarios, another obstacle arises. While a straight-
forward solution involves a single entity controlling traffic lights across all intersections,
scalability issues hinder this approach. The rapid increase in state and action spaces
makes it impractical for real-time control applications. While optimization schemes for
single intersections exhibit scalability within their domain, extending their effectiveness to
multi-intersection environments requires innovative solutions.

Researchers [14,15] have delved into collaborative mechanisms to tackle this challenge,
incorporating elements like queue length in adjacent intersections and modeling the inter-
dependencies among these intersections. These attempts aim to strike a balance between
scalability and efficiency in multi-intersection scenarios, acknowledging the necessity for a
new approach to optimize traffic control effectively. Our adaptive traffic control strategy
aims to adapt to actual traffic demand by modeling current and expected future traffic flow
data. In contrast to conventional ground coil detectors used in traffic settings, an adaptive
traffic control system operating within a Vehicle-to-Everything (V2X) environment has
the capability to collect comprehensive data, including precise vehicle positioning, speed,
queue length, and stopping durations. While V2V connections are especially vital for safety
features like pre-crash detection, Infrastructure-to-Vehicle/Pedestrian (I2V/P) links offer
connected vehicles and pedestrians (Ps) access to a diverse array of information [16,17].

2.2. V-VLC Communication Link

The communication system shown in Figure 1a is designed to make it easy for different
parts of the traffic control system to share and process data smoothly. At the heart of this
system is a hybrid mesh cellular structure, which includes two types of controllers placed
at street and traffic lights. This setup is crucial for improving the system’s performance
and scalability [18] The mesh controllers are placed at streetlights along roads at strategic
intervals, acting as central nodes in the network. Their main role is to relay messages to
nearby vehicles efficiently, thereby ensuring the timely distribution of information like
geo-distribution, pose (q(x,y,t)), and traffic notifications. Positioned at intersections, the
mesh/cellular hybrid controllers play a multifaceted role within the system. They serve as
border routers facilitating edge computing (V2I), enabling seamless integration between
mesh and cellular networks. Additionally, they serve as gateways for data exchange
between edge devices and the central cloud infrastructure (I2IM), establishing robust
communication pathways to ensure uninterrupted data flow. The system utilizes embedded
computing platforms to enhance data processing capabilities at the network edge. These
platforms enable tasks like real-time sensor data processing, the precise detection of traffic
flow patterns, and geo-distribution. Through local data processing, the system decreases
response times and alleviates the load on the central cloud infrastructure.

The V-VLC system consists of a transmitter emitting modulated light and a receiver
detecting differences in the received light. Both are connected via a wireless channel. The
LED light is modulated using ON–OFF keying amplitude modulation. The environment
features a grid of square cells arranged orthogonally, with tetra chromatic white light
(WLED) sources at corners. These WLED sources combine Red (R: 626 nm), Green (G:
530 nm), Blue (B: 470 nm), or Violet (V: 390 nm) chips to generate white light, facilitating
various data channels along roads and intersections.

The modulation and conversion of information bits from digital to analog are achieved
through signal processing techniques. Figure 1b depicts the mapping of the coverage of
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an intersection with four arms, highlighting nine distinct intersections (#1–#9) known as
footprint regions, along the cardinal points; δ [19–22].
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Figure 1. (a) Visual depiction in two dimensions of simultaneous localization relative to node density
and transmission range. (b) Coverage map. Each region (footprint) is labeled from #1 to #9, and each
region has a corresponding steering angle code ranging from 2 to 9 [22].

The system receives encoded signals from sources like road lamps and signal lights.
Those indicators are meant for direct communication with identified vehicles (I2V) or
indirect communication between vehicles using headlights (V2V). Each transmitter sends a
message to vehicles (I2V) containing a unique identifier and traffic information. When a
vehicle or pedestrian comes within range of the streetlight, upon receiving the light signal,
the receiver reacts by allocating a unique identifier and the traffic message.

To control the flow of vehicles at intersections, methods such as queue/request/response
and temporal/space relative pose concepts are used. PIN/PIN photodetectors with light
filtering capabilities, integrated into mobile receivers, receive and decode the coded signals.
The MUX receiver then combines various optical channels, performs different filtering pro-
cesses (like amplification and switching), detects multiple signals, determines the centroid
of received coordinates, and stores them as points of reference for the position. Nine refer-
ence points are identified for every unit cell, enabling the precise localization of pedestrians
and vehicles within each cell. (See Figure 1b for illustration) [19].

2.3. Scenario, Environment, and Sequential Phases Used for the Simulation

The simulated scenario depicts a multi-intersection layout, as illustrated in Figure 2a,
comprising a pair of four-way intersections (C1 and C2).
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Figure 2. (a) Simulated scenario: depiction of an intersection with two sets of four arms and its
surrounding environment featuring the optical infrastructure (Xij), the resulting footprints (1–9),
and the presence of connected cars and crossing pedestrians. (b) Identification of traffic lights (TL)
and lanes (L), along with the illustration of possible trajectories for vehicles within an intersection.
(c) Sequential progression of phases within the intersections, illustrating the evolution of operations
over time [22].

Each intersection is equipped with two lanes on every arm, which approach from the
cardinal points, leading to a configuration featuring two lanes on every arm. Each arm
covers 100 m in length, with every lane measuring 3.5 m in width. Within each lane on every
arm, specific directions for vehicle movement are delineated: the right lane accommodates
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vehicles turning right or proceeding straight ahead, while the left lane only permits left
turns. Positioned at the intersection, a traffic system, overseen by the Intersection Manager
(referring to the agent) handles the flow of incoming traffic. Emitters (streetlamps) are
strategically positioned by the roadside with a spacing of 15 m between them. Each lane is
subdivided into three distinct segments, each serving a specific purpose: the first segment is
dedicated to accommodating vehicles in motion or queuing along the lane (queue distances);
the second segment is reserved for vehicles requesting permission to cross the intersection
(request distance); and finally, the third segment, known as the message distance, is where
vehicles receive the requested permission to proceed with crossing.

In Figure 2b, a schematic of the intersection is presented, depicting potential trajectories
for vehicles and pedestrians, coded lanes, and traffic signals. Meanwhile, Figure 2c provides
a visual illustration, offering insight into the sequential evolution of phases within the
intersections. This carefully arranged process follows a precisely organized cycle duration,
comprising a dedicated pedestrian phase and eight separate vehicular phases arranged into
two segments. The sequence of these phases depends on the ever-changing traffic patterns.
Each phase is further divided into specific time intervals or states, creating a detailed
temporal structure that regulates the intersection’s functionality [20,21]. Throughout the
pedestrian phase, all vehicular traffic comes to a halt.

The “environment” is based on clusters of unit cells, forming an orthogonal topology
as shown in Figure 2a. Each transmitter, labeled as X subscript i,j, has its own color (Red,
Green, Blue, or Violet) and horizontal and vertical position (i,j) in the network. In PoC,
crossroads were assumed to be located at the intersections of columns 3 and 11 with line 4.
Figure 2a illustrates four distinct traffic flows along the cardinal directions. A binary choice
(turn left/go straight or turn right) is provided in the road request and response segments.

Each simulated car represents a percentage of the traffic flow. We have assumed a
total influx of 2300 cars per hour approaching the intersections, with 80% originating from
the east and west directions. Subsequently, 25% of these cars are expected to make either a
left or right turn at the intersection, while the remaining 75% will continue straight. The
pedestrian influx is approximately 11,200 per hour, generated from both vertical roads and
crossing the intersection in all directions, with an average speed of 3 km/h.

To illustrate the diverse traffic flows within a cycle, let us examine the following scenario:

• Twenty-four vehicles, from the west (W), approach the intersection. Among these,
twenty vehicles (category a1) continue forward, depicted by the red flow, while four
vehicles (category c1) exclusively make left turns, represented by the yellow flow.

• Vehicles from the east (E) contribute to the green flow, with thirteen vehicles (category
b1) continuing straight, and two vehicles (category b2) making left turns.

• The orange flow originates from the south (S) and consists of six vehicles (category e1).
Within these, two vehicles take a left-turn approach (category e2), while the other four
continue straight.

• Lastly, the blue flow comprises thirteen vehicles (category f1) arriving from the north.
Nine of them proceed straight ahead, while the others execute a left turn at the
intersection.

