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Abstract: Air pollution is a paramount issue, influenced by a combination of natural and anthro-
pogenic sources, various diffusion modes, and profound repercussions for the environment and
human health. Herein, the power of time series data becomes evident, as it proves indispensable for
capturing pollutant concentrations over time. These data unveil critical insights, including trends,
seasonal and cyclical patterns, and the crucial property of stationarity. Brescia, a town located in
Northern Italy, faces the pressing challenge of air pollution. To enhance its status as a smart city and
address this concern effectively, statistical methods employed in time series analysis play a pivotal
role. This article is dedicated to examining how ARIMA and LSTM models can empower Brescia
as a smart city by fitting and forecasting specific pollution forms. These models have established
themselves as effective tools for predicting future pollution levels. Notably, the intricate nature
of the phenomena becomes apparent through the high variability of particulate matter. Even dur-
ing extraordinary events like the COVID-19 lockdown, where substantial reductions in emissions
were observed, the analysis revealed that this reduction did not proportionally decrease PM2.5 and
PM10 concentrations. This underscores the complex nature of the issue and the need for advanced
data-driven solutions to make Brescia a truly smart city.
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1. Introduction

Air pollution is defined as the state of air quality resulting from the emission of
substances of any nature into the atmosphere in quantities and under conditions that alter
its healthiness and constitute a direct or indirect harm to the health of citizens or damage
to public or private property. These substances are usually not present in the normal
composition of the air or they are present at a lower concentration level.

Table 1 shows the main air pollutants, which are often divided into two main groups:
anthropogenic pollutants, which are produced by humans, and natural pollutants. They can
also be classified as primary and secondary; the former are released into the environment
directly from the source (for example, sulfur dioxide and nitric oxide), while the latter
are formed later in the atmosphere through chemical–physical reactions (such as ozone).
Pollution caused by these substances in open environments is defined as outdoor pollution,
while pollution in confined spaces, such as buildings, is called indoor pollution. To date,
about 3000 air contaminants have been cataloged, produced mainly by human activities
through industrial processes, through the use of vehicles, or in other circumstances. The
methods of the production and release of the different pollutants are extremely varied, and
there are many variables that can influence their dispersion in the atmosphere.
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Table 1. Main pollutants.

Pollutant Description

Carbon monoxide

A colorless, odorless, flammable, and highly toxic gas. It is formed during
the combustion of organic substances in the absence of oxygen (i.e., when
the oxygen present in the air is not sufficient to convert all the carbon to
carbon dioxide).

Sulfur oxides
(SO2) A colorless, irritant, non-flammable gas that is highly soluble in
water and has a pungent odor. Being heavier than air, it tends to stratify
in the lower layers.

Nitrogen oxide
A colorless, tasteless, and odorless gas; it is also called nitric oxide. It is pro-
duced mainly during high-temperature combustion processes along with
nitrogen dioxide, which constitutes less than 5% of the total NO emissions.

Ozone

Ozone is a toxic gas with a bluish color, composed of unstable molecules
formed by three atoms of oxygen (O3); it accounts for more than 90%
in the stratosphere, where it is produced by molecular oxygen by the
action of the Sun’s ultraviolet rays. In the stratosphere, it constitutes a
protective screen against UV radiation generated by the Sun.

Particulate matter

This is the set of solid and liquid atmospheric particles with an aerody-
namic diameter between 0.1 and 100 µm. Within this range, the following
are distinguished [1]: PM10, consisting of inhalable particles with a diam-
eter of less than 10 µm; PM2.5 formed by fine inhalable particles, with a
diameter of less than 2.5.

Benzene

Benzene is an aromatic hydrocarbon with a hexagonal ring structure,
consisting of six carbon atoms and six hydrogen atoms (C6H6); it is the
simplest compound in the class of aromatic hydrocarbons. At room
temperature, benzene is a colorless liquid that evaporates very quickly. It
is a highly flammable substance, but its danger is mainly due to the fact
that it is a recognized human carcinogen.

According to the European Environment Agency (EEA) (https://www.eea.europa.eu/
themes/air/health-impacts-of-air-pollution accessed on 17 December 2023), air pollution
affects people in different ways. The elderly, children, and people with pre-existing health
conditions are more susceptible to the impacts of air pollution. Additionally, people from
lower socioeconomic backgrounds often have poorer health and less access to high-quality
healthcare, which increases their vulnerability. There is clear evidence linking lower
socioeconomic status to increased exposure to air pollution. One reason is that, in much
of Europe, the poorer parts of the population are more likely to live near busy roads or
industrial areas.

The World Health Organization (WHO) provides evidence of links between air pollu-
tion exposure and type 2 diabetes, obesity, systemic inflammation, Alzheimer’s disease,
and dementia. The International Agency for Research on Cancer has classified air pollution,
in particular PM2.5, as one of the leading causes of cancer.

Air pollution is not only affecting human health, but also the environment [2]. The
most-important environmental consequences are the following. Acid rain is wet (rain, fog,
snow) or dry (particulate matter and gas) precipitation containing toxic amounts of nitric
and sulfuric acid. They are able to acidify water and soil, damage trees and plantations,
and even ruin buildings, sculptures, constructions, and statues outdoors. Haze forms when
fine particles are dispersed in the air and reduce the transparency of the atmosphere. It is
caused by emissions of gases into the air from industrial plants, power plants, cars, and
trucks. The sky of large urban areas is also darkened by smog, which forms in particular
meteorological conditions from the fusion of fog and polluting gases [3].

As stated by the EEA [4,5], EU air quality directives (Directive 2008/50/EC on ambient
air quality and cleaner air for Europe and Directive 2004/107/EC on heavy metals and
polycyclic aromatic hydrocarbons in ambient air) set thresholds for the concentrations of

https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution
https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution
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pollutants that must not be exceeded in a given period of time. In case of exceedance, the
authorities must develop and implement air quality management plans that should aim to
bring the concentrations of atmospheric pollutants to levels below the target limit values.
These are based on the WHO air quality guidelines of 2005, but also reflect the technical
and economic feasibility of their achievement in all EU Member States. Therefore, the EU
air quality standards are less stringent than the WHO air quality guidelines.

Table 2 shows the limits of the air concentrations of some pollutants established by the
EU directives and WHO.

Table 2. Maximum concentration values for some pollutants in the air established by the EU and
the WHO.

