
Citation: Gkertzos, P.; Kotzakolios, A.;

Katsidimas, I.; Kostopoulos, V.

Parametric Numerical Study and

Multi-Objective Optimization of

Composite Curing through Infrared

Radiation. Appl. Mech. 2024, 5,

192–211. https://doi.org/10.3390/

applmech5010013

Received: 31 January 2024

Revised: 1 March 2024

Accepted: 13 March 2024

Published: 20 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Parametric Numerical Study and Multi-Objective Optimization
of Composite Curing through Infrared Radiation
Petros Gkertzos * , Athanasios Kotzakolios , Ioannis Katsidimas and Vassilis Kostopoulos

Applied Mechanics & Vibrations Laboratory, Department of Mechanical Engineering and Aeronautics, University
of Patras, Rio Campus, 26500 Patras, Greece; kotzakol@upatras.gr (A.K.); ikatsidima@ceid.upatras.gr (I.K.);
kostopoulos@upatras.gr (V.K.)
* Correspondence: up1047297@ac.upatras.gr

Abstract: Composite curing through infrared radiation (IR) has become a popular autoclave alter-
native due to lower energy costs and short curing cycles. As such, understanding and measuring
the effect of all parameters involved in the process can aid in selecting the proper constituents as
well as curing cycles to produce parts with a high degree of cure and low curing time. In this
work, a numerical model that takes inputs such as part geometry, material properties, curing-related
properties and applied curing cycle is created. Its outputs include the degree of cure, maximum
curing temperature and total curing time. A genetic algorithm and a design of experiments (DOE)
sequence cover the range of each input variable and multiple designs are evaluated. Correlations are
examined and factor analysis on each output is performed, indicating that the most important inputs
are activation energy, specimen precuring, applied curing temperature and curing duration, while all
the others can be considered constant. Finally, response surfaces are created in order to effectively
map and provide estimations of the design space, resulting in a curing cycle optimizer given certain
restrictions over the input parameters.

Keywords: numerical modeling; polymer–matrix composites; infrared radiation curing; design space
exploration; multi-objective optimization

1. Introduction

Composite materials such as carbon fiber-reinforced polymer composites offer some of
the highest strength-to-weight and stiffness-to-weight ratios among all structural materials
and can provide major weight reductions and corresponding energy savings (fuel savings
during the use of a vehicle, for example) when used to replace traditional structural
materials such as steel. However, to fully exploit the fuel savings, an optimized energy-
intensive manufacturing process must be employed as the manufacturing of carbon fiber
composites, from raw materials to prepreg creation, can require up to 223 MJ/kg until
curing [1,2]. The net energy impact depends both on the initial energy expenditure and the
fuel savings that accumulate over time during product use. The complex energy tradeoffs
and their effect on the net life cycle impacts of composite products have been analyzed
in several studies [3,4]. Clearly, composites present a great R&D potential for reducing
manufacturing energy intensity (Figure 1).
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controllable [11], they exhibit small margins in energy savings [3]. Microwave curing pro-
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maintenance costs along with potential energy savings of up to 45% [3,11]. However, it 
requires compatible consumables and particular health and safety measures, and demon-
strates low handling flexibility with parts often curing non-uniformly [1,11]. Similarly, 
radio frequency curing leads to non-uniform curing in irregular shapes with some prod-
ucts lacking a temperature rise in a dielectric field [3,12]. Magnetic induction curing ena-
bles high heating rates with low running and maintenance costs [3,11]. However, several 
issues are reported as limitations of this method. The edge effect and local heating effect 
as well as requirements for specific coil design for each heating pattern or component ge-
ometry prevent the adoption of induction curing on a large scale [3,11,13]. Ultraviolet cur-
ing (UV) exhibits low running and maintenance costs but requires UV-curable materials 
and, due to low penetration capabilities, is limited to mostly thin films and coatings 

Figure 1. Comparison of manufacturing energy intensities [3].

While autoclave curing systems are known for producing parts with high quality, their
high purchase and running costs, along with long energy-hungry curing cycles, can often
be prohibitive (Figure 2) [5–9].
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Thus, fast and energy-efficient curing systems are especially interesting to industries,
such as automotive, to satisfy the requirements of large-batch production with short cycle
duration, compatible with common automatized processes in the sector [10].

