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Abstract: Through path integral Monte Carlo computer experiments, we prove that the affine quanti-
zation of the φ4

4-scaled Euclidean covariant relativistic scalar field theory is a valid quantum field
theory with a well-defined continuum limit of the one- and two-point functions. Affine quantization
leads to a completely satisfactory quantization of field theories in situations involving scaled behavior,
leading to an unexpected term, h̄2/φ2, which arises only in the quantum aspects.
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1. Introduction

It is well known that φ4
4 quantum Euclidean covariant relativistic field theory, when

quantized through canonical (Dirac [1]) quantization (CQ), is trivial since its corresponding
renormalized theory tends to become a free theory in the continuum limit [2–6].

Recently, J. R. Klauder [7–11] noticed that this difficulty can be overcome by using a
different kind of quantization method, namely affine quantization (AQ).

In a sequel of recent papers [12–22], we proved that, through path integral Monte
Carlo (PIMC), affine quantization is able to make the φ4

4 theory non-trivial. A crucial point
left unanswered in these papers is the validity of the continuum limit at the level of the
one- and two-point functions.

The aim of the present work is to show that, as we approach the continuum on the
computer, the one- and two-point functions converge to well-defined results. In other
words, we prove the validity of the continuum limit for the field theory quantized through
affine quantization.

Our result could prove to be important in the physics of the standard model, where the
long-standing problem of the triviality of canonical quantum φ4 theory is crucial for particle
physics, as it undermines the Higgs mechanism. It is also very important for progress in
quantum gravity, where the role of the field is played by the metric tensor, which must be
positive definite [20].

2. Field Theory Formulation

For a scalar field, φ, with spatial degrees of freedom x = (x1, x2, . . . , xs) and canonical
momentum π(x), the classical affine variables are κ(x) ≡ π(x) φ(x) and φ(x) ̸= 0. The
reason we insist that φ(x) ̸= 0 is that if φ(x) = 0, then κ(x) = 0, regardless of the value
of π(x).

We then introduce the classical Hamiltonian expressed in affine variables. This leads
us to the following:

H(κ, φ) =
∫
{ 1

2 [κ(x)2 φ(x)−2 + (∇φ(x))2 + m2 φ(x)2] + g φ(x)r} dsx, (1)

where r is a positive, even integer and g ≥ 0 is the bare coupling constant, such that for
g → 0, we fall into the free field theory. With these variables, we do not let φ(x) = ∞;
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otherwise, φ(x)−2 = 0, which is not fair to κ(x), and as we have already observed, we must
forbid φ(x) = 0, which would admit φ(x)−2 = ∞, creating an undetermined kinetic term.
Therefore, the AQ bounds 0 < φ(x) < ∞ forbid any triviality [12–22], which is otherwise
possible for CQ [2–5].

The quantum affine operators are the scalar field φ̂(x) = φ(x) and the dilation operator,
κ̂(x) = [φ̂(x)π̂(x) + π̂(x)φ̂(x)]/2 where the momentum operator is π̂(x) = −ih̄δ/δφ(x).
Accordingly, for the self-adjoint kinetic term, κ̂(x)φ̂(x)−2κ̂(x) = π̂(x)2 + (3/4)h̄δ(0)2sφ(x)−2

(note that the factor 3/4, which applies when φ > 0, should be replaced by a factor of 2 if
|φ| > 0 [17]); thus, one finds the following for the quantum Hamiltonian operator:

Ĥ(κ̂, φ̂) =
∫ {

1
2 [π̂(x)2 + (∇φ(x))2 + m2 φ(x)2] + g φ(x)r + 3

8 h̄2 δ(0)2s

φ(x)2

}
dsx. (2)

The affine action is found by adding time, x0 = ct, where c is the constant speed of
light and t denotes the Euclidean imaginary time; thus, S =

∫ β
0 H dx0, where H is the

semi-classical Hamiltonian corresponding to that of Equation (2) (see Appendix A).