This breakdown offers a glimpse into how traffic is distributed across each flow,
outlining vehicle movements such as going straight or making left turns at the intersection.
The top three requests are assumed to be a1, b1, and a2, pursued, respectively, by b2, a3,
and c1 in the fourth, fifth, and sixth positions. In the seventh, eighth, and ninth request
positions are, respectively, b3, e1, and a4. The tenth position is taken by c2, followed by a5
in the second-to-last request and f1 in the final one.

2.4. Communication Protocol

To encode information, we utilized an OOK modulation scheme with synchronous
transmission employing a 64-bit data frame. Each infrastructure is outfitted with tetra
chromatic LEDs (refer to Figure 1b), allowing the concurrent transmission of four signals.
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Consequently, the PIN/PIN receiver must possess the capability to actively filter each
channel, resulting in a quadruple increase in bandwidth.

The communication protocol, as outlined in Table 1, identifies the structure and
regulations regulating information exchange. This protocol includes specifications for
synchronization, identification, and payload sections within the transmitted frame.

Table 1. Simplified Protocol For Communication.

COM Position ID (veic) Time Payload

L2V Sync 1 x y 0 bits END Hour Min Sec EOF

V2V Sync 2 x y Lane (0–7) Veic. (nr) END Hour Min Sec Car IDx Car IDy nr behind EOF

V2I Sync 3 x y TL (0–15) Veic. (nr). END Hour Min Sec Car IDx Car IDy nr behind EOF

I2V Sync 4 x y TL (0–15) ID Veic. END Hour Min Sec Car IDx Car IDy nr behind EOF

P2I Sync 5 x y TL (0–15) Direct. END Hour Min Sec EOF

I2P Sync 6 x y TL (0–15) Phase END Hour Min Sec EOF

Each frame within the communication protocol (designated as 1–6) adheres to a
structured format, starting with a synchronization block, followed by identification blocks,
and ending with an End-of-Frame (EoF) block. This organized framework ensures a
systematic and standardized communication protocol for the Visible Light Communication
(VLC) system.

The synchronization block initiates the frame with a 5-bit sequence, represented
by the pattern [10101], which synchronizes receivers and marks the start of a new frame.
Identification (ID) blocks are crucial as they encode information using binary representation
for coded decimal numbers. This information includes the type of communication (1–6),
the location of transmitters (x, y coordinates), and timeline details (END, Hour, Min, Sec).
The time sub-block, identified by the pattern [111], informs the decoder that the following
bit sequence (6 + 6 + 6) pertains to time identification rather than payload. Other ID
blocks contain essential data such as the number and temporary identification of vehicles
following the leader, details about the occupied lane (Lane 0–7), traffic signal requests (TL
0–15), cardinal direction, or active phase conveyed by the infrastructure in a “response” or
“request” message at the intersection.

The traffic message, forming the core of the message, furnishes additional critical
information. This encompasses vehicle details, x and y coordinates, and the order of cars
behind the leader seeking or receiving permission to cross the intersection (Car IDx, Car IDy,
number behind). The traffic information payload includes road conditions, average waiting
time, and weather conditions. The frame concludes with a 4-bit EoF block, identified by
the pattern [0000], indicating the end of the frame.

2.5. Transmitted and Decoded VLC Signals

Each RGBV signal transmitted carries a specific wavelength-calibrated amplitude,
defining its unique characteristics. With four independent emitters in each VLC infrastruc-
ture, the optical signal received can have one to four excitations, resulting in 24 distinct
combinations leading to 16 different photocurrent levels at the photodetector. A filtering
operation is obtained through a double PIN/PIN demultiplexer, a critical component in the
decoding process. With pre-established knowledge of calibrated amplitudes, the PIN/PIN
demultiplexer precisely decodes the transmitted message.

Aiming to clarify both the communication protocol (see Table 1) and the decoding
technique using calibrated signals (Figures 1 and 2), Figure 3a provides a visual representa-
tion. This illustration showcases the decoded optical signals (depicted at the topmost part
of the figures) and the MUX signals received within a V2I (code 3) and a V2V (code 2) VLC
scenario. In this scenario, at “10:25:46”, the leader, ao, positioned on lane L0 (direction E) at
R3,10, G3,11, B4,10, communicates with the IM (agent) at C2, asking permission to cross and
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informs the agent that, behind him, three additional vehicles (V1, V2, and V3) positioned,
respectively, at R3,8, G3,6, and R3,4, are following him.
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Figure 3b demonstrates the infrastructure response, encompassing both I2V and I2P
signals, issued by TL10 and TL13 traffic lights. These responses address the crossing
requests initiated by the ao vehicle and by the q1 pedestrian positioned at the waiting
corner “R3,4, G3,5 “of C1. The response from TL10 was transmitted at “10:25:46”, while
the response from TL13 was sent at “10:28:66”. To investigate pedestrian behavior, two
variables are needed: average pedestrian speed and halting. The former evaluates how the
cycle durations of vehicles affect pedestrian speed, while the latter enables the analysis of
the number of inactive individuals in waiting corners at all intersections, offering insights
into population density in the waiting zone over time.

Figure 4a depicts the MUX signal transmitted to the traffic lights (TLs) by two pedestri-
ans at the corners (P1,22I) to cross C1 and C2, respectively. The top part of the figure exhibits
the decoded messages, while the content of the message is outlined on the right-hand side.
Similarly, in Figure 4b, the MUX signal sent by the traffic lights (I2P1,2) is depicted. The up-
per section of the figure displays the decoded messages, while the right-hand side offers a
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summary of the message. This visual representation aids in understanding the communica-
tion between pedestrians waiting at corners and the corresponding traffic lights, shedding
light on the signals exchanged for pedestrian crossings at both C1 and C2 intersections.
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Figure 4. Requests and responses in normalized MUX signals and decoded signals (on the top) (a) trans-
mitted by the waiting pedestrians (P1,22I) and (b) received by them (I2P1,2) over different frame
durations [22].

This illustration provides an understanding of the interaction between pedestrians and
traffic lights across various intersections. The findings suggest that pedestrians initiate their
crossing towards W, intending to traverse through TL14 waiting in positions R3,12-G3,13
before proceeding. At just “10:25:44”, pedestrian 2 (P22I), begins the communication with
the TL14, and at “10:25:45”, a response arrives (I2P2). The pedestrian must wait until
the pedestrian phase becomes active. With this information, it becomes evident that the
current active phase is N-S (Phase 1) signifying that the pedestrian missed their designated
phase (Phase 0). So, the pedestrian is required to wait for about 120 s before having the
opportunity to cross.
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3. Dynamic Traffic Flow Control: Simulation

This section introduces a dynamic control system model aimed at enhancing the effi-
cient management of vehicular and pedestrian traffic at intersections. The model simulates
expected outcomes resulting from implementing VLC technology for both vehicles and
pedestrians. It utilizes information from V2V, V2I, and I2V communications to strategically
make decisions regarding phase activation. This decision-making process prioritizes lanes
with higher traffic, following a predetermined sequence of phases outlined in Figure 2b.
Additionally, a comprehensive study analyzes the system’s performance during high-
and low-traffic cycles to estimate the number of vehicles efficiently managed within a
one-hour timeframe.

3.1. SUMO Simulation: State Representation

The SUMO simulation environment, as shown in Figure 2, is constructed based on
an existing Lisbon scenario. This scenario considers the impact of roads on traffic flow
at two intersections. The traffic dynamics on the W–E arm, designated as the focal or
“target” road, have a notable impact on traffic flow, with particular emphasis on this arm.
The past influence on the target road of traffic conditions from other roads is restricted
to a specific timeframe. The transmission of traffic flow and traffic waves quantifies the
duration during which the traffic state of other roads affects the target road within the same
timeframe. As vehicles continuously enter the system, the composition of traffic flow on
the target road undergoes gradual changes over time, thereby influencing the cycle length
at both intersections.

In order to improve traffic flow, adjustments were implemented to the originally
suggested phases, as shown in Figure 2. These changes require a direct shift from the
pedestrian phase (Ph0) to the N>S phase (Ph4), with subsequent phases proceeding as
planned in both intersections. By reordering the phases and refining the traffic light control
strategy based on simulation findings, enhancements in traffic flow, the alleviation of
congestion, and overall intersection efficiency can be realized.