Pollutant Average Period
Concentration (µg/m3)

EU WHO

PM2.5 Annual 25 5
PM10 24 h 50 45

O3 Max, daily 8 h mean 120 /
O3 8 h / 100

NO2 Annual 40 10
SO2 24 h 125 40

C6H6 Annual 5 1.7
CO Max, daily 8 h mean 10,000 10,000

The results of the 2022 European Air Quality Report by the European Environment
Agency (EEA) [6] show that Italy, with the Po Valley, is still one of the areas in Europe where
air pollution due to ozone and particulate matter (PM10 and PM2.5) is most significant. In
2020, the European limit values for these pollutants were exceeded, especially in Northern
Italy. This is due to the fact that the Po Valley is a densely populated and industrialized area
with particular meteorological and geographical conditions that favor the accumulation of
pollutants in the atmosphere.

Brescia is one of the most-polluted cities in Europe, along with other cities in the
Po Valley. This was revealed in the latest report by the European Environment Agency
(EEA) [7], where cities were ranked from cleanest to most-polluted based on the average
levels of PM2.5 in the last two solar years (2021 and 2022). The capital of the province is
among the worst urban areas in Italy and the entire continent, ranking 358th out of 375 cities
examined, and 6th-last among Italian cities. Brescia records an average of 20.6 µg/m3 of
PM2.5. Worse results in Italy are recorded in Cremona (in 372nd place out of 375 with
25.1 µg/m3 of PM2.5), Padua (367 with 21.5 µg/m3), Vicenza (362 with 21 µg/m3), and
Venice (359 with 20.7 µg/m3).

One of the key requirements of a smart city (see Gracias et al. [8] for a review of
the definition and the scope of a smart city) is to control and reduce pollution. Meeting
this objective provides in return a wide range of benefits (see Table 3). As per Table 4,
data about pollution can be modeled as a (uni- or multi-variate) time series, allowing
researchers to apply classic approaches (such as ARIMA), state-of-the-art formalisms
derived from Machine Learning (such as Long Short-Term Memory neural networks), or
even hybrid models.

The contribution of this article consists of enhancing the understanding of air pollution
and its complexities in the town of Brescia, offering new perspectives on its management
through time series analysis and the application of predictive models.

The work is organized as follows. Section 2 reviews the related work; Section 3
discusses the data pre-processing and the employed time series models; Section 4 presents
the considered experiments. Finally, Section 5 concludes this work.
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Table 3. Compelling reasons for pollution control in smart cities.

Reason Explanation

Improved Quality of Life

Pollution, especially air pollution, have a detrimental impact on
the health and well-being of residents. Smart cities aim to provide
a high quality of life for their citizens, and controlling pollution is
a fundamental aspect of achieving this goal.

Environmental
Sustainability

Reducing pollution contributes to environmental sustainability.
Smart cities recognize the importance of protecting the
environment and conserving natural resources to ensure a better
future for current and future generations.

Economic Benefits

Pollution control can lead to cost savings in healthcare, reduced
infrastructure damage, and increased productivity. By addressing
pollution, smart cities can support economic growth and
long-term prosperity.

Attracting Investment
and Talent

Clean and sustainable cities are more attractive to investors and
skilled workers. By controlling pollution, smart cities can draw in
businesses, talent, and funding, boosting their growth and
competitiveness.

Climate Change Mitigation

Reducing pollution are critical for addressing climate change.
Smart cities often set ambitious sustainability goals to combat
climate change by minimizing greenhouse gas emissions and
adopting renewable energy sources.

Table 4. Time series analysis and forecast techniques for pollution control in smart cities.

Time Series Analysis and
Forecast Techniques Explanation

Time Series Modeling

Time series models, such as ARIMA and LSTM, can analyze
historical pollution data to identify trends, seasonal patterns, and
stationary properties, providing a foundation for forecasting
future pollution levels.

Predictive Modeling
Predictive models use historical time series data to forecast
pollution concentrations, enabling smart cities to take timely
actions in response to changing pollution levels and events.

Real-Time Monitoring
Time series analysis allows for real-time monitoring of pollution
levels, enabling immediate responses to unexpected spikes in
pollution, helping to protect public health.

Event-Based Forecasting

Time series techniques can incorporate events such as industrial
operations, festivals, or weather patterns to make event-based
pollution forecasts, allowing cities to prepare for specific
pollution challenges.

Data-Driven Policy
Time series analysis provides data-driven insights for policy
development and adjustments, supporting targeted pollution
control measures and regulatory decisions.

2. Related Work

The bond between Machine Learning and the issues related to smart cities’ develop-
ment is rather solid and on-going, as the most-recent scientific literature denotes [9–12].

Classic time series forecast models cited in Table 5 present weaknesses and advantages.
ARIMA and ETS can be characterized by simplicity, interpretability, and effectiveness in
capturing linear dependencies, although they have a limited ability to capture complex
non-linear patterns and may not handle abrupt changes well. STL denotes an effective
decomposition of time series into trend, seasonal, and remainder components, and they
may struggle with irregularly spaced or missing data. While LSTM and GRU are known for



AI 2024, 5 21

their ability to capture long-term dependencies and non-linear patterns in sequential data,
they can be computationally expensive and are prone to overfitting. On the other hand,
Transformers benefit from parallelization, scalability, and effectiveness in capturing global
dependencies, but they require substantial data and computational resources. It has to be
noted that overfitting on small datasets, being less effective with irregularly spaced data
and high predictive accuracy, and their non-linearity capability are the essence of XGBoost
and LightGBM. Finally, ARIMAX and SARIMA are considered effective for time series with
clear seasonality and trends, although they are sensitive to parameter selection and may
require extensive tuning.

iTransformers inherit the Transformer’s ability to capture global dependencies within
sequential data. The “i” in iTransformer denotes the incorporation of information self-
screening, introducing a mechanism for the model to autonomously select relevant input
variables. This self-screening layer optimizes the choice of variables, enhancing the model’s
efficiency and mitigating the risk of overfitting associated with an excessive number of
variables. One notable strength of iTransformer is its incorporation of an information
self-screening layer for adaptive variable selection. This feature allows the model to
autonomously choose relevant input variables, optimizing its performance by focusing on
the most informative features. A potential weakness of iTransformer, like other Transformer-
based models, could be its computational burden.

Table 5. Forecast models.