While conventional convection and conduction methods are well researched and con-
trollable [11], they exhibit small margins in energy savings [3]. Microwave curing provides
an energy-efficient alternative to autoclave curing, showcasing low running and mainte-
nance costs along with potential energy savings of up to 45% [3,11]. However, it requires
compatible consumables and particular health and safety measures, and demonstrates low
handling flexibility with parts often curing non-uniformly [1,11]. Similarly, radio frequency
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curing leads to non-uniform curing in irregular shapes with some products lacking a tem-
perature rise in a dielectric field [3,12]. Magnetic induction curing enables high heating
rates with low running and maintenance costs [3,11]. However, several issues are reported
as limitations of this method. The edge effect and local heating effect as well as require-
ments for specific coil design for each heating pattern or component geometry prevent the
adoption of induction curing on a large scale [3,11,13]. Ultraviolet curing (UV) exhibits
low running and maintenance costs but requires UV-curable materials and, due to low
penetration capabilities, is limited to mostly thin films and coatings [11,14–16]. UV curing
on thin composites (≤2 mm) has been applied by Saenz-Dominguez et al. [17] along with
numerical modeling for the degree of cure prediction, but requires the use of photoinitiators.
Electron beam curing requires high installation costs and trained operators while resulting
in subpar cured surfaces [16,18]. It is used mostly in thin films or in conjunction with other
curing methods (microwave curing) as shown by other researchers [19]. Among all the
alternatives, IR curing seems the most promising curing technique, being able to reach a
necessary quality standard while providing an energy cost reduction of 50% [3]. IR is an
emerging curing technology for composites due to its high energy efficiency, predictable
heating rate (the temperature change in unit time), and volumetric heating mechanism.

The curing of glass fiber-reinforced composites with infrared radiation has been
investigated by Kiran Kumar et al. [20]. The authors concluded that it is possible to
reduce the curing time by 75% and still reach the same properties as conventional thermal
curing. They also found that the distance from the IR source and volume of the composite
contributed almost 70% on both the tensile and flexural strength when they analyzed
variance. Similar results regarding reductions in curing time were found by Igor Zhilyaev
et al. [21], who showed that it is possible to use a 40 ◦C/min heating rate on their system.
However, the mechanical properties were not examined in that study. Alpay et al. [22]
studied the developed temperatures during IR heating. The authors showed that for a
four-layer structure (3 mm thickness), a maximum difference of 8.94 ◦C occurred between
the top and bottom layer, proving the feasibility of uniform curing.

Regarding numerical modeling of cure kinetics to predict cure, many researchers have
provided corresponding works. Okabe et al. [23] paired a curing simulation based on the
Arrhenius equation with a molecular dynamics simulation of the cross-linked structure to
predict density and Young’s modulus. Struzziero et al. [24] performed autoclave curing
simulation on L-shape, flat-panel and T-joint composites in order to minimize the process
duration and the maximum temperature overshoot. They connected a genetic algorithm
with a finite element solver and created an optimal Pareto Front of the multi-objective
problem. Their results indicate reductions up to 50% in process time and temperature
overshoot for thick components. Patil et al. [25] performed a coupled thermomechanical
analysis, based on the autocatalytic cure kinetics model, to simulate process-induced shape
distortions occurring from tool removal after autoclave curing. The error compared to
experimental data was up to 20%. Shah et al. [26] performed curing simulations to minimize
curing time and residual stresses. A genetic algorithm was used to identify the optimal
cure cycle, which, for thick laminates, reduced residual stresses by 47%. Redmann A.
et al. [27] performed a kinetic study on a dual-curing epoxy resin used in the DLS printing
process. Through DSC, a best-fitting model that involved both autocatalysis and diffusion
control was developed to generate different Stage 2 curing cycles. The optimal curing
cycle reduced the second-stage curing time by 73% without a significant decrease in the
mechanical properties. Yuan et al. [28] used multi-scale modeling to predict the residual
stresses of composites during curing. Macroscopic temperature, degree of cure gradients
and curing residual stresses are calculated and used by representative volume elements
(RVEs) to calculate the micro-scale residual stresses for different composite architectures.
Their results indicate that the diamond-array RVE exhibited the highest residual stresses
while the square-array RVE showed the lowest residual stresses. Jouyandeha M. et al. [29]
studied the nonisothermal cure process of an epoxy nanocomposite containing Mn-doped
Fe3O4 nanoparticles. Their results indicate that the autocatalytic is a suitable model to
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express cure kinetics of the examined materials, while the additives resulted in about
17% lower activation energy values compared to neat epoxy. Moreover, MnxFe3-xO4
nanoparticles increased the average autocatalytic reaction order, reflected in a drop in the
frequency factor.