Regarding vehicle circulation, all vehicles are assumed to have an average speed
of 10 m/s and a length of 4.5 m. However, as vehicles approach the traffic light at the
beginning of the cycle, particularly during pedestrian evacuation, their speed is reduced
to 5 m/s. Considering this adjusted speed, it is estimated that each vehicle requires
approximately three seconds of green light to pass through the traffic signal. This represents
the time needed for a vehicle traveling at 5 m/s to traverse a 15-m-long intersection.
Therefore, considering the length of the cars, a minimum interval of 5 m between them
is required to prevent collisions at this velocity. By incorporating this information into
the incentive system, the agent is motivated to make decisions that optimize traffic flow,
minimize delays, and ensure the efficient use of green light time, thereby enhancing overall
intersection efficiency.

To accommodate pedestrians within the dynamic system, two scenarios were exam-
ined: the high- and low-traffic scenarios. In the high-traffic scenario, which lasts for 120 s,
76 cars are sent out, amounting to 2300 cars per hour. The low-traffic scenario, with a
duration of 88 s, sends off 44 cars, equivalent to 1800 vehicles per hour. Each intersection
experiences a pedestrian flow of 7200 at C1 and 4000 at C2. Pedestrians are introduced
exclusively on the N and S roads, in both directions, at various distances from the intersec-
tion, mirroring real-life conditions where pedestrians originate from diverse starting points.
All pedestrians are integrated into the SUMO simulator at a speed of approximately 1 m/s,
which is equivalent to 3 km/h, a value closely resembling reality.

The IM, acting as the agent, strategically controls traffic signals to facilitate efficient
and safe movement within the intersection. To achieve effective traffic optimization through
learning, the state representation encompasses information about the environment, vehicle
distribution obtained from V-VLC-received messages (refer to Table 1 and Figure 4b), and
the proposed phasing diagram guiding agent actions (Figure 2b). The primary goal is to
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minimize the total accumulated waiting time in each intersection arm, a metric calculated
based on vehicle speed and queue alerts [21].

The reward function evaluates the difference in accumulated waiting time between
the current and previous steps in all lanes, with negative rewards indicating higher waiting
times. The agent learns to optimize traffic by taking actions (dynamic phases; Figure 2b)
based on the current state, with training involving stored data samples to enhance decision-
making. These decisions are then communicated to drivers and pedestrians through VLC
response messages (Figure 3b), where the vehicle ID is assigned.

The agent’s state, denoted as st, serves as a representation of the environment’s situa-
tion at a specific agent step t. Its effectiveness in facilitating the agent’s learning to optimize
traffic is contingent upon furnishing ample information about the car distribution on each
road. Figure 5 illustrates the state representation of the target road at the intersections
throughout a simulated timeframe [22]. This representation incorporates discrete sub-cells
designated for “response,” “request,” and “queue” zones, enabling the detection of vehicle
entry into incoming lanes. Preceding the stop line of the intersection, each lane is divided
into five cells: 0 for messages, 1 for requests, and 2 to 5 for queues. Each lane is equipped
with its own dedicated traffic light, resulting in a total of 40 state cells during simulation,
with lanes denoted as L/0–7 and traffic lights as TL/0–15. The simulation monitors the
physical positions of waiting vehicles across lanes (L; 0–7) at C1 and C2. Each lane is
segmented into small cells from the intersection, with each cell capable of accommodating a
single vehicle. Sub-states provide detailed information regarding the nearest cell’s position
to the intersection and the maximum queue length.
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Figure 5. State representation (vi) for the “target road” encompasses data on traffic lights (TL 0–15)
and lanes (L 0–7), along with the visualization of vehicle and pedestrian trajectories [22].

The “complete state” refers to all the factors that contribute to the decision-making
process. This could include various elements or aspects that are relevant to the environment
or context in which an agent operates. Within this complete state, there are sub-states.
These sub-states represent different facets or perspectives of the situation in a specific time
step (t) as perceived by the agent. Each sub-state provides a unique representation of the
environment at that particular moment. These representations help the agent understand
and respond to the dynamic conditions of the environment at each step in its decision-
making process. In the position state system at the intersection, a vehicle is referred to as
“vi”, where “i” is the order of the request to cross, stated as a two-character sequence. The
first character identifies the lane where the vehicle is located, while the second indicates
its precise location within that lane. Referring to Figure 5, the states of the leader a0 and
subsequent vehicles are v15 = “00”, v16 = “02”, v17 = “03”, and v18 = “04”.

Each cell has the capability to measure the speed of a single vehicle. Vehicle speed is
monitored during the simulation, representing the movement of vehicles among lanes (L;
0–7) segmented into small cells. Sub-states capture speeds ranging from “{0, 0.1, 0.2, . . .,
0.9, 1}”. A speed of “=1” denotes the maximum legal speed, such as 90 km/h, while “=0”
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indicates 0 km/h. As a result, the IM receives requests (V2I: illustrated in Figure 4a) from all
leader vehicles and pedestrians seeking access to the intersection at different moments. The
V2I data provide the IM with the precise location and speed details of all leading vehicles,
as well as their followers’ corresponding data, conveyed through V2V communication
(Figure 3). Armed with this information, the IM can forecast the initial arrival times and
speeds of vehicles at the different sections of the intersection.

In the queuing length system, the “queue length” denotes the count of stationary
vehicles in a lane at the intersections. It fluctuates in response to incoming traffic and is
influenced by departure rates. Vehicles at rest in the queue have a 0 km/h speed. The
system’s state is represented by the highest queue length across lanes (L; 0–7), and the
number of possible states corresponds to this maximum among all lanes. For example, if
the maximum queue length is 5, then the possible states could be “=0”, “=1”, “=2”, “=3”,
“=4”, and “=5”. If there are three waiting vehicles in lane L5 at C 1, the queue states are
indicated as”=1” for the three waiting vehicles and “=0” for the vehicles in motion. The
queue length changes dynamically as vehicles arrive (increase queue length) and depart
(decrease queue length). This representation allows for modeling and analyzing the traffic
dynamics at the intersection based on the number of waiting vehicles in each lane. The goal
is likely to optimize traffic flow and minimize congestion by understanding and managing
the queuing system.

The traffic light state at each intersection changes between two states. When the signal
is “Red Traffic Light (TL 5),” denoted as “=1”, it indicates a red-light scenario. This state
resets to “=0” when the light changes to green or yellow. Conversely, when the signal is
“Green Traffic Light (TL 0),” represented as “=1”, it signifies a green light situation. This
state resets to “=0” when the light switches to red or yellow.

The traffic light phase state reflects the current traffic flow configuration at any given
time “t”. The simulation represents the current traffic phase at the intersection. For example,
if “C 1 = (1, 0, 0, 0, 0, 0, 0, 0)”, it signifies that only traffic phase 1 is currently activated
(Figure 2c).

The simulation considers the speed of pedestrians at pedestrian traffic light corners
(TL; 12–15). The average pedestrian speed reflects the movement of pedestrians during
the simulation. The term “halting pedestrian” refers to the count of pedestrians waiting at
a corner of intersections C1 or C2. This count fluctuates due to pedestrian arrivals and is
influenced by cross rates. Pedestrians at a standstill have a 0 km/h speed. The system’s
state is characterized by the maximum number of halting pedestrians across pedestrian
traffic light corners (TL; 12–15), and the number of possible states corresponds to this
maximum count. For example, if there is a certain number of waiting pedestrians at corner
TL14 of C1, the states are expressed as “=n” for the pedestrians in waiting and “=0” for
those in motion.

3.2. SUMO Simulation: Cycle and Phases Durations

The SUMO Application Programming Interface (API) allows for seamless interaction
with external programs, enabling smooth integration with the simulation environment.
SUMO offers an extensive array of statistics pertaining to overall traffic flow. Additionally,
it produces a range of results, such as diagrams that visualize the duration of individual
states or the traffic light colors observed throughout the simulation.

Utilizing the scenario illustrated in Figures 2 and 5, we constructed a state diagram
for the peak traffic scenario, integrating both vehicles and pedestrians through the SUMO
simulation. Figure 6a,c showcase the phase diagrams for the interconnected intersections,
C1 and C2, spanning two cycles lasting 120 s each. Meanwhile, Figure 6b provides the
SUMO environment characterized by high pedestrian and moderate vehicle traffic flows.
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Figure 6. State phasing diagrams for two synchronized intersections are presented as follows:
(a) Intersection C1; (b) the surrounding environment; and (c) Intersection C2. Phase numbers along
the cycles are provided at the top of the state phase diagrams.