Time Series Model Description

ARIMA Autoregressive Integrated Moving Average

ETS Exponential Smoothing State Space Models

STL Seasonal Trend Decomposition Using LOESS

LSTM Long Short-Term Memory Networks

GRU Gated Recurrent Unit Networks

Transformer Transformer Models

XGBOOST Gradient-Boosted Trees

ARIMAX ARIMA with Exogenous Variables

iTransformer
An Integration of Transformer Architecture with

Additional Enhancements

Kumar et al. [13] conducted an inquiry spanning six years, analyzing air pollution
data from 23 cities in India for the purposes of air quality examination and prediction. The
dataset was pre-processed, involving the selection of pertinent features through correlation
analysis. Subsequently, exploratory data analysis was undertaken to discern latent patterns
within the dataset, with a specific focus on identifying pollutants that directly impact the air
quality index. Notably, a pronounced reduction in the concentration of nearly all pollutants
was discerned during the pandemic year, 2020. The mitigation of the data imbalance
predicament was addressed through the application of resampling techniques, and the
predictive modeling of air quality was executed utilizing five distinct Machine Learning
models (KNN, Gaussian Naive Bayes (GNB), SVM, RF, and XGBoost). The outcomes of
these models were juxtaposed against established metrics for comparative evaluation. It is
noteworthy that the Gaussian Naive Bayes model attained the highest accuracy, whereas
the Support Vector Machine model recorded the least accuracy. The efficacy of these models
was systematically scrutinized and compared through well-established performance param-
eters. The XGBoost model emerged as the most-proficient among the considered models,
demonstrating the highest degree of linearity between the predicted and actual data.

Wu et al. [14] introduced an adversarial meta-learning framework designed for prob-
abilistic and adaptive air-pollution-prediction tasks. In the context of a given backbone
predictor, our proposed model engages in an adversarial three-player game to acquire
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proficiency in learning an implicit conditional generator. This generator is capable of sup-
plying informative task-specific predictive distributions. Furthermore, the article provides
a theoretical framework interpreting the proposed model as an approximate minimizer for
the Wasserstein distance between a latent generative model and the true data distribution.
Empirical evaluations conducted on both synthetic and real-world datasets demonstrated a
noteworthy enhancement in the provision of more-informative probabilistic and adaptive
predictions, while concurrently maintaining satisfactory point prediction error metrics. This
suggests that the model exhibits an improved capability to address the intricate demands
of uncertainty estimation and adaptation in real-world air pollution prediction scenarios.

In [15], the authors claimed that the lack of mechanism-based analysis rendered their
forecasting outcomes less interpretable, thereby introducing a degree of risk, particularly
in contexts where governmental decisions are informed by such forecasts. The study in-
troduced an interpretable variational Bayesian deep learning model with a self-screening
mechanism designed for PM2.5 forecasting. Initially, a multivariate-data-screening struc-
ture, centered on factors influencing PM2.5 concentrations (e.g., temperature, humidity,
wind speed, spatial distribution), was established to comprehensively capture pertinent
information. Subsequently, a self-screening layer was incorporated into the deep learning
network to optimize the selection of the input variables. Following the integration of the
screening layer, a variational Bayesian Gated Recurrent Unit (GRU) network was devised to
address the intricate distribution patterns of PM2.5, thereby facilitating accurate multi-step
forecasting. The efficacy of the proposed method was empirically substantiated using PM2.5
data from Beijing, China, showcasing the utility of deep learning technology in determining
multiple factors for PM2.5 forecasting while ensuring high forecasting accuracy.

Zhao et al. [16] extended the analysis beyond pollutants and meteorological factors
to encompass social factors, such as the implementation of lockdown policies during the
COVID-19 pandemic, as dependent variables in predicting the Air Quality Index (AQI).
Multiple linear regression was employed to mitigate the influence of seasonal and epidemic
factors on the original series, thereby facilitating the extraction of potential information
from the dataset. To streamline the model and mitigate the overfitting risks associated with
an abundance of variables, a hybrid metaheuristic feature-selection method was applied to
eliminate low-correlation variables, thereby reducing the computational complexity. The
utilization of a time series regression model facilitated the derivation of a residual series.
Incorporating the spatial dependence structure, the authors constructed a spatial autocorre-
lation variable. Subsequently, employing the K-nearest neighbor mutual information, the
authors selected the spatial autocorrelation variable demonstrating the strongest depen-
dence, thus capturing the spatiotemporal characteristics of the AQI. The Long Short-Term
Memory (LSTM) and Bidirectional LSTM (Bi-LSTM) models were employed to realize
multi-step predictions of the AQI. Comparative evaluations with several benchmarks,
including feedforward neural networks and recurrent neural networks, were conducted.
Through multiple sets of experiments, this work substantiated that the proposed framework
adeptly and accurately monitors changes in air quality.

In the study conducted by Marinov et al. [17], the temporal trends of air pollution
were investigated at five air-quality monitoring stations in Sofia, Bulgaria. Data collected
between 2015 and 2019 were examined. Given the requirement for complete data in time
series analysis, imputation techniques were employed to address missing pollutant values.
The data were aggregated into periods of 3, 6, 12, and 24 h. The ARIMA model was utilized
for forecasting levels of carbon monoxide (CO), nitrogen dioxide (NO2), ozone (O3), and
fine particulate matter (PM2.5) at each station and for each time granularity. From an initial
analysis, a seasonal component was observed in the data for pollutants aggregated at 1, 3,
and 12 h intervals, which was expected due to the repeated daily activities within the city.

The authors employed two statistical tests (ADF and KPSS) to assess the stationarity
of the time series and differentiated the non-stationary series. They selected the parameters
p, d, and q of the ARIMA models through a grid search approach, utilizing the AIC and
BIC in conjunction with the ADF. Mean Absolute Error (MAE) was considered as the final
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evaluation metric. The concentration forecasts obtained through the ARIMA models closely
approximated the actual values, especially for the one-hour granularity. This research
was confined to using past pollutant values and the implementation of only one type of
model; additional meteorological data could be included in the analysis to obtain more
comprehensive insights into the causes and trends of air pollution, along with employing
further models for a constructive comparison.

Lei et al. in their study [18] employed multiple linear regression (MLR) and other
Machine Learning models (random forest (RF), gradient boosting (GB), and support vector
regression (SVR)) to forecast the concentrations of particulate matter (PM10 and PM2.5)
in Macao, China, for the following day. MLR is a statistical model commonly utilized to
predict the value of a variable based on two or more variables. One of its advantages lies in
its capacity to consider all potential factors related to the target variable.

Feature selection was applied to reduce the dimensionality, and the predictive model
performances with reduced features were compared with their complete feature counter-
parts. The models were constructed and trained using meteorological and air quality data
from 2013 to 2018, with data from 2019 to 2021 employed for validation.