In all the above works, the feasibility of accurate cure prediction and mechanical
properties from the applied curing cycle is evident, with some works optimizing the
procedure as well. However, to the best of our knowledge, we found no study that captures
the effect of each input variable on the total outcome. Also, no complete parametric
optimization procedure of the IR curing was found. Hence, in this work, a parametric
study of all the factors (part geometry, material properties, curing cycle) affecting the curing
of a unidirectional (UD) composite through IR is performed. The goal is to identify the
factors with the highest significance while also providing a framework for optimizing the
procedure (low curing duration with high degree of cure) for different input variables
(part geometry, material properties, etc.). Finally, the use of response surfaces enables
the identification and prediction of designs that are not simulated but can be used as
optimal solutions.

2. Workflow and Input Variables Properties

A simplified workflow of the current study is presented in Figure 3. Initially, a design
of experiments is created involving different combinations of part geometry, material
properties and IR heating cycle data. Then, a finite element model is created and used to
simulate the IR curing process. A genetic algorithm is employed to optimize the curing
process by creating designs with a high degree of uniform curing and permissible heat
build-up. The above procedure is performed until all designs have been evaluated. Factor
analysis is performed to identify the significant factors affecting the process while the data
generated from the analysis are used to train response surfaces capable of producing the
optimal cure cycle. In the rest of Section 2, each parameter used as input in the FEM solver
will be identified along with its range and step. Range defines the variation between the
upper and lower limits of each parameter, while step determines how finely the parameter
space is sampled. To limit the computational cost, the average number of steps inside
each parameter’s design space is 4–6, while parameters that exhibit large ranges, with
high variance, or have been shown by the literature to affect the results in a significant
manner can have more than 20 steps. Finally, parameters that depend on the use case (e.g.,
geometry) and display small parameter ranges have 2–3 steps inside the design space.
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2.1. Geometry

Geometric complexities will be studied in a future analysis after the effect of all other
parameters has been examined and validated through experiments. So, in the current
study, only flat specimens are considered. As such, the geometry can be parametrically
defined by the length of the specimen in the x- and y-directions and its thickness. The
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maximum in-plane dimension is restricted by the apparatus and should be able to fit inside
the area of the emitted radiation from the lamps. The apparatus (Figure 4) that will be
used in future analysis can fit specimens of up to 280 mm, so in this study, a range of
[100–250] mm is considered. Regarding thickness, most composites in the aeronautic or
automotive industries are thin laminates of 1–3 mm. The range and step of each geometric
parameter along with the variable name used in the rest of the analysis are given in Table 1.
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Table 1. Geometric properties of the numerical model.

Property Range (mm) Step (mm) Variable Name Used in Analysis

Maximum in-plane dimension [100–250] 150 Length_X, Length_Y

Thickness [1–3] 1 Thickness

2.2. Temperature-Related Material Properties

Table 2 provides all the temperature-related material properties with the correspond-
ing range and step in the design space. The volume fraction for aeronautic and automotive
applications ranges from 0.3 to 0.6 as lower values result in low mechanical properties
and higher values lead to manufacturing errors [30–33]. The orthotropic thermal conduc-
tivity depends significantly on the direction of the fibers and the fiber volume fraction.
Significantly, higher values are observed in the fiber direction, due to the higher thermal
conductivity of the reinforcement, while in the other directions, values closer to the resin
thermal conductivity are observed [34–36]. Unlike thermal conductivity, specific heat capac-
ity is a property dependent on the constitution of the composite, rather than the direction
of the reinforcement, with the rule of mixtures providing good estimates [37,38]. Thus,
using the properties of the constituents [39,40] with the rule of mixtures (Equation (1)), the
effective specific heat capacity can be calculated, with many researchers providing results
corresponding to the region indicated in Table 2 [41,42].