S [φ] =
∫ β

0
dx0

∫
Ls

dsx

{
1
2

[
s

∑
µ=0

(
∂φ(x)

∂xµ

)2

+ m2 φ(x)2

]
+ g φ(x)r + 3

8 h̄
δ(0)2s

φ(x)2

}
, (3)

where we employ an abuse of notation by using x for (x0, x1, x2, . . . , xs) and β = 1/kBT,
with kB denoting Boltzmann’s constant and T denoting the absolute temperature. In this
work, we will set β = L.

The vacuum expectation value of an observable O[φ] is then given by the following
expression:

⟨O⟩ =
∫
O[φ] exp(−S [φ]) Dφ(x)∫

exp(−S [φ]) Dφ(x)
, (4)

where the functional integrals are calculated on a lattice using the PIMC method, as will be
explained later on.

The theory considers a real scalar field, φ, taking the value, φ(x), at each site, x, on a
periodic n-dimensional lattice, where n = s+ 1 denotes the space-time dimensions, of lattice
spacing a, the ultraviolet cutoff, exhibiting spatial periodicity with L = Na and temporal
periodicity with β = Na. The field path is a closed loop on an n-dimensional closed
surface of an (n + 1)-dimensional β-periodic cylinder of radius L: an (n + 1)-dimensional
torus. We use a lattice formulation of the AQ field theory in Equation (3) (also studied
in Equation (8) of [12]), and additionally apply the scaling transformations φ → a−s/2 φ
and g → as(r−2)/2g; these adjustments are necessary to eliminate the divergent Dirac delta
factor δ(0) = a−1 in the continuum limit as a → 0. The affine action for the field (in the
primitive approximation [23]) is then approximated by the following:

S[φ]
a

= 1
2

{
∑
x,µ

a−2[φ(x)− φ(x + eµ)]
2 + m2 ∑

x
φ(x)2

}
+ ∑

x

[
g φ(x)r + 3

8
h̄2

φ(x)2

]
, (5)

where eµ is a vector of length a in the +µ direction with µ = 0, 1, 2, . . . , s. We will have
S ≈ S.

In this work, we are interested in reaching the continuum limit by keeping Na fixed
while allowing N → ∞, at a fixed volume of Ls.

We perform a PIMC [23–26] calculation for the AQ field theory described by the action
of Equation (5) in natural Planck units c = h̄ = kB = 1. Specifically, we study the s = 3 and
r = 4 case. We calculate the renormalized coupling constant, gR, and mass, mR, defined in
Equations (11) and (13) of [12], respectively, measuring them in the PIMC through vacuum
expectation values, like in Equation (4).
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In particular,

m2
R =

p2
0⟨|φ̃(p0)|2⟩

⟨φ̃(0)2⟩ − ⟨|φ̃(p0)|2⟩
, (6)

and at zero momentum,

gR =
3⟨φ̃(0)2⟩2 − ⟨φ̃(0)4⟩

⟨φ̃(0)2⟩2 , (7)

where φ̃(p) =
∫

dnx eip·x φ(x) is the Fourier transform of the field, and we choose the
4-momentum, p0, with one spatial component equal to 2π/Na, and all other components
equal to zero.

We also calculate the one-point, two-point-, and two-point connected functions, re-
spectively, given by the following:

V = ∑
x
⟨φ(x)⟩/Nn, (8)

D(z) = ∑
x
⟨φ(x)φ(x + z)⟩/Nn, (9)

Dc(z) = ∑
x
(⟨φ(x)φ(x + z)⟩ − ⟨φ(x)⟩2)/Nn = D(z)− V2. (10)

By construction, these are periodic functions, D(z) = D(z + L), of period L. Moreover,
since the action S contains only even powers of the field, these functions must be symmetric
with respect to z = L/2, namely, D(z) = D(L − z).

3. The Scaling

We work with a scaled field φ′(x), related to the variable φ(x), used for example
in [12], by

φ(x) = a−3/2 φ′(x). (11)

In other words, we re-normalize the bare field. This can be compared with the standard
renormalization formula, as follows:

φ(x) = Z1/2 φren(x). (12)

φren(x) is referred to as the renormalized field and Z is called the renormalization
constant. In this language, we set Z = a−3.