In Figure 6, we can discern the various cycles occurring during the simulation. It
consistently kicks off with a pedestrian phase, allowing some individuals to cross the
crosswalk, with the signal turning red for pedestrians after 11 s. Subsequently, phases
dedicated to vehicles unfold until their conclusion at 123 s. Following this, the second cycle
begins, marked by the reactivation of the pedestrian phase. This cycle repeats until 247 s,
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marking the conclusion of the second cycle and the commencement of a third cycle. These
diagrams correlate with the analysis conducted for pedestrians that ensues.

3.3. Dynamic vs. Intelligent Traffic Management: Leveraging VLC and DRL

Dynamic traffic management systems involve real-time adjustments to signal timings
and phases based on the actual traffic conditions. These systems rely on ground sensors,
cameras, and other data sources to monitor traffic patterns continuously. Adjustments are
made reactively in response to changes in traffic flow, aiming to optimize traffic flow and
reduce congestion. While dynamic systems are effective in managing immediate traffic
issues, they may lack foresight in anticipating future congestion or optimizing long-term
traffic management strategies. The integration of VLC into dynamic traffic control systems
has represented a novel approach to improving urban intersections [22].

Intelligent traffic management systems utilize advanced algorithms and artificial
intelligence to optimize traffic management strategies proactively. These systems analyze
large datasets from various sources, including VLC-enabled infrastructure, vehicles, and
pedestrians, to predict traffic patterns and optimize traffic flow. By leveraging predictive
modeling, machine learning, and optimization algorithms, intelligent traffic management
systems can anticipate congestion before it occurs and implement preemptive measures
to mitigate its impact. They continuously improve over time, adapting to changing traffic
conditions and optimizing long-term traffic management strategies.

Some advantages of using VLC and DRL can be summarized as follows: VLC tech-
nology enables the collection of real-time data from various sources, providing valuable
insights into traffic patterns and behavior. By combining VLC data with DRL algorithms,
predictive modeling can anticipate traffic congestion and optimize traffic management
strategies accordingly. Leveraging VLC and DRL allows traffic management systems to
take a proactive approach by anticipating congestion before it occurs and implementing
preemptive measures to alleviate traffic congestion and enhance traffic flow. Intelligent
traffic management systems using VLC and DRL continuously learn from past experiences
and adapt their strategies accordingly. This iterative learning process optimizes long-term
traffic management strategies, resulting in improved traffic efficiency and reduced conges-
tion over time. Integrating VLC and DRL enables efficient resource allocation, allowing
traffic resource allocation systems such as traffic light durations and phases more effectively.
This ensures optimal traffic flow while minimizing delays and congestion at intersections.

So, while dynamic traffic management systems focus on real-time adjustments to traffic
conditions, intelligent traffic management systems using VLC and DRL take a proactive and
data-driven approach. By leveraging advanced algorithms and predictive analytics, these
systems can optimize traffic management strategies, anticipate congestion, and improve
overall traffic efficiency.

4. Intelligent Traffic Flow Control Simulation

In traffic control problems, RL-based approaches consider traffic flow states at intersec-
tions as observable states (Figure 5). Signal timing plan changes are actions, with feedback
on control performance being crucial. This section details building an urban traffic control
system using reinforcement learning [23–25].

4.1. Reinforcement Learning and Deep Q-Learning

Reinforcement learning (RL) [26] represents a category within the machine learning
(ML) framework, wherein an agent undergoes a learning process by actively engaging
with an environment [27]. The RL algorithm is very suitable for automatic control [28] and,
therefore, a promising approach to intelligent traffic light control. The primary objective
for these agents is to attain a goal within an environment characterized by uncertainty
and potential complexity. Feedback, in the form of rewards or punishments, serves as the
guiding mechanism for the agent’s learning process. The underlying concept involves
the agent acquiring optimal behaviors or strategies through a series of trial-and-error
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experiences. The reward function assesses the disparity in accumulated waiting time across
all lanes between the current and previous steps, with negative rewards denoting increased
waiting times.

The reward function uses the accumulated total waiting time, atwtt, as a metric which
is defined in the following equation:

atwtt =
n

∑
veh=1

wt(veic,t)

where wt(veh,t) denotes the duration in seconds during which a vehicle veh maintains a
speed of less than 0.1 m/s at agent step t since its introduction into the environment, and
n represents the total number of vehicles in the environment at agent step t. This metric
ensures that when a vehicle exits without crossing the intersection, the atwtt value does not
reset. The reward function, rt, at agent step t is defined as follows:

rt = atwtt−1−atwtt

with atwtt and atwtt−1 denoting the accumulated total waiting time of all the vehicles in
the intersection attained, respectively, at agentstep t and agentstep t − 1.

The agent optimizes traffic by taking actions (dynamic phases, as shown in Figure 2b)
based on the current state, utilizing stored data samples during training to improve decision-
making. These decisions are conveyed to drivers and pedestrians via VLC response
messages (as depicted in Figure 3b), which include assigned vehicle IDs. At each discrete
time step t ∈ T, the agent perceives its Markovian (or memoryless) decision-making factors
(or state st) and obtains a state input based on the observed state of the environment and
selects and performs an action (at) that transforms the observed state into a subsequent
state (st+1). The reward (rt) is then computed based on this action. Positive environmental
rewards reinforce the likelihood of the agent reproducing the corresponding behavior,
while negative rewards have the opposite effect. Following this action, the agent observes
the subsequent state st+1 and receives an immediate reward (or cost) rt+1(st+1) which
depends on the next state st+1 for the state-action pair (st, at). The overarching objective
is to maximize the cumulative discounted reward. Throughout this learning process,
experiences in the form of (st, at, rt, st+1) are stored in memory at each time step. Figure 7
provides a visual representation of the schematic for Deep Reinforcement Learning.

The replay memory comprises a dataset of an agent’s experiences Dt = (e1, e2, e3. . .),
accumulated as the agent interacts with the environment as time over time (t = 1, 2, 3, . . .).
In training, a batch of random samples is chosen to train the agent. This random selection
of samples breaks the temporal correlation between consecutive samples. If the network
learned only from consecutive samples of experiences as they occurred sequentially in
the environment, the samples would be highly correlated and would therefore lead to
inefficient learning. The neuronal network consists of a layered network, and the weight θk
of the network is used to approximate its Q-values Q(s, a; θk) at iteration k.

1 
 

 
 

 
(a) 

 
Figure 7. Cont.
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Figure 7. (a) The Deep Reinforcement Learning schematic. (b) Scheme of the deep neural network 
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To train the agent, the deep Q-Learning technique is employed, leveraging the Q-
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Each traffic lane approaching an intersection is represented by 10 discrete cells, each 

of which represents the presence of a vehicle, resulting in a representation of the state of 

the environment of 80 cells per intersection. The input layer of the neural network is then 
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Figure 7. (a) The Deep Reinforcement Learning schematic. (b) Scheme of the deep neural network used.

To train the agent, the deep Q-Learning technique is employed, leveraging the Q-
Learning algorithm. The Q-value (quality value) represents the expected cumulative reward
of taking a particular action in a particular state and following the optimal policy thereafter.
This algorithm introduces the Q-Function, an action-value function that estimates the value
of selecting action at at state st. The Q-Function predicts the expected cumulative and
discounted future reward. In traditional Q-Learning, the algorithm maintains a look-up
table storing the Q-value coupled with each state-action pair, earning it the name “tabular
Q-Learning”. This method guarantees convergence to the optimal value with infinite visits
to state-action pairs.

However, this tabular approach is effective only for problems with small-scale state
and action spaces. Real-world challenges with continuous and large-scale state and action
spaces led to the adoption of deep Q-Learning networks. In this approach, a neural network
predicts Q-values, taking the state as input and outputting Q-values for each possible action.
This contrasts with estimating Q-values for each state-action pair separately.

Each traffic lane approaching an intersection is represented by 10 discrete cells, each
of which represents the presence of a vehicle, resulting in a representation of the state of
the environment of 80 cells per intersection. The input layer of the neural network is then
composed of 80 neurons representing the state of the environment. Following this, there
are five hidden layers, each containing 400 neurons with rectified linear units (ReLUs). The
network concludes with an output layer featuring eight neurons, displaying the Q-values
for each potential action. To enhance Q-value predictions, a Mean Squared Error (MSE)
function is employed. MSE quantifies the disparity between predicted Q-values and target
Q-values, contributing to the refinement of the learning process.