The results revealed that there was no significant difference in the performance of the
four methods in predicting air quality data for 2019 (pre-COVID-19 pandemic) and 2021
(the new normal period). However, RF yielded significantly better results than the other
methods for 2020 (during the pandemic). The reduced performance of statistical MLR and
other Machine Learning models is presumably attributed to the unprecedented low levels
of PM10 and PM2.5 concentrations in 2020. Therefore, this study suggested that RF is the
most reliable among the considered prediction methods, especially in cases of drastic air
quality changes due to unforeseen circumstances.

Machine Learning is well suited for regression and classification problems and is
widely recognized as one of the most effective approaches for predicting pollution levels
due to the robustness and accuracy often exhibited by its methods. An artificial neural
network is a frequently employed predictor capable of modeling non-linear time series
by simulating the behavior of neurons in the human nervous system. Common Machine
Learning models used for air pollution prediction include the backpropagation neural
network (BPNN), Long Short-Term Memory (LSTM), and the wavelet neural network
(WNN). Other models include the support vector machine (SVM) and fuzzy-logic-based
approaches. These techniques require a substantial amount of historical pollutant data.

In the work of Spyrou et al. [19], a univariate LSTM model was utilized to forecast
CO values obtained from environmental sensors installed in the Igoumenitsa port area in
Greece. This model was compared with the ARIMA model. Initially, from a preliminary
analysis of data spanning an entire day, extreme spikes were identified, which the authors
attributed to sudden events. The reasons for the increased CO values were not identified,
and further investigations should be conducted to obtain a comprehensive understanding
of the concentration trends. Subsequently, Spyrou et al. removed the negative values
found in the dataset and transformed the data (10-value moving average) to smooth out
spikes. The Dickey–Fuller test was performed to check the stationarity of the time series.
Additionally, tests were conducted considering data batches of sizes of 100, 1000, and
7000. Eighty percent of the observations were used for training, and the remaining portion
was used for testing. The case where the number of batches was 7000 showed the lowest
values of the root-mean-squared error (RMSE) and mean absolute error (MAE) for both
training and testing losses, leading to improved predictions. Finally, an ARIMA(1,1,0)
model was fit to the training data, which provided predictions for the testing phase that
closely approximated the actual values of the series compared to those obtained through the
LSTM neural network. For future research, a multivariate approach could be considered,
incorporating other environmental parameters as predictive variables.

Wang et al. [20] introduced an innovative attentive graph neural network (AGNN)
designed for the task of zero-shot video object segmentation (ZVOS). The proposed AGNN
reformulates ZVOS as an iterative information fusion process operating on video graphs.
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Specifically, the AGNN constructs a fully connected graph to effectively represent frames
as nodes and the relationships between arbitrary pairs of frames as edges. The inherent
pairwise relationships are delineated by a differentiable attention mechanism. Leveraging
parametric message passing, the AGNN adeptly captures and explores more intricate and
higher-order relations between video frames, facilitating a comprehensive comprehension
of video content and enhanced accuracy in foreground estimation. Experimental eval-
uations conducted on three distinct video segmentation datasets substantiated that the
AGNN established a new state-of-the-art performance in each instance. To underscore
the generalizability of the framework, the authors extended the AGNN to an additional
task: image object co-segmentation (IOCS). Subsequent experiments conducted on two
prominent IOCS datasets consistently revealed the superior performance of the AGNN
model. The extensive experimentation corroborated the AGNN’s capacity to discern the
underlying semantic and appearance relationships among video frames or related images,
thereby uncovering common objects.

Lu et al. [21] presented a comprehensive modeling approach for a set of pixelwise-
object-segmentation tasks encompassing automatic video segmentation (AVS), image co-
segmentation (ICS), and few-shot semantic segmentation (FSS). The method adopts a
unified perspective on the segmentation of objects within relational visual data. To achieve
this, the authors presented an AGNN designed to address these tasks holistically, concep-
tualizing them as iterative processes of information fusion over data graphs. The AGNN
constructs a fully connected graph, effectively representing visual data as nodes and re-
lationships between data instances as edges. The underlying relations were elucidated
through a differentiable attention mechanism, meticulously evaluating fine-grained seman-
tic similarities between all possible location pairs in two data instances. Leveraging para-
metric message passing, the AGNN acquires knowledge from relational visual data, thereby
enhancing the precision of object discovery and segmentation. Empirical investigations
demonstrated the AGNN’s proficiency in automatically identifying primary foreground
objects in video sequences (i.e., automatic video segmentation), extracting common objects
from noisy assortments of semantically related images (i.e., image co-segmentation) and
even generalizing to segment new categories with limited annotated data (i.e., few-shot
semantic segmentation). Collectively, the findings attested to the AGNN’s potency as a
versatile tool applicable to a diverse array of pixelwise object-pattern-understanding tasks
involving relational visual data.

In [22], the authors compared the SARIMA, SVM, and LSTM models for predicting
the Air Quality Index (AQI) of Ahmedabad city in Gujarat, India. The data were collected
from January 2015 to January 2021. The AQI was calculated based on the updated criteria
from the Central Pollution Control Board in India, considering indices of 12 pollutants.
A higher AQI value indicates a higher level of air pollution. In this research, various
data pre-processing methods were employed to select the features, remove the outliers,
normalize the data, and handle missing values in the city of Ahmedabad. The Seasonal
ARIMA (SARIMA) is obtained from ARIMA by incorporating seasonal terms and is partic-
ularly useful when a time series exhibits seasonal variation. Different parameter values
of SARIMA were examined, and the model with the lowest AIC was selected. Regression
algorithms using support vector machines (SVMs) are commonly referred to as support
vector regression (SVR) and often operate with the assistance of kernel functions. The
authors compared the performance of SVR with linear, radial basis (RBF), and polynomial
kernel functions. Subsequently, a two-layer Long Short-Term Memory (LSTM) network
was designed, consisting of one LSTM layer with 256 cells and a ReLU activation function
and one fully connected layer with a linear activation function. Regarding the prediction
of AQI data for the city of Ahmedabad, the SVM with the RBF outperformed the other
models, yielding superior results in terms of the R2 and RMSE evaluation metrics.