C = vf × Cv + (1 − vf)× Cd (1)

where C is the composite’s effective specific heat, vf is the fiber volume fraction, Cv is the
specific heat capacity of the reinforcement and Cd is the specific heat capacity of the matrix.
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Table 2. Temperature-related material properties.

Property Range Step Variable Name Used in Analysis

Fiber volume fraction [0.3–0.6] 0.15 Fiber_volume_fraction

Thermal conductivity x-direction [4–7] W/m ∗ C 1.5 W/m ∗ C Thermal_conductivity_x

Thermal conductivity y-direction [0.3–0.6] W/m ∗ C 0.15 W/m ∗ C Thermal_conductivity_y

Thermal conductivity z-direction [0.4–0.7] W/m ∗ C 0.15 W/m ∗ C Thermal_conductivity_z

Specific heat capacity [1200–1400] J/kg ∗ C 100 J/kg ∗ C Specific_heat

Density [1400–1600] kg/m3 100 J/kg ∗ C Density

Similarly, the density can be calculated from Equation (1) by applying the density of
the reinforcement on the term Cv and the density of the matrix on the term Cd, with many
researchers providing the range presented in Table 2 [30,33,36,41,43].

2.3. Curing-Related Material Properties

Table 3 provides all the curing-related material properties along with their range and
step in the design space. In this study, according to Equation (2), the autocatalytic cure
kinetic equation is used, as it is widely used in cure prediction studies [23,25,44,45]:

dx
dt

= A × e
−E

R×T × xm × (1 − x)n (2)

where x is the degree of cure, A is the pre-exponential factor, E is the activation energy, R is
the universal gas constant, T is the temperature and m and n are dimensionless constants.
The range of each parameter is supported by several studies in the field [43–50].

Table 3. Curing-related material properties.

Property Range Step Variable Name Used in Analysis

Heat of reaction [100, 000–600, 000] J/kg 125, 000 J/kg Total_heat_of_reaction

Initial degree of cure [0–0.1] 0.05 Initial_degree_cure

Maximum degree of cure [0.95–1] 0.025 Max_attainable_cure

Autocatalytic cure kinetic constant: n [1–2] 0.25 n

Autocatalytic cure kinetic constant: m [0.2–1] 0.2 m

Autocatalytic cure kinetic constant:
activation energy [45, 000–90, 000] J/mol 5000 J/mol Activation_energy

Autocatalytic cure kinetic constant:
pre-exponential factor [50, 000–90, 000] 1/s 10, 000 1/s Pre_exponential_factor

2.4. Radiation Data

Table 4 provides all the IR-related material properties and the corresponding range
and step in the design space. Absorptivity depends on many factors such as the texture
of the surface, material, wavelength and temperature. For our case, an infrared region
with rough, dark surfaces, grey incident radiation can be assumed, with absorptivity
values in the corresponding region [51–53]. The curing temperature and duration span are
applied in a big range to cover all possible resin formulations, while the time required to
reach the temperature of the curing cycle depends on the heat generation capabilities of
the apparatus.
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Table 4. IR-related properties.