At the same time, we rescale the coupling constant with

g = a3g′. (13)

In the Standard Model, the various coupling constants also need to be renormalized
for the continuum limit to exist, but the renormalization is not simply given by a power of
the lattice spacing. Instead, it needs to carefully be tuned to the cutoff and the couplings.
In the perturbation theory of canonical φ4, the bare coupling constant can be expressed in
terms of the renormalized one, order by order. The result consists of a series that starts
with gren:

g = gren + c2(gren)2 + c3(gren)3 + . . . (14)

The standard renormalization procedure is based on the fact that the Fourier transform
of the renormalized two-point function contains a pole at p2 = M2, where M is the physical
mass of the particle. The renormalization constant, Z, is chosen such that the residue of
this pole is equal to 1. In particular, this ensures that φren(x) and φ(x) as well as gren and
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g have the same dimensions. Note that our rescaling, (11) and (13), instead changes the
dimensions of these objects.

In our first case study below, we will see that the expectation value, ⟨φ′(x)⟩, tends to
a constant when N becomes large. This means that the expectation value of the unscaled
field, ⟨φ(x)⟩, tends to infinity in proportion to N3/2 [12,14].

As we are holding g′ constant, the unscaled coupling constant, g, tends to zero in
proportion to 1/N3. This suggests that, for the parameter values we consider, the connected
Green’s functions of the unscaled model tend to be those of a free scalar field.

4. Numerical Results

Our PIMC simulations use the Metropolis algorithm [24,25] to calculate the ensemble
average of Equation (4), which is an Nn-multidimensional integral. The simulation starts
from the initial condition, φ(x) = ϵ > 0, for all lattice points, x, with ϵ denoting a small
positive number. One PIMC step consists of a random displacement of each one of the Nn

field values, φ(x), as follows:

φ → φ + (2η − 1)δ, (15)

where η is a uniform pseudo-random number in [0, 1] and δ is the amplitude of the dis-
placement. Each one of these Nn moves is accepted if exp(−∆S) > η, where ∆S is the
change in the action due to the move (it can be efficiently calculated, considering how the
kinetic part and the potential part change by the displacement of a single φ(x)) and is
rejected otherwise. The amplitude, δ, is chosen in such a way as to have acceptance ratios
as close as possible to 1/2, and is kept constant during the evolution of the simulation. One
simulation consists of M PIMC steps. The statistical error on the average ⟨O⟩ will then
depend on the correlation time necessary to decorrelate the property O, τO , and will be

determined as
√

τOσ2
O/(MNn), where σ2

O is the intrinsic variance for O.

We use a lattice comprising up to Nn = 254 = 390, 625 points (N = 25) and up to
M = 2 × 106, corresponding to MNn PIMC displacement moves.

4.1. First Case Study

In our simulation, we first choose the following case study: m = g = L = β = 1 and
ϵ = 10−10.

Notice that the minima of the two symmetric potential wells in the semi-classical
Hamiltonian density described by the function, f (φ) = 1

2 φ2 + φ4 + 3
8 φ−2, are at

φ± = ±2−1/2 ≈ ±0.707107. From our Monte Carlo simulations (see Table 1), it seems
that the vacuum expectation value of the field (one-point value), V = ∑x⟨φ(x)⟩/Nn, tends
to the values in the continuum limit, a = 1/N → 0. Note that in some of our previous
works [16,18,19], where, instead of keeping the bare mass, m, constant, we tuned it to have
a constant renormalized mass, mR, and found V = 0 in all cases. This is due to the fact that
as N increases, so does the necessary bare mass, which keeps a constant mR. Thus, the two
symmetric potential wells in the semi-classical Hamiltonian density have minima that tend
to zero, and one experiences tunneling of the potential barrier at φ = 0.