In general, hybrid models refer to the combination not only of different algorithms
or techniques, but also the advantages of each component, resulting in enhanced perfor-
mance [23]. T. Li, M. Hua, and X. Wu in [24] developed a hybrid CNN-LSTM model by
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integrating a Convolutional Neural Network (CNN) and LSTM to predict the PM2.5 con-
centration in the next 24 h in Beijing, China. The model effectively leverages the strengths
of its components: the CNN efficiently extracts the air quality features, and the LSTM
captures long-term historical time series data patterns. Due to data periodicity, air quality
values for the past 7 days and the concentration of PM2.5 for the next day were chosen
as the input and output, respectively. Initially, the data were normalized, with the first
80% allocated for training and the remaining portion for testing. As a result, four models
were created for PM2.5 concentration prediction: univariate LSTM, multivariate LSTM,
univariate CNN-LSTM, and multivariate CNN-LSTM. The architecture of the latter model
comprises two one-dimensional convolutional layers, one MaxPooling layer, one Flatten
layer to prepare the data for the LSTM, one Dropout layer to prevent overfitting, one LSTM
layer for prediction, and one fully connected layer. The univariate models considered only
PM2.5 concentration as a feature, while the multivariate models included other relevant
features such as the weather conditions, wind speed and direction, atmospheric pressure,
etc. The MAE and RMSE were employed to assess the model’s performance.

The multivariate models outperformed univariate ones as they consider multiple
aspects related to air quality. Evaluation metrics for the hybrid models were inferior
compared to the LSTM models. Moreover, the multivariate CNN-LSTM model required
less training time. Additional analyses conducted in this research indicated that the results
deteriorated when the training data periods were reduced (e.g., only 1 day) or extended
(e.g., 14 days). In future research, the inclusion of more relevant features may enhance
PM2.5 concentration prediction. Table 6 provides additional examples of hybrid models
employed in pollutant forecasting.

Table 6. Pollution hybrid forecasting models.

Hybrid Model Forecasted
Pollutant Reference

Ensemble empirical mode decomposition-
least-squares support vector machine

(EEMD-LSSVM)
PM2.5 [25]

Genetic algorithm-random forest-
backpropagation neural network

(GA-RF-BPNN)
PM10 [26]

Variational mode decomposition-
sample entropy-

least-squares support vector machine
(VMD-SE-LSSVM)

AQI [27]

Complementary empirical ensemble
mode decomposition-

cuckoo search-grey wolf
optimizer-support vector machine

(CEEMD-CS-GWO-SVM)

NO2, SO2 [28]

It is interesting to separate feature-based predictions from hybrid models. The former
relies on carefully selected input features to make predictions, while the latter combines the
predictions from multiple models to achieve an enhanced overall forecast. Feature-based
predictions are typically associated with simpler models that focus on specific features,
while hybrid models can be more complex, involving the integration of diverse forecasting
approaches. An important factor to consider is interpretability, as feature-based predictions
often result in more-interpretable models, as the focus is on understanding the influence of
individual features. On the other hand, hybrid models may be less interpretable, especially
when combining models with different internal workings. Finally, feature-based predictions
may be susceptible to overfitting if the number of features is high relative to the dataset
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size, while hybrid models can help mitigate overfitting by leveraging the strengths of
different models.

Physical models do not require a large amount of historical data, but necessitate
sufficient knowledge of pollutant sources, real-time emissions, and an explicit description of
the major chemical reactions between exhaust gases and temporal physical processes within
the Planetary Boundary Layer (PBL). Predictions from these deterministic methods are often
generated using 3D chemical transport models (CTMs), which facilitate an understanding
of the complex interplay between meteorology, chemistry, and emissions. However, the key
knowledge is frequently insufficient, and in some instances, it is computationally expensive.
Therefore, approximations and simplifications are often employed in transport models.
Limited knowledge of pollutant sources and imperfect representation of physico-chemical
processes can introduce significant distortions into predicted concentrations [29].

In the study by Carnevale et al. [30], the implementation and testing of an Integrated
Assessment Model (IAM) were presented to assist governments in formulating their short-
term plans (STPs). The objective of these plans is to reduce peak particulate concentration
levels and the number of days when air quality threshold values defined by legislation are
exceeded. The methodology employed is based on a forecasting model that provides infor-
mation on a selected air quality index up to 3 days in advance when pollutant emissions (a
control variable) are known. It is entirely general with respect to the specific forecasting
model and air quality index used; however, the choice of models should consider the
characteristics of the pollutants being controlled.

The choice of the CAMx deterministic chemical transport model was influenced by
the fact that short-term forecasting relies on the dynamics of the involved phenomena
and is usually strongly influenced by uncontrollable variables such as the wind speed and
precipitation rate. These factors make the use of surrogate models less appealing due to
their capability to effectively represent only the steady-state conditions of atmospheric
pollutants [31].

Furthermore, to enhance performance, a reanalysis technique based on an optimal
interpolation (OI) algorithm was implemented. This technique helps address input un-
certainties and approximations in modeling various phenomena included in the model.
In practice, OI calculates a correction factor (CF) by processing the latest available mea-
surements and the model output to improve the forecast. Since, in the considered case,
the latest available measurements typically date back to the day before the CTM forecast
execution, the only option was to maintain the correction factor over the forecast horizon.

The controller aims to find an optimal set of emission-reduction measures to apply,
simultaneously minimizing the number of days when pollutant concentrations exceed the
threshold and the monetary and social costs of implementing these measures.

The designed system was tested in a Northern Italian area that includes the city of
Brescia, an area often affected by high concentrations of PM10 (and other pollutants). The
goal was to identify an optimal set of actions to meet daily PM10 concentration limits while
minimizing the cost of implementation. The IAM for January 2011 successfully obtained
cost-efficient strategies with a reduction of 2 and 3 days exceeding the limits, respectively,
when implemented daily and every three days. The results demonstrated that the control
system can be a valuable resource to assist local authorities in establishing appropriate air
quality plans.

Table 7 summarises the articles cited in this section.
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Table 7. A summary of the presented articles.

Ref. Model Category Pollutant
Forecasted Area

[17] ARIMA Statistical
CO, NO2,
O3, PM2.5

Sofia,
Bulgaria

[18]
MLR,

(RF, GB, SVR) Statistical PM2.5, PM10
Macao,
China

[19]
LSTM,

(ARIMA)
Machine
learning CO

Port of
Igoumenitsa,

Greece

[22]
SVM,

(SARIMA, LSTM)
Machine
learning AQI

Ahmedabad,
India

[24]
CNN-LSTM,

(LSTM) Hybrid PM2.5
Beijing,
China

[30] CAMx Physical PM10
Brescia,

Italy

3. The Air-Pollution-Prediction Framework

Statistical models are employed in air quality forecasting due to their simplicity; they
can predict future concentrations of air pollutants by assessing the relationship between
these pollutants and past climatic parameters, without the knowledge of the pollution
sources and underlying physical or chemical processes. Examples of classical statistical
models for air pollution prediction include the Autoregressive Integrated Moving Average
(ARIMA) model, multiple linear regression (MLR) model, and the Grey Model (GM).