MSELoss =
1
N

N

∑
i=1

(
Qtarget − Qpred

)2

N is the number of samples stored in memory, and the target and predicted value, Qtarget
and Qpred, respectively. After each episode of training, the target Q-values for action-state
pairs are calculated based on the following equation:

Qtarget = rt + γ.maxQpred
(
st+1, a′

)
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where rt is the reward obtained and γ is a discount factor applied to the maxQpred value,
lowering the importance of the future reward compared to the immediate reward.

The MSELoss function calculates the squared difference between each predicted and
target value. During training, the objective is to minimize this loss, indicating that the
model strives to make predictions as close as possible to the true target values. The process
involves iteratively adjusting the weights, θk, of the neurons in the neural network to
decrease the difference between the initial prediction and the target, influenced by the
learning rate.

Through repeated updating iterations, the neural network refines its approximation of
the Q-value, bringing it closer to the target Q-value. As the loss decreases, the quality of
the prediction improves. Consequently, the agent becomes more adept at making decisions
regarding actions based on the observed environment. The iterative adjustment of weights
enables the model to learn and adapt, enhancing its ability to navigate the environment
and make informed choices over time.

4.2. RL-Based Traffic Control Model with VLC Integration

In reinforcement learning scenarios, we operate under the assumption that an agent,
such as traffic lights, engages with its environment across a series of discrete time steps
with the aim of maximizing rewards [29,30].

The agent’s state, st, captures a representation of the environment’s condition at a
specific time step t. In the RL framework, the objective is to optimize traffic lights at
two intersections (Figure 2), each comprising four arms of different lengths ranging from
160 to 400 m. It is important to notice that through multi-V2V communication among
follower vehicles and V2I communication from the leader to the infrastructure, we ensure
uninterrupted transmission within lanes ranging from 160 to 400 m in length.

The state representation integrates data on vehicle distribution and velocities across
each road. PIN/PIN sensors, deployed at traffic lights, monitor vehicles within request
and response distances through V2I, and indirectly at queue distances via V2V. The state
space is structured with 32 cells per intersection, delineating lanes (L/0–7) and traffic
lights (TL/0–15), discretizing the continuous environment (as depicted in Figure 5). This
design incorporates spatial information on vehicle presence, speed, and discretized cells.
Figure 8 showcases the grid layout of the agent’s state space (indicated by dotted lines),
underscoring its pivotal role in enabling the RL agent to learn and optimize traffic control
policies based on observed conditions.
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The selection of the action space is a pivotal aspect of the RL model’s effectiveness.
In this scenario, a discrete action space is utilized, where the agent chooses a phase to
execute at each time step t. The potential phases and their sequence for each intersection
are predefined, as depicted in Figure 2.

The reward (r) signifies the environment’s feedback to the agent’s decision, serving as
a measure of how beneficial or detrimental the agent’s action was in terms of achieving
specific objectives or optimizing performance metrics. This reward signal plays a crucial
role in guiding reinforcement learning algorithms, shaping the agent’s learning process,
and enhancing its decision-making capabilities over time [31,32].

In this context, the total waiting time metric is employed, and a suboptimal action is
defined by introducing more vehicles to queues in the current time step (t) compared to the
previous time step (t − 1). This results in an increased cumulative waiting time compared to
the previous time step, leading to a negative reward. The degree of negativity in the reward
(rt) corresponds to the magnitude of additional vehicles introduced to queues at time step
t, reflecting a more unfavorable evaluation of the agent’s action. Conversely, positive
rewards are associated with good actions, where minimizing waiting times contributes to
an improved traffic flow. This positive feedback incentivizes the agent to make traffic-light
control decisions that improve overall traffic conditions. The training process is divided
into multiple episodes, with the total number of episodes determined by the user, where
300 episodes are utilized in this instance. Each episode acts as a training iteration. During
an episode, actions are executed based on the activation of specific lanes by the traffic light
system, following predetermined timings during the green phases as depicted in Figure 2.
This iterative training approach allows the RL agent to gradually learn optimal traffic
control policies across multiple episodes, refining its decision-making based on feedback
from the environment, particularly concerning waiting times and traffic conditions. The
duration of the yellow phase is standardized at four seconds, while the green phase persists
for eight seconds.

When the action taken in the current agent step (t) matches the action from the previous
step (t − 1), no yellow phase is introduced, and the ongoing green phase is extended. On
the contrary, when the action chosen differs from the previous one, a 4-s yellow phase is
introduced between the two actions. This strategy ensures smoother transitions between
distinct actions and allows vehicles ample time to adjust to evolving traffic signals. It is
important to mention that in the SUMO simulation, each simulation step corresponds to
one second, leading to eight simulation steps between two identical actions.

4.3. Implementing Symmetric Homogeneous Rewards in Training

In this study, two adjacent intersections within a (1 × 2) road network topology are
examined, a setup previously used in dynamic system analyses. This configuration intro-
duces nuanced considerations, particularly regarding the connecting roadways between
the intersections. These roads serve as vital links for balancing traffic flow. Unlike scenarios
involving a single intersection, traffic on these roads is influenced by the agent’s decision to
activate a phase allowing vehicle flow. However, a decision benefiting one intersection may
detrimentally affect the other, potentially increasing pressure and wait times, and reducing
overall traffic flow.

The observation made by the agent at each intersection is identical concerning the
roadways and the occupancy of their cells. The distinction between the two intersections
lies precisely in the decisions made by the agent. For instance, when the agent decides, at
the first intersection (C1), to activate a green phase for the west direction in all directions,
giving vehicles the possibility of going straight or turning right or left, this action will have
a different impact on the environment when applied to the second intersection (C2), as can
be seen in Figure 9a. At the first intersection when this phase is activated, the cars that
do not go straight will leave the environment, while those that do go straight will take a
critical lane, heading for the adjacent intersection. When this phase is active at the second
intersection, regardless of which direction the cars are traveling, they will all leave the
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environment and will not return to it. This difference will cause problems when training the
network, as the experiences observed at the first intersection will not be identical to those at
the second. To address this issue, a phase relationship has been proposed between the first
and second intersections, ensuring that both become entirely identical and homogeneous.
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second intersection (Figure 9b). The adjacent intersections with identical structures give 
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proved learning in both intersections, each with one agent. 
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from the data and convergence to an optimal solution. An “episode” refers to a single run 

Figure 9. Agent’s perception of (a) C1 and C2 intersections with north–south directions in both and
of (b) C1 with a north–south direction and C2 with a south–north direction.

This approach allows for the attainment of an adjacent symmetric homogeneous re-
ward, where actions taken at the first intersection have the same impact as those at the
second, significantly contributing to reward improvement. The west all-direction action
activated at the first intersection becomes equivalent to the east all-direction action at the
second intersection (Figure 9b). The adjacent intersections with identical structures give rise
to what is known as an adjacent symmetric homogeneous reward. This cooperative mecha-
nism aids in the balancing of traffic flow between intersections and facilitates improved
learning in both intersections, each with one agent.

Training typically involves multiple episodes (or epochs) to ensure effective learning
from the data and convergence to an optimal solution. An “episode” refers to a single run
or sequence of interactions that an agent undergoes with its environment from start to
finish. The cumulative negative reward acts as a metric for evaluating the performance of
the RL agent(s) in optimizing traffic control strategies throughout the training episodes.

Figure 10 displays cumulative negative rewards across successive episodes for inter-
sections C1 and C2 in a 160 m (1 × 2) topology. States for training were obtained with either
a single agent in C1 or C2, or with two agents, one in each intersection. This setup evaluates
the RL model under different scenarios, including single-agent setups per intersection and
the coordination of two agents, each managing one intersection (C1 or C2).