Property Range Step Variable Name Used in Analysis

Absorptivity [0.5–0.8] 0.1 Absorptivity

Temperature [80–220] ◦C 10 Applied_curing_temperature

Time to reach applied temperature [5–20] min 5 min Time_to_reach_applied_temp

Curing duration [10 min–4 h] 10 min Curing_duration

2.5. Analytical Workflow and Genetic Algorithm Implementation

The analytical workflow of the current multi-parametric study is depicted in
Figure 5. Essentially, geometric data (length in x-direction, length in y-direction, thickness),
temperature-related material properties (density, orthotropic thermal conductivity, specific
heat, fiber volume fraction), curing-related material properties (pre-exponential factor, acti-
vation energy, power m, power n, heat of reaction, initial degree of cure, maximum degree
of cure) and radiation data (absorptivity, temperature, time to reach curing temperature,
cure duration) are fed into a finite element solver (ANSYS) to simulate the process. Each
design’s output involves the average degree of cure of all the elements, the minimum
degree of cure on a single element exhibiting the lowest value, the maximum temperature
observed during the simulation and total time, which is the sum of the time required to
reach the applied temperature, and the curing duration.
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The Sobol algorithm is a proven exploration DOE generator, so a sequence of 60 Sobol
points is chosen to eliminate subjective bias and allow a good initial sampling of the
configuration space [54–56]. The above exploration DOEs serve as the starting point for the
subsequent optimization process, connected to a multi-objective genetic algorithm (MOGA-
II). The parameters of the genetic algorithm are presented in Table 5. The 60 initial points
along with the 15 generations lead to a total of 900 evaluated designs with a computational
cost of 70 h. Increasing the number of Sobol points and number of generations leads to
unreasonable computational costs, while 900 designs are deemed satisfactory in the context
of this analysis.
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Table 5. MOGA-II settings.

Property Value

Number of generations 15

Probability of directional cross-over 0.5

Probability of selection 0.05

Probability of mutation 0.1

Elitism Enabled

Treat constraints 0.1

Algorithm type MOGA-Generational Evolution

Random generator seed 1

The objectives are to maximize the average degree of cure and minimize total time.
The objective function penalizes violations of constraints (Treat constraints). Based on Tour-
nament selection (Probability of selection) MOGA-II chooses solutions for reproduction.
Then, it applies cross-over operators (Probability of directional cross-over, Random gen-
erator seed) to pairs of parent solutions to generate offspring solutions. Finally, mutation
operators (Probability of mutation, Random generator seed) are applied to the offspring
solutions. By enabling elitism, the best solution from the current population is carried over
to the next generation without any modification. The combined population of parents and
offspring is ranked based on Pareto dominance:

x1 ≺ x2 ⇔ ∀i, fi(x1) ≤ fi(x2) and ∃j such that f j(x1) < f j(x2) (3)

where x1, x2 are solution vectors and fi is the i-th objective function.
Solutions with the same Pareto rank are sorted based on the crowding distance. Crowd-

ing distance measures the density of solutions around each solution in the objective space:

Dc(x) =
m

∑
i=1

fi(xnext)− fi
(
xprev

)
max

obj
( fi)− min

obj
( fi)

(4)

where Dc is the crowding distance and xnext and xprev are solutions adjacent to x in
sorted population.

Solutions for the next generation are selected from the combined population based on
Pareto dominance and crowding distance.

Finally, the following constraints are added to achieve a complete, uniform cure
without excessive heat built up:

• Average cure constraint (average degree of cure: minimum value ≥ 0.93): high degree
of cure.

• minimum cure constraint (minimum degree of cure: minimum value ≥ 0.9): uni-
form curing.

• Maximum temperature constraint (maximum temperature observed during simulation
≤ 210): avoids excess heat generation and resin carbonization.

The data are split into 80% and 20% samples, used for training and validation, respec-
tively. Since the DOE is not fully factorial and activation energy is the dominant factor
in the analysis, the 20% validation points are equally spread across the activation energy
range. R-squared is chosen as the metric for validation of the response surface methodology
(RSM). The first form of response surfaces is based on the kriging interpolation method
with data normalization:

Z(u0) =
n

∑
i=1

λiZ(ui) (5)
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where Z(u0) is the kriging estimate at the unobserved location u0, Z(ui) is the observed
value at location ui and λi are the kriging weights.

The kriging weights and the variance of the estimation error σ2(u0) can be obtained
by solving the kriging system of equations:

C(u1, u1) C(u1, u2) · · · C(u1, un) 1
C(u2, u1) C(u2, u2) · · · C(u2, un) 1

· · ·
...

. . .
...