This study rests on the air-pollution-prediction framework depicted in Figure 1. The
details are introduced in the remaining part of this section.

Figure 1. Air pollution prediction framework.

In detail, daily measurements of PM10 (µg/m3) were utilized (https://www.dati.
lombardia.it accessed on 17 December 2023), originating from the monitoring station at via
Broletto in Brescia. This station is situated in a location predominantly influenced by traffic
emissions. Daily concentrations of PM2.5 (µg/m3), as well as those of NO2, O3, PM10, and

https://www.dati.lombardia.it 
https://www.dati.lombardia.it 
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SO2, from the Villaggio Sereno station, were also employed for a preliminary analysis of
the major pollutants. The latter station is located in an area where pollution levels are not
primarily determined by specific sources but by the integrated contribution of all sources
upwind of the station concerning the prevailing wind directions at the site.

Meteorological data, including daily temperature (Celsius degrees), relative humidity
(%), and rainfall (mm), were recorded at the Brescia Itas Pastori and via Ziziola weather
stations. All time series cover the years from 2006 to 2022, except for PM2.5, which begins
in 2007.

The locations of each station are indicated in Figure 2.

Figure 2. Location of the air-quality-monitoring stations (in blue) and weather stations (in red).
Source: Google Earth.

3.1. Pre-Processing of Data

Data pre-processing is essential to prepare the data in a suitable input format for
predictive models. The transformations applied are described below.

Firstly, some dates within the original time series were missing within the considered
time frame. These missing dates were added, and no values were assigned to them.
Subsequently, the presence of anomalous values was checked, and when found, these
anomalies were removed. Anomalies refer to data points falling outside the acceptable
value range for the variable under consideration, such as negative PM2.5 concentrations.

In the raw datasets, missing values were identified and had to be replaced, as the
methods to be used require complete data. Additionally, there are consecutive observations
without values that make the use of linear interpolation unrealistic for handling gaps
in the time series. Regarding pollutant concentrations, replacements were made using
the first available value from previous years on the same day and month as the missing
measurement. In cases where there was no such value, subsequent years were examined.

For meteorological data, the station with the fewest missing values, namely Itas Pastori,
was considered. These missing values were replaced by data obtained on the same date
from the Via Ziziola station. The same technique used for pollutant concentrations was
applied to the remaining missing values.

Finally, the data input for the neural-network-based models was normalized to im-
prove predictions. The min–max normalization was used and is described by the follow-
ing equation:

x′ =
x− xmin

xmax − xmin
.
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3.2. Predictive Models

While simple polynomial fitting may seem like an intuitive approach, it is often not
feasible for several reasons. Air pollution is influenced by a multitude of factors, and their
relationships are often non-linear. Simple polynomial fitting assumes a linear relationship
between the input features and the output, which may not accurately capture the complex
and non-linear nature of air pollution dynamics. Another aspect to be taken into account is
that air quality datasets typically involve a high number of variables, such as meteorological
conditions, traffic patterns, industrial activities, and more. Simple polynomial fitting might
struggle to model the interactions among these variables effectively, especially when they
exhibit non-linear dependencies.

It has to be noticed that simple polynomial models are prone to overfitting, especially
when dealing with high-dimensional data. Overfitting occurs when a model fits the training
data too closely, capturing noise rather than the underlying patterns. This can lead to poor
generalization performance on new, unseen data. Furthermore, simple polynomials have
limited expressiveness compared to more-advanced Machine Learning models. They may
not be able to capture complex patterns, interactions, and dependencies present in the
data, limiting their ability to make accurate predictions. Another problem with polynomial
fitting assumes homoscedasticity, meaning that the variance of the errors is constant across
all levels of the independent variable. In air pollution prediction, the variance of pollutants
may not be constant, leading to violations of this assumption.

Finally, polynomial models can be sensitive to outliers, and air quality datasets may
contain anomalous data points due to sensor errors, extreme weather events, or other
factors. Simple polynomial fitting might be heavily influenced by these outliers, leading to
biased predictions. Table 8 summarises the cited models.

Table 8. Methods for time series prediction.

Method Description

ARIMA Autoregressive Integrated Moving Average

ETS Exponential Smoothing State Space Models

STL Seasonal-Trend Decomposition Using LOESS

LSTM Long Short-Term Memory Networks

GRU Gated Recurrent Unit Networks

Transformer Transformer Models

Facebook Prophet Forecasting Tool for Data with Strong Seasonality

XGBoost Gradient-Boosted Trees

ARIMAX ARIMA with Exogenous Variables

SARIMA Seasonal ARIMA

Hybrid Models Combination of Multiple Forecasting Methods

KNN K-Nearest Neighbors

In this work, several models were implemented and compared for predicting con-
centrations of PM2.5 and PM10 for the next day. Three different methods were selected,
belonging to different categories: ARIMA (statistical), LSTM network (Machine Learning),
and CNN-LSTM (hybrid). For the neural networks, a multivariate variant was designed
that included both meteorological and air quality data. The parameters for each model are
specified below to achieve the best predictions.

The datasets were split into a training set (approximately 80% from 2006/2007 to 2019)
and a testing set (approximately 20% from 2020 to 2022).

The ARIMA (4,1,2) and ARIMA (5,1,1) models were fit to the training data for the
PM10 and PM2.5 concentrations, respectively. The parameters p, d, and q were determined
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using the ‘auto.arima’ function from the R ‘forecast’ library, which searches for the best
ARIMA model within specified order constraints based on the AICc value.

With regard to the LSTM model, input data were created, consisting of sequences of
seven consecutive days containing the pollutant concentration data to be predicted. In the
multivariate model, meteorological data were added as additional features. The neural
network structure included an LSTM layer with ReLU activation, composed of 16 neurons
in the univariate model and 64 in the multivariate model. It was followed by a final dense
layer with a single unit that holds the predicted value for the next day. The training of the
network used the ‘adam’ optimizer, the mean-squared error as the loss function, a batch
size of 128, and 50 epochs in the univariate case and 100 in the multivariate case.

In the hybrid CNN-LSTM model, all parameters were the same as in the LSTM, with
the only difference being in the network architecture. The LSTM layer was preceded by
a one-dimensional convolutional layer with 8 filters in the univariate case and 32 in the
multivariate case, a kernel size of two, and ReLU activation. CNNs were initially developed
for image processing, but have also been adapted for time series analysis. They can extract
patterns and relevant features from time series data, including trends, cycles, peaks, and
other significant information.