Table 1. Renormalized mass, mR, renormalized coupling constant, gR, and one-point value (vacuum
expectation value of the field) V = ∑x⟨φ(x)⟩/Nn for n = 3 + 1, m = g = L = β = 1 and
N = L/a = 4, 7, 13, 25. In our PIMC simulations, we use Equations (4) and (5).

N mR gR V

4 0.1421 (2) 2.01178 (2) 0.7501 (4)
7 0.0602 (1) 2.001129 (4) 0.7339 (2)
13 0.0224 (2) 1.999894 (5) 0.7216 (2)
25 0.0084 (1) 2.000048 (4) 0.7148 (3)
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In Table 2, we show the values of the renormalized mass, mR, and coupling constant,
gR, at increasing values of N = 1/a. We see that in the continuum limit, lima→0 mR = 0,
and lima→0 gR = 2, meaning that lima→0⟨φ̃(0)4⟩/⟨φ̃(0)2⟩2 = 1.

Table 2. Renormalized mass, mR, renormalized coupling constant, gR, and one-point value (vacuum
expectation value of the field) V = ∑x⟨φ(x)⟩/Nn for n = 3 + 1, g = L = β = 1, m =

√
N/L and

N = L/a = 4, 7, 13, 25. In our PIMC simulations, we use Equations (4) and (5).

N mR gR V

4 0.1461 (2) 2.01199 (2) 0.6672 (4)
7 0.0627 (1) 2.001154 (4) 0.5992 (3)
13 0.02463 (5) 1.999844 (2) 0.5169 (2)
25 0.00867 (5) 2.000069 (7) 0.4359 (3)

In Figure 1, we show D(z) at increasing values of N = 1/a. From the plot of the
simulation data, we see that the function is symmetric with respect to z = 1/2, as expected
since the action only contains even powers in the field.
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Figure 1. Two-point function D(z) = ∑x⟨φ(x)φ(x + z)⟩/Nn for n = 3 + 1, m = g = L = β = 1 and
N = L/a = 4, 7, 13, 25. In our PIMC simulations, we use Equations (4) and (5).

In Figure 2, we show Dc(z) at increasing values of N = 1/a. From the plot of the
simulation data, we see that lima→0 D(1/2) = 0. The width of the spike of Dc(z) at z = 0
seems to be related to the value of the renormalized mass, mR.

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.2 0.4 0.6 0.8 1.0

D
c
(z

)

|z|

N= 4

N= 7

N=13

N=25

Figure 2. Two-point connected function Dc(z) = D(z)− V2 for n = 3 + 1, m = g = L = β = 1 and
N = L/a = 4, 7, 13, 25. In our PIMC simulations, we use Equations (4) and (5).

Alternatively, we could adjust, at each change in N, the value of the bare mass, m,
to have a fixed value for the renormalized mass, mR. This would result in a convergence
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toward a unique two-point connected function in the continuum limit, N → ∞. We did not
adopt this strategy because numerically tuning the bare mass to maintain the same value
for the renormalized mass at each N proves problematic. This is what we did in some of
our previous papers [12,13,16–22]. As explained in those works, keeping the renormalized
mass constant is extremely cumbersome due to the unavoidable systematic numerical
error that one faces. It would then have been extremely difficult to achieve a reasonable
comparison between the two-point functions at different values of N.

4.2. Second Case Study

For the parameter values we just used, the box plays a crucial role: the bare Compton
wavelength (1/m) is equal to the size, L, of the box. For the box to be a purely technical
device introduced to regularize the theory, it must be large compared to the correlation
length of the model. At the same time, the lattice spacing must be small compared to it:

1/L ≪ m ≪ 1/a. (16)

Therefore, next, we consider the study case with g = L = β = 1, m =
√

N/L and
ϵ = 10−10, which should be much less affected by the presence of the box than the previous
choice, m = 1/L.