The results demonstrate that introducing a second agent accelerates the learning
process with reduced oscillations towards the end of training. This behavior indicates the
effective training of the network and validates the proposed solution’s benefits for the traffic
environment. Therefore, subsequent analyses and discussions assume the involvement of
two agents in the learning process. This implies that collaborative efforts between agents
in both intersections, C1 and C2, positively influence the learning dynamics, potentially
leading to the more effective and efficient optimization of traffic control strategies in the
multi-intersection environment.
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4.4. Analyzing the Performance of Neural Networks in High- and Low-Traffic Environments: A
Study of a 160 m (1 × 2) Road Topology

Two scenarios were analyzed in a 160 m (1 × 2) topology: one with 2300 cars and
the other with 1800 vehicles. The aim was to compare and contrast these scenarios with
dynamic system findings, validating the feasibility of dispatching these car quantities
within an hour. Neural networks for each scenario were trained over 300 episodes, each
lasting 3600 s.

To characterize the scenarios, various traffic-related variables were utilized to assess
the system’s performance. These variables included queue sizes, with individual intersec-
tions in each scenario scrutinized to compare car flow. Additionally, the average queue size
for each scenario was computed to gauge the impact of car numbers on the environment
and the system’s responsiveness in each instance. The average car speed was also consid-
ered, as it offers insights into traffic fluidity. Lastly, the number of cars halting (waiting)
was analyzed to provide insights into the influence of vehicle volume on the environment.

Figure 11 depicts the queue length graph at both intersections (C1 and C2) for the
scenario with 1800 and 2300 vehicles. It can be observed that until approximately 800 s,
there is a significant increase in vehicles in the waiting queues, akin to a real-world rush
hour scenario. There is a substantial influx of cars at both intersections, which gradually
diminishes over time. During the neural network training, agents learn to make optimal
decisions based on the observed environment. In testing, when agents are prompted
to make these same decisions based on their observations, they respond accordingly, as
evidenced by the decreasing number of cars in waiting queues over time. This results in
clearing most of the vehicles from the intersections within the one-hour timeframe.

In the low-traffic scenario, with fewer vehicles in waiting queues, the intersections
are less congested, aiding the agent in making better decisions and increasing the fluidity
of vehicle movement throughout the environment. This translates to less time spent in
waiting queues and more time in motion. Here, at around 3200 s, there were no longer any
cars in the environment.

Figure 12a,b present a comparison that highlights the average speed and halting of
vehicles in two distinct scenarios: one with 1800 vehicles per hour and the other with
2300 vehicles per hour.

By analyzing these factors, we aim to discern how varying vehicle volumes impact
traffic dynamics and congestion levels.

As illustrated by the graphs, an evident peak in speed is noticeable during the initial
phases of the halting simulations. This peak gradually diminishes over time as the simu-
lation progresses. The initial flow in speed is attributed to the absence of vehicles at the
intersections, allowing for smoother and faster movement. However, as the number of cars
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entering the intersections increases, there is a significant decline in average speed. Towards
the end of the simulation, as cars start to clear out, the average speed experiences an upturn
due to reduced congestion. This trend reflects the dynamic nature of traffic, where higher
volumes of waiting cars lead to decreased speed, while lower volumes result in increased
speed, in accordance with expected traffic patterns.
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Figure 11. Queue length as a function of time in a scenario of 1800 (left) and 2300 vehicles (right) 
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Figure 12. Comparative analysis of average speed and halting: (a) scenario with 1800 vehicles/hour 

and (b) scenario with 2300 vehicles/hour. 
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Figure 12. Comparative analysis of average speed and halting: (a) scenario with 1800 vehicles/hour
and (b) scenario with 2300 vehicles/hour.

4.5. Inter-Intersection Roads: 160 m (1 × 2), 250 m (1 × 2), and 400 m (1 × 2) Road
Network Topology

After examining the environmental impact of varying the number of vehicles, our
focus shifts to investigating the size of critical lanes connecting two junctions. Each agent
oversees its junction, monitoring lanes and car volumes through cell occupation. Follow-
ing optimization in terms of intersection phase relationships, both intersections become
homogeneous, rendering the experience identical. Despite this, inadequate communica-
tion among agents may elevate car volumes on critical roads. Agent decisions generate
rewards based on vehicle wait times at respective junctions. When an action facilitates
vehicle movement to target roads, the agent perceives it as beneficial locally, but this may
adversely affect the adjacent intersection. Enhanced communication could manage actions
based on neighboring intersection pressure. However, implementing this communication
might escalate system complexity, potentially requiring a neural network for information
exchange and facing scalability issues with more adjacent intersections.
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Figure 13 illustrates the cumulative negative reward across successive episodes for the
high-traffic scenario, where 2300 vehicles per hour are considered, across different target
road lengths for both intersections. This depiction allows for an analysis of how varying
road lengths impact the performance of the system in terms of negative rewards over time.
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Figure 13. Cumulative negative reward through successive episodes in the high-traffic scenario 

(2300 vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersection. 

Here, the neural networks trained with different lane sizes exhibit expected reward 

behaviors. The findings indicate that with a higher target road length, waiting times de-

crease, leading to reduced queue sizes. This alleviates the pressure on the agent’s junction 

and ensures sufficient space for vehicle circulation. 

Figure 14a,b illustrate average queue sizes during network training episodes. The 400 

m lane exhibits fewer queued cars than the other two, indicating minimal need for com-

munication due to ample space for circulation. Conversely, for the 160 m and 250 m lanes, 

communication remains essential, as queue sizes are comparable to the 400 m lane, neces-

sitating coordination to manage traffic effectively. 

Figure 13. Cumulative negative reward through successive episodes in the high-traffic scenario (2300
vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersection.

Here, the neural networks trained with different lane sizes exhibit expected reward
behaviors. The findings indicate that with a higher target road length, waiting times
decrease, leading to reduced queue sizes. This alleviates the pressure on the agent’s
junction and ensures sufficient space for vehicle circulation.

Figure 14a,b illustrate average queue sizes during network training episodes. The
400 m lane exhibits fewer queued cars than the other two, indicating minimal need for
communication due to ample space for circulation. Conversely, for the 160 m and 250 m
lanes, communication remains essential, as queue sizes are comparable to the 400 m lane,
necessitating coordination to manage traffic effectively.
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Figure 14. Average queue length (number of vehicles) across successive episodes in the high-traffic 

scenario (2300 vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersec-

tion. 

After completing the reinforcement learning (RL) training, we observed fluctuations 

in the learning curve, indicating challenges in achieving convergence. Nevertheless, the 

model demonstrated gradual improvement, reaching a moderate level of performance 

over the training period. 

The results revealed consistent trends in both cumulative negative reward and aver-

age queue length at both intersections. Importantly, there was no significant separation 

between the cumulative rewards for the three types of road networks, highlighting the 

scalability of our distributed approach across road networks of varying sizes. The ob-

served stability in these metrics, with a decreasing amplitude of oscillations as training 

progressed, suggests an enhancement in decision-making capabilities. Interestingly, in the 

shorter path, learning was faster initially but was later surpassed by longer paths as train-

ing advanced. 

As anticipated, the average number of vehicles in the queue decreased at both inter-
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longer path at C1 compared to C2. This discrepancy can be attributed to the decreasing 

resistance of traffic flow with increasing path length, contributing to the observed effects. 

In Figure 15, the average queue length across the time was tested for both intersec-

tions (C1 and C2) and different target road lengths. 

The observed average queue length can be explained by noting a notable surge in the 

number of vehicles in waiting queues until approximately 15 minutes, resembling a real-

world rush hour scenario. Both intersections experience a substantial influx of cars, which 

gradually diminishes over time. Notably, as the road length increases, the queue length 

decreases at both intersections. Around the 45-min mark of training, at C1, there are no 

cars waiting, while at C2, the queue disappears only at the end. So, as the road length 
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mately enhancing the fluidity of vehicle movement throughout the environment. Conse-

quently, less time is spent in waiting queues, allowing for more time in motion.  

Figure 14. Average queue length (number of vehicles) across successive episodes in the high-traffic
scenario (2300 vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersection.

After completing the reinforcement learning (RL) training, we observed fluctuations
in the learning curve, indicating challenges in achieving convergence. Nevertheless, the
model demonstrated gradual improvement, reaching a moderate level of performance over
the training period.
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The results revealed consistent trends in both cumulative negative reward and average
queue length at both intersections. Importantly, there was no significant separation between
the cumulative rewards for the three types of road networks, highlighting the scalability of
our distributed approach across road networks of varying sizes. The observed stability in
these metrics, with a decreasing amplitude of oscillations as training progressed, suggests
an enhancement in decision-making capabilities. Interestingly, in the shorter path, learning
was faster initially but was later surpassed by longer paths as training advanced.