To evaluate the performance of predictive models, two indicators were used: mean
absolute error (MAE) and root-mean-squared error (RMSE). These metrics are defined by
the following equations:

MAE =
1
n

n

∑
i=1
|x̂i − xi|,

RMSE =

√
1
n

n

∑
i=1

(x̂i − xi)2,

where x̂i is the predicted value, xi is the actual value, and n is the total number of observations.
The Pearson correlation coefficient was used to measure the linear relationship be-

tween two variables. It is defined as:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
,

where x and y represent two variables, x̄ and ȳ are their means, and n is the total number
of observations. This coefficient was used to investigate the correlations between PM2.5
and PM10 concentrations and meteorological variables.

4. Experiments and Discussion

Initially, the trends in the major atmospheric pollutants in the city of Brescia from
2014 to 2022 were analyzed. A graph showing the trend is presented in Figure 3, with
a 30-day moving average applied to the data for visualization. The PM2.5, PM10, and
NO2 concentrations exhibited similar seasonal patterns, with peaks in colder months and
moderate levels in summer. This is due to increased heating source usage in winter and
the occurrence of temperature inversions, inhibiting vertical air mixing and favoring the
accumulation of ground-level pollutants. Conversely, ozone showed an opposite seasonal
pattern, forming due to chemical reactions between nitrogen oxides and volatile organic
compounds, favored by high temperatures and intense sunlight. Sulfur dioxide appeared
to lack a clear seasonal pattern.

Pollutant concentrations from 2014 to 2022 were compared to the limits set by the
EU directives. In Table 3, the annual average concentrations of PM2.5, PM10, and NO2 are
shown, with limit values of 25 µg/m3 and 40 µg/m3.
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Figure 3. Trend of concentrations of the main air pollutants from 2014 to 2022. A 30-day moving
average was applied to the data.

The only pollutant that did not meet the threshold was PM2.5 in the years from 2014
to 2018; however, it showed a decrease over time, as did NO2. The last three columns of
the table report the total number of days on which the limit values for PM10 (50 µg/m3,
daily average), SO2 (125 µg/m3, daily average), and ozone (120 µg/m3, maximum 8 h daily
average) were exceeded. These values should not be exceeded for more than 35, 3, and
25 (averaged over 3 years) days per year, respectively. The SO2 threshold has never been
exceeded; on the other hand, PM10 and ozone have not met the limits and did not show
significant improvements over the entire period considered (see Table 9).

Table 9. Annual averages of PM2.5, PM10, and NO2 concentrations and the total number of days
exceeding the limits for PM10, SO2, and O3 from 2014 to 2022. Green represents values that complied
with the EU directives, and red represents values that violated them.

Annual Average (µg/m3) Exceedance Days
Year PM2.5 PM10 NO2 PM10 SO2 O3

2014 25.15 32.71 35.42 50 0 46
2015 28.98 37.32 37.63 83 0 97
2016 28.30 35.22 33.90 66 0 61
2017 29.63 39.33 34.15 86 0 77
2018 25.07 32.80 28.68 48 0 107
2019 24.90 33.45 29.47 53 0 44
2020 24.10 32.39 25.32 62 0 67
2021 22.09 30.94 26.41 59 0 77
2022 22.69 33.16 25.68 60 0 92

The health emergency caused by COVID-19 in Italy imposed a series of restrictions that
affected both economic activities and the freedom of movement of citizens, with uneven
effects on air quality in Brescia. In Figure 4, boxplot graphs illustrate the concentrations of
each pollutant in the months of March and April in 2020 (the lockdown period) and 2019.

Despite significant reductions in emissions, especially related to the transportation
sector and, to a lesser extent, energy production, industrial activities, and livestock, the
decreases in pollutant concentrations varied depending on the pollutant considered: much
more pronounced for NO2, less noticeable for PM10, PM2.5, and SO2, and absent for O3.
The effects on nitrogen dioxide were more pronounced because it is directly linked to traffic
emissions. In contrast, the lesser impact on ozone and sulfur dioxide levels was due to the
fact that the former is a secondary pollutant without significant direct emission sources
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and the latter typically has very low concentrations. The case of atmospheric particulate
matter demonstrated the complexity of the phenomena involved, related to formation,
transportation, and accumulation.

Figure 4. Comparison of pollutant concentrations in the months of March and April in 2019 and 2020
(lockdown period) using boxplot graphs.

Focusing solely on PM2.5 and PM10, an additive decomposition was applied to their
respective time series. In Figure 5, the graph shows the concentration of PM10 and its
corresponding trend, seasonal, and residual components, which were very similar to those
obtained for fine particulate matter. Both pollutants exhibited clear seasonality, as deduced
previously, and a decreasing trend. Therefore, the time series were not stationary. In
particular, the PM10 trend was less regular and showed a slight increase in the recent period
compared to that of PM2.5. The residual part was significant in both cases.

Figure 5. Decomposition of the time series of PM10: additive decomposition of the time series
representing the concentration of PM10 (µg/m3) for the years from 2006 to 2022 into the trend,
seasonal, and residual components.
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We then proceeded to analyze the linear correlation between the two pollutants and
meteorological variables, reporting the measurements in Table 10. Temperature showed the
strongest correlation, followed by relative humidity and rainfall. The seasonality of relative
humidity was the same as that of atmospheric particulate matter, explaining the positive
correlation. The opposite was true for temperature. Temporal weather data from 2006 to
2022 are illustrated in Figure 6.

Table 10. The Pearson correlation coefficient between the weather variables and atmospheric particu-
late matter.

Temperature Relative Humidity Rainfall

PM10 −0.44 0.35 −0.18
PM2.5 −0.62 0.48 −0.13

Figure 6. Time series of weather data: temperature, relative humidity, and rainfall from 2006 to 2022.

In the final step of this study, the concentration of the next day’s atmospheric particu-
late matter was predicted using the aforementioned models adapted to the training data.
Their performance was measured using the evaluation metrics RMSE and MAE, where
the former will assume a higher value compared to the latter as it assigns more weight to
large errors.

From Table 11, it can be observed that all models achieved reasonable results; the
multivariate CNN-LSTM network performed the best. In Figure 7, the predictions of PM10
made by the neural network for the 2022 testing data and the actual daily concentration
values are represented.

The absolute error of each prediction is shown in Figure 8 and reached its highest
values in the months when the concentration of PM10 showed significant peaks.