...
C(un, u1) C(un, u2) · · · C(un, un) 1

1 1 · · · 1 0




λ1
λ2
...
λn
µ

 =


C(u0, u1)
C(u0, u2)

...
C(u0, un)

1

 (6)

where C
(
ui, uj

)
is the covariance between ui and uj, and µ is a Lagrange multiplier used in

the minimization of the kriging error to honor the unbiasedness condition.
The Gaussian variogram model is chosen with its formulation being

γ(h) = σ2
(

1 − exp
(
− h2

2ϕ2

))
(7)

where γ(h) is the variogram value at separation distance h, σ2 is the sill (variance of the
process) and ϕ is the range (distance at which the correlation between values is negligible).

The covariance function C
(
ui, uj

)
is related to the variogram by

C
(
ui, uj

)
= σ2 − γ

(∣∣∣∣ui − uj
∣∣∣∣) (8)

The parameters σ2 and ϕ are estimated by maximizing the likelihood function. The
log-likelihood function for the kriging model is

l(θ) = −1
2

(
ZTC−1Z + log|C|+ nlog(2π)

)
(9)

where θ =
(
σ2,ϕ

)
is the vector of variogram parameters, Z is the vector of observed values

and C is the covariance matrix.
The second form of response surfaces is based on classical feedforward Neural Net-

works, with Levenberg–Marquardt back propagation chosen as the training algorithm.
Network sizing is automatically handled by the software.

The output yk of the k-th neuron in the output layer is given by

yk = f

(
n

∑
j=1

w(2)
kj · hj + b(2)k

)
(10)

where w(2)
kj is the weight from the j-th neuron in the hidden layer to the k-th neuron in

the output layer, hj is the output of the j-th neuron in the hidden layer, beta(2)j is the bias
term for the k-th neuron in the output layer and f is the activation function used in the
output layer.

The output of the j-th neuron in the hidden layer is given by

hj = g

(
m

∑
i=1

w(1)
ji · xi + b(1)j

)
(11)

where w(1)
ji is the weight from the i-th neuron in the input layer to the j-th neuron in the

hidden layer, xi is the input to the i-th neuron in the input layer, beta(1)j is the bias term for
the j-th neuron in the hidden layer and g is the activation function used in the hidden layer.
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In this study, rectified linear unit (ReLU) is used as the activation function, while the
loss function is mean squared error (MSE):

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

where n is the number of samples or data points, yi is the actual or observed value for the
i-th sample and ŷi is the predicted or estimated value for the i-th sample.

Finally, Multivariate Polynomial Interpolation based on the Singular Value Decomposi-
tion (SVD) algorithm with a 3rd-degree polynomial function and variable normalization is
chosen for the fitting of the 3rd response surface option. The vector of the coefficient C can
be obtained by solving the system of linear equations using Singular Value Decomposition:

A · C = F (13)

where A is the matrix of the input variables and F is the vector containing the values of the
target variable corresponding to each data point.

The SVD of matrix A is given by

A = U · S · VT (14)

where U and V are orthogonal matrices and S is a diagonal matrix containing the singular
values. The vector of the coefficient C can then be obtained as follows:

C = V · S−1 · UT · F (15)

The genetic algorithm implementation and the response surface creation are performed
in ModeFRONTIER software version 2014 [57].

3. Numerical Modeling

This study aims to capture the curing phenomenon through time, so the parametric
geometry is meshed, and transient thermal analysis is performed in ANSYS [58]. Briefly,
20-Node Hexahedral Thermal Solid elements are used with their type being SOLID279. The
element has one degree of freedom, namely the temperature, at each node. To accurately
capture convection with strong gradients, a consistent convection matrix is applied, by
setting the option of KEYOPT(5) to a value of 1 [58].

Figure 6 shows the applied boundary conditions used to simulate the process. The
radiation boundary condition is applied at the top surface (Figure 6D) according to
Equation (16):

q = ϵ× σ × A ×
(

T4
obj − T4

cure

)
(16)

where q is the radiation heat transfer rate, σ = 5.67 × 10−8 J/s × m2 × K4 is the Stefan–
Boltzmann constant, A is the surface area of the object, ϵ is