As anticipated, the average number of vehicles in the queue decreased at both inter-
sections. Notably, the reduction in queue lengths was more pronounced and stable in the
longer path at C1 compared to C2. This discrepancy can be attributed to the decreasing
resistance of traffic flow with increasing path length, contributing to the observed effects.

In Figure 15, the average queue length across the time was tested for both intersections
(C1 and C2) and different target road lengths.
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Figure 15. Average queue length (number of vehicles) test as a function of time in the high-traffic 

scenario (2300 vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersec-

tion. 
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Figure 15. Average queue length (number of vehicles) test as a function of time in the high-traffic
scenario (2300 vehicles/hour) and different target road lengths. (a) C1 intersection. (b) C2 intersection.

The observed average queue length can be explained by noting a notable surge in
the number of vehicles in waiting queues until approximately 15 min, resembling a real-
world rush hour scenario. Both intersections experience a substantial influx of cars, which
gradually diminishes over time. Notably, as the road length increases, the queue length
decreases at both intersections. Around the 45-min mark of training, at C1, there are no cars
waiting, while at C2, the queue disappears only at the end. So, as the road length increases,
fewer vehicles remain in waiting queues, resulting in less congestion at the intersections.
This reduction in congestion aids the agent in making better decisions, ultimately enhancing
the fluidity of vehicle movement throughout the environment. Consequently, less time is
spent in waiting queues, allowing for more time in motion.

Throughout training, agents learn to make optimal decisions based on the observed
environment. In testing, when agents are prompted to make these same decisions, they
respond accordingly. This is evident in the decreasing number of cars in waiting queues
over time, leading to the clearance of most vehicles from the intersections within almost
half an hour.

Results show that reinforcement learning can optimize traffic flow by dynamically ad-
justing traffic signals, pedestrian crossing times, and other traffic management parameters.
This adaptability helps reduce congestion, improve overall traffic efficiency, and minimize
delays for both pedestrians and vehicles. Reinforcement learning is particularly effective in
adaptive traffic signal control. Traffic signal timings can be dynamically adjusted based on
current traffic conditions, reducing wait times and improving the overall throughput of
intersections. In summary, reinforcement learning offers a flexible and adaptive approach
to traffic management, providing the potential for significant improvements in efficiency,
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safety, and sustainability in both pedestrian and vehicle traffic scenarios. While RL offers
several advantages, it is focal to consider potential challenges such as safety concerns,
ethical considerations, and the need for careful validation and testing before deploying
RL-based traffic control systems in real-world scenarios.

Comparison with previous works is hard to achieve since there is not a well-established
benchmark or traffic scenario that allows a fair comparison between different solutions.
Previous works consider different environments, different traffic conditions, different
reward metrics, etc.

Considering some previous recent works, in [22], a formal analysis of the queue prob-
lem is addressed. The number of vehicles is very low and not comparable to the problem
under study. The work proposed in [23] does not control traffic lights. It considers a cross-
road and autonomous vehicles controlled by an intersection manager using 5G technology.
Similarly, work [24] does not control traffic lights. It considers wireless communication to
detect vehicles and take transfer information. The work from [25] has a similar solution but
only focuses on the RL algorithm. There is no associated communication technology. In
this case, there are four lanes per arm. The number of cars as well as the number of lanes
doubles. Comparing both, our cumulative reward is lower.

5. Advancements in Urban Traffic Management through Integrated Technologies and
Innovative Strategies

This study involves the integration of emerging technologies, the enhancement of in-
tersection efficiency, the development of multi-intersection traffic control strategies, and the
application of reinforcement learning algorithms. These advancements have the potential
to significantly impact urban traffic management and contribute to the development of
more efficient and sustainable transportation systems.

The integration of VLC into dynamic traffic control systems has represented a novel
approach to improving urban intersections [22]. VLC technology offers advantages such as
high data transmission rates, low latency, and immunity to electromagnetic interference.
Incorporating this emerging technology has also contributed to advancing our study in
the field of intelligent transportation systems. Also using VLC technology, here we have
added a proposal for an intelligent traffic control system leveraging advanced algorithms
and artificial intelligence to optimize traffic management strategies. This system, in the
future, can analyze large datasets collected from various sources, including VLC-enabled
infrastructure, vehicles, and pedestrians, to predict traffic patterns and optimize traffic flow
proactively. Intelligent traffic control systems can anticipate traffic congestion before it
occurs and implement preemptive measures to mitigate its impact. They may also incorpo-
rate features such as predictive modeling, machine learning, and optimization algorithms
to continuously improve traffic management strategies over time. While dynamic traffic
control focuses on real-time adjustments to optimize traffic flow, intelligent traffic control
systems using VLC technology take a more proactive and data-driven approach, utilizing
advanced algorithms and predictive analytics to optimize traffic management strategies
and improve overall traffic efficiency.

The primary aim is to enhance the efficiency of urban intersections. Improving in-
tersection efficiency can lead to shorter travel times, reduced congestion, and enhanced
overall traffic flow, thereby benefiting both commuters and cities. By leveraging VLC for
communication between vehicles and infrastructure, coupled with RL algorithms for traffic
signal optimization, the research addresses a critical need in urban traffic management.

The development of a multi-intersection traffic control system is essential for managing
complex urban traffic networks. By optimizing traffic signals across multiple intersections
simultaneously, it addresses the challenges associated with urban traffic congestion and
coordination. This approach demonstrates a holistic perspective on traffic management,
contributing to the advancement of urban mobility solutions.

The utilization of a reinforcement learning scheme for traffic signal scheduling rep-
resents an innovative approach. RL enables the traffic control system to adapt and learn
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from real-time traffic conditions, leading to dynamic and adaptive signal control strategies.
This adaptive nature enhances the system’s responsiveness to changing traffic patterns,
ultimately improving intersection efficiency and overall traffic management effectiveness.

By demonstrating the feasibility and efficacy of the integrated VLC-based traffic control
system with reinforcement learning, the research provides evidence of its contribution. Real-
world validation will enhance the credibility and applicability of the findings, showcasing
the potential for practical implementation and impact.

6. Conclusions and Future Work

This paper sets the stage for future advancements in intelligent traffic management
by emphasizing the potential of VLC technology in enhancing safety and efficiency at
urban intersections through RL. The integration of VLC technology across pedestrians,
vehicles, and surrounding infrastructure marks a significant breakthrough in optimizing
traffic signals and vehicle trajectories. This integration facilitates the direct monitoring of
critical factors such as queue formation, dissipation, relative speed thresholds, inter-vehicle
spacing, and pedestrian corner density, ultimately leading to improved road safety.

Our dynamic control system model, designed to securely manage vehicular and
pedestrian traffic at intersections, underwent detailed analysis under both high- (120 s) and
low-traffic cycles (90 s) using the SUMO simulator. We introduced a SUMO extension for
pedestrian modeling and made modifications to various tools within the SUMO package
to facilitate the generation, simulation, and analysis of multi-modal traffic scenarios. The
study aimed to assess the effective management of vehicles and pedestrians within a
one-hour timeframe, taking into account various road network topologies.

In the realm of effective traffic optimization learning, our intelligent state representa-
tion incorporates environmental information, vehicle distribution from V-VLC messages,
and a proposed phasing diagram guiding agent actions. A reinforcement learning model
utilizing VLC technology to control traffic in dynamic scenarios was developed. Placing an
agent at each intersection, the system optimizes traffic lights based on VLC-ready vehicle
communication, calculating optimal strategies to enhance flow, and communicating with
other agents to optimize overall traffic. The introduction of adjacent symmetric homoge-
neous rewards during training significantly improved the model’s performance. Through
training and testing, the reinforcement learning model showcased its ability to adapt to
varying scenarios, emphasizing the importance of continuous learning in dynamic traffic
environments. A comparative analysis of cumulative negative rewards across successive
episodes and neural network tests for high and low vehicular scenarios using different road
network topologies provided valuable insights into the model’s efficiency and adaptability.

The improved results obtained with RL when compared to a traditional traffic control
approach are traded-off by a higher computational cost since the RL requires the inference
calculation of a neural network model. An optimized design is important to guarantee
real-time computation in embedded systems near the sensors.