For further comparison among the various methods, the execution times required for
the training phase related to the PM10 data are reported in Table 12.
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Table 11. Evaluation of predictive models using RMSE and MAE metrics on PM10 and PM2.5 training
and testing data. The best results are highlighted in bold.

ARIMA LSTM CNN-
LSTM

LSTM
(M)

CNN-LSTM
(M)

RMSE
PM10

train 16.37 16.36 16.41 15.16 14.70
test 11.56 11.60 11.47 11.14 11.02

PM2.5
train 12.45 12.46 12.37 11.54 11.37
test 9.35 9.39 9.36 8.95 8.69

MAE
PM10

train 10.79 10.82 10.80 10.06 9.83
test 8.18 8.17 8.04 7.89 7.78

PM2.5
train 8.85 8.91 8.84 8.26 8.12
test 6.79 6.82 6.82 6.56 6.43

Figure 7. Forecasts of the multivariate CNN-LSTM model for the year 2022 of the daily concentration
of PM10.

Figure 8. Absolute error of predictions obtained from the multivariate CNN-LSTM model for the
year 2022 of the daily concentration of PM10.

Table 12. Execution times (in seconds) required for the training phase related to PM10 for differ-
ent models.

ARIMA LSTM CNN-LSTM LSTM (M) CNN-LSTM (M)

49 13 14 39 41
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In general, the multivariate models outperformed the univariate models: considering
additional relevant features, such as weather data, helped provide more-accurate predictions.

The CNN-LSTM model, compared to the LSTM network, did not lead to significant
improvements in either the training or testing data: the convolutional layer was unable to
extract additional useful information for prediction, a task made challenging by the high
variability of the data and the low number of observations available.

Furthermore, it can be observed that the scores related to PM2.5 were lower com-
pared to those of PM10 because the data for the latter had a higher standard deviation
(25.06 µg/m3 for PM10 and 20.18 µg/m3 for PM2.5), making the prediction more challeng-
ing. A difference was also observed between the training and testing data as they referred
to time intervals of different lengths.

Additional tests were conducted by extending the input data window of the neural
networks to 14 and 30 days. The results showed that the prediction error remained almost
unchanged, and the training time increased compared to the original case of 7 days. The
same outcome was obtained when exploring the addition of two more features in the
multivariate models: the month and day of pollutant concentration measurement. The
inclusion of this temporal information did not improve the accuracy of trend prediction,
proving to be irrelevant features.

5. Conclusions

In this article, the problem of modeling and forecasting the amount of air pollution
in the smart city of Brescia was presented, highlighting several important aspects related
to it, such as natural and anthropogenic sources, the dispersion mechanisms, and the
environmental and human health implications. Time series data have proven to be a
fundamental tool for describing pollutant concentrations over time. They can reveal trends,
seasonal and cyclic behaviors, and the crucial property of stationarity. Subsequently,
ARIMA and LSTM models suitable for forecasting future values of a time series were
introduced. Both models attempt to represent autocorrelation in the data, the former
through linear relationships with past values of the series and white noise, including the
differencing operation, and the latter through hidden states and recurrent connections. Part
of the work was dedicated to the state-of-the-art to provide an overview of current studies
related to air pollution forecasting, which were categorized based on the type of model
implemented (statistical, Machine Learning, physical, and hybrid).

Finally, pollutant concentrations in Brescia were analyzed using the aforementioned
tools. Thanks to the results obtained, it is now possible to answer the question posed in the
Introduction of this work.

Regarding the current state of air quality, in 2022, the pollutants with the most-critical
levels recorded at the Villaggio Sereno (BS) station were PM10 and ozone, with 60 and 92
days of exceeding the EU limits, well above the maximum allowable 35 and 25 days of
excess. Although PM2.5 complied with the EU thresholds, it reached levels in 2021 and
2022 that ranked among the worst in all of Europe, as stated in the latest report from the
EEA [7]. The data related to NO2 and SO2 were not concerning.

The decreasing trend of particulate matter from 2006 to 2022, as well as the decrease in
the average annual concentration of nitrogen dioxide between 2014 and 2022 indicated that
there has been an improvement compared to previous years. However, the same cannot be
said when considering the total days of exceeding ozone and PM10 in a year.

As for predicting concentrations, this is a task that can be far from simple if accu-
rate results are desired. The predictions of PM2.5 and PM10 for the next day, calculated
using the ARIMA, LSTM, and CNN-LSTM models on the testing data, were not perfect.
However, they were considered reasonable since the concentration values can vary signifi-
cantly from one day to the next, making the situation considerably more complex. PM2.5
had lower RMSE and MAE scores compared to PM10, precisely because it had a smaller
standard deviation.
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The high variability of particulate matter demonstrated how intricate the phenomena
involved are. Further evidence of this complexity was provided by the analysis of the
lockdown period due to COVID-19, where, despite significant reductions in emissions,
equivalent decreases in the PM2.5 and PM10 concentrations were not observed. It is worth
mentioning a study conducted by Shi et al. [32]: alterations in emissions correlated with
the initial 2020 COVID-19 lockdown restrictions resulted in intricate and substantial shifts
in air pollutant levels; however, these changes proved to be less extensive than anticipated.
The reduction in nitrogen dioxide (NO2) is anticipated to yield positive effects on public
health, yet the concurrent elevation in ozone (O3) levels is expected to counteract, at least
partially, this favorable outcome. Notably, the scale and even the direction of variations in
particulate matter with a diameter of 2.5 µm or less (PM2.5) during the lockdowns exhibited
marked disparities across the scrutinized urban locales. The involvement of chemical
processes within the mixed atmospheric system introduces complexity to endeavors aimed
at mitigating secondary pollution, such as O3 and PM2.5, through the curtailment of
precursor emissions, including nitrogen oxides and volatile organic compounds (VOCs).
Prospective regulatory measures necessitate a systematic approach tailored for specific
cities concerning NO2, O3, and PM2.5, accounting for both primary emissions and secondary
processes. This approach aims to optimize overall benefits to air quality and human health.

One solution for achieving better predictions may be the inclusion of additional vari-
ables that help explain the pollutant’s behavior further, as was the case in the implemented
multivariate models.

In the future, aspects that were not addressed in this research could be further explored.
Firstly, to improve the results, additional variables related to weather, traffic, and other
pollutants could be considered or different models could be used. New methods for
providing long-term forecasts, limited here to the following day, could be investigated, and
data with a different granularity than daily could be employed.

Secondly, factors such as natural and anthropogenic sources, dispersion mechanisms,
and environmental and human health implications will be addressed in the light of the
performed experiments.
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