Notice that the minima of the two symmetric potential wells in the semi-classical
Hamiltonian density, described by f (φ) = 1

2 m2 φ2 + φ4 + 3
8 φ−2, φ±(m), are such that

φ±(m) = ±31/4(2m)−1/2 + O(m−7/2) for m ≫ 1. (17)

So, with our choice of m =
√

N, in the continuum limit, we find

lim
N→∞

⟨φ⟩ = lim
N→∞

φ+(
√

N) = 0, (18)

which is in agreement with the results in Refs. [12,13,16,18–22].
From Figure 3, we see the continuum limit, N → ∞, of the scaled two-point connected

function, where, with the abuse of notation, we drop the prime from Dc, which was adopted
rigorously in Section 3. With respect to reference [14] (see Figure 3 there), which deals with
the unscaled free field case, and Dc(0), which increases with the increasing N, we see how
scaling has the effect of letting the value of D′

c(0) decrease with increasing N, as shown
in Figure 3, as φ′ = φ/N3/2 and D′

c = Dc/N3. It is only by tuning the bare mass, m, to
have a constant renormalized mass, mR, for each N, that we would find true convergence.
Unfortunately, this procedure is not easily accomplished numerically since for each N we
would have to make several test runs with different values of m in order to find the value
that keeps mR approximately constant. This procedure was nonetheless carried out in the
following works [12,13,16,18–22].
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Figure 3. Two-point connected function Dc(z) = D(z) − V2 for n = 3 + 1, g = L = β = 1,
m =

√
N/L and N = L/a = 4, 7, 13, 25. In our PIMC simulations, we use Equations (4) and (5).



Quantum Rep. 2024, 6 140

5. Conclusions

In this paper, we denote π(x) by k(x)/φ(x). To ensure proper values for π(x), it is
necessary to restrict 0 < φ(x) < ∞ as well as 0 ≤ |k(x)| < ∞. Indeed, such a symbol
change can treat Hamiltonian densities with an interaction, φ(x)4. This leads to a completely
satisfactory quantization of field theories using situations that involve scaled behavior
leading to an unexpected, h̄2/φ(x)2, which arises only in quantum aspects. Indeed, it is
fair to claim that this symbol change leads to valid field theory quantization.

With respect to reference [14], which deals with the free field case, here, we repeat that
analysis but for the φ4 interacting case.

We prove through path-integral Monte Carlo computer experiments that the affine
quantization of the φ4

4-scaled Euclidean covariant relativistic field theory is a well-defined
quantum field theory, with a well-defined continuum limit of the one- and two-point
functions (the Green’s function).

The simple pseudo-potential, ∝ h̄2/φ2, stemming from the affine quantization proce-
dure [9], does not disturb the continuum limit, as we prove here; moreover, it can render
the φ4

4 theory non-trivial, which is known to be trivial [2] when treated with the more
commonly known canonical quantization [1].

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. The Extra “3/4” Potential Term

To explain the extra “3/4” potential term, we use the fact that the operator corre-
sponding to the affine field, κ, will be the dilation operator κ̂ = (π̂ φ̂ + φ̂π̂)/2 where
the regularized basic quantum Schrödinger operators are given by φ̂(x) = φ(x) and
π̂(x) = −ih̄δφ(x) = −ih̄δ/δφ(x), so that the commutator [φ̂(x), π̂(y)] = ih̄δs(x − y), where
δs(x) is a s-dimensional Dirac delta function since δφ(x)φ(y) = δs(x − y). Multiplying this
by φ̂, we find [φ̂, φ̂π̂] = [φ̂, π̂ φ̂] = [φ̂, κ̂] = ih̄δs φ̂, which is only valid for φ ̸= 0. Then,
κ̂ = −ih̄{δφ(x)[φ(x)] + φ(x)δφ(x)}/2 = −ih̄{δs(0)/2 + φ(x)δφ(x)}. Now, for φ(x) ̸= 0, the

affine quantization sends π̂2(x) to

κ̂(x)φ−2(x)κ̂(x) = −h̄2{δs(0)/2 + φ(x)δφ(x)}φ−2(x){δs(0)/2 + φ(x)δφ(x)}

= h̄2(3/4)δ2s(0)φ−2(x)− h̄2δ2
φ(x) (A1)

= h̄2(3/4)δ2s(0)φ−2(x) + π̂2(x).
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