Future work will involve introducing the pedestrian phase, an aspect previously
overlooked in the intelligent system. This addition aims to scrutinize agents’ behavior,
particularly regarding decision-making and environmental observations, with a focus on
optimizing the activation timing of the pedestrian phase to ensure safety patterns for
pedestrians. Relevant case studies will include analyzing the number of cars at intersec-
tions before initiating the pedestrian phase, pedestrian clearance time, and the number
of individuals in waiting zones. Optimizing these factors will be crucial to ensuring an
efficient system without a high concentration of people in designated areas.

Author Contributions: Conceptualization, M.A.V. and G.G.; validation: M.V. (Mário Véstias) and
P.V.; formal analysis, P.L.; investigation, writing, and editing, M.V. (Manuela Vieira). All authors have
read and agreed to the published version of the manuscript.

Funding: This research received support from FCT—Fundação para a Ciência e a Tecnologia, through
the Research Unit CTS—Center of Technology and Systems, with references UIDB/00066/2020.



Vehicles 2024, 6 691

Data Availability Statement: No new data was created. The raw data supporting the conclusions of
this article will be made available by the authors on request.

Acknowledgments: The authors acknowledge CTS-ISEL and IPL.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. O’Brien, D.; Le Minh, H.; Zeng, L.; Faulkner, G.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. Indoor Visible Light Communications:

Challenges and prospects. Proc. SPIE 2008, 7091, 60–68.
2. Parth, H.; Pathak, X.; Pengfei, H.; Prasant, M. Visible Light Communication, Networking and Sensing: Potential and Challenges.

IEEE Commun. Surv. Tutor. 2015, 17, 2047–2077.
3. Memedi, A.; Dressler, F. Vehicular Visible Light Communications: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 161–181.

[CrossRef]
4. Caputo, S.; Mucchi, L.; Cataliotti, F.; Seminara, M.; Nawaz, T.; Catani, J. Measurement-based VLC channel characterization for

I2V communications in a real urban scenario. Veh. Commun. 2021, 28, 100305. [CrossRef]
5. Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P. Cooperative vehicular communication systems based on visible light communication.

Opt. Eng. 2018, 57, 076101. [CrossRef]
6. Sousa, I.; Queluz, P.; Rodrigues, A.; Vieira, P. Realistic mobility modeling of pedestrian traffic in wireless networks. In Proceedings

of the 2011 IEEE EUROCON-International Conference on Computer as a Tool, Lisbon, Portugal, 27–29 April 2011; IEEE:
Piscataway, NJ, USA, 2011; pp. 1–4.

7. Elliott, D.; Keen, W.; Miao, L. Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. 2019, 6, 109–131.
[CrossRef]

8. Bajpai, J.N. Emerging vehicle technologies & the search for urban mobility solutions. Urban Plan. Transp. Res. 2016, 4, 83–100.
9. Wang, N.; Qiao, Y.; Wang, W.; Tang, S.; Shen, J. Visible Light Communication based Intelligent Traffic Light System: Designing

and Implementation. In Proceedings of the 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China,
26–29 October 2018. [CrossRef]

10. Cheng, N.; Lyu, F.; Chen, J.; Xu, W.; Zhou, H.; Zhang, S.; Shen, X. Big data driven vehicular networks. IEEE Netw. 2018, 32,
160–167. [CrossRef]

11. Singh, P.; Singh, G.; Singh, A. Implementing Visible Light Communication in intelligent traffic management to resolve traffic
logjams. Int. J. Comput. Eng. Res. 2015, 5, 1–5.

12. Oskarbski, J.; Guminska, L.; Miszewski, M.; Oskarbska, I. Analysis of Signalized Intersections in the Context of Pedestrian Traffic.
Transp. Res. Procedia 2016, 14, 2138–2147. [CrossRef]

13. Han, G.; Zheng, Q.; Liao, L.; Tang, P.; Li, Z.; Zhu, Y. Deep Reinforcement Learning for Intersection Signal Control Considering
Pedestrian Behavior. Electronics 2022, 11, 3519. [CrossRef]

14. Fruin, J.J. Designing for Pedestrians a Level of Service Concept; Polytechnic University: Kowloon, China, 1970.
15. Eskandarian, A.; Chaoxian, W.; Chuanyang, S. Research Advances and Challenges of Autonomous and Connected Ground

Vehicles. J. IEEE Trans. Intell. Transp. Syst. 2021, 22, 683–711. [CrossRef]
16. Pribyl, O.; Pribyl, P.; Lom, M.; Svitek, M. Modeling of smart cities based on ITS architecture. IEEE Intell. Transp. Syst. Mag. 2019,

11, 28–36. [CrossRef]
17. Miucic, R. Connected Vehicles: Intelligent Transportation Systems; Springer: Cham, Switzerland, 2019.
18. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Archit. 2019, 98, 289–330. [CrossRef]
19. Galvão, G.; Vieira, M.; Louro, P.; Vieira, M.A.; Véstias, M.; Vieira, P. Visible Light Communication at Urban Intersections to

Improve Traffic Signaling and Cooperative Trajectories. In Proceedings of the 2023 7th International Young Engineers Forum
(YEF-ECE), Caparica/Lisbon, Portugal, 7 July 2023; pp. 60–65. [CrossRef]

20. Vieira, M.A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A. Vehicular Visible Light Communication for Intersection Management.
Spec. Issue Adv. Wirel. Sens. Netw. Signal Process. Signals 2023, 4, 457–477. [CrossRef]

21. Zhang, J.; Wang, F.Y.; Wang, K.; Lin, W.H.; Xu, X.; Chen, C. Data-driven intelligent transportation systems: A survey. IEEE Trans.
Intell. Transp. Syst. 2011, 12, 1624–1639. [CrossRef]

22. Vieira, M.A.; Galvão, G.; Vieira, M.; Louro, P.; Vestias, M.; Vieira, P. Enhancing Urban Intersection Efficiency: Visible Light
Communication and Learning-Based Control for Traffic Signal Optimization and Vehicle Management. Symmetry 2024, 16, 240.
[CrossRef]

23. Elbaum, Y.; Novoselsky, A.; Kagan, E. A Queueing Model for Traffic Flow Control in the Road Intersection. Mathematics 2022,
10, 3997. [CrossRef]

24. Antonio, G.-P.; Maria-Dolores, C. AIM5LA: A Latency-Aware Deep Reinforcement Learning-Based Autonomous Intersection
Management System for 5G Communication Networks. Sensors 2022, 22, 2217. [CrossRef]

25. Shi, Y.; Liu, Y.; Qi, Y.; Han, Q. A Control Method with Reinforcement Learning for Urban Un-Signalized Intersection in Hybrid
Traffic Environment. Sensors 2022, 22, 779. [CrossRef]

26. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]

https://doi.org/10.1109/COMST.2020.3034224
https://doi.org/10.1016/j.vehcom.2020.100305
https://doi.org/10.1117/1.OE.57.7.076101
https://doi.org/10.1016/j.jtte.2018.09.005
https://doi.org/10.1109/ACP.2018.8595791
https://doi.org/10.1109/MNET.2018.1700460
https://doi.org/10.1016/j.trpro.2016.05.229
https://doi.org/10.3390/electronics11213519
https://doi.org/10.1109/TITS.2019.2958352
https://doi.org/10.1109/MITS.2018.2876553
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/YEF-ECE58420.2023.10209320
https://doi.org/10.3390/signals4020024
https://doi.org/10.1109/TITS.2011.2158001
https://doi.org/10.3390/sym16020240
https://doi.org/10.3390/math10213997
https://doi.org/10.3390/s22062217
https://doi.org/10.3390/s22030779
https://doi.org/10.1613/jair.301


Vehicles 2024, 6 692

27. Shokrolah Shirazi, M.; Chang, H.-F.; Tayeb, S. Turning Movement Count Data Integration Methods for Intersection Analysis and
Traffic Signal Design. Sensors 2022, 22, 7111. [CrossRef] [PubMed]

28. Genders, W.; Razavi, S. Using a deep reinforcement learning agent for traffic signal control. arXiv 2016, arXiv:1611.01142.
29. Vidali, A.; Crociani, L.; Vizzari, G.; Bandini, S. A Deep Reinforcement Learning Approach to Adaptive Traffic Lights Management.

In Proceedings of the WOA 2019, the 20th Workshop “From Objects to Agents”, Parma, Italy, 26–28 June 2019; pp. 42–50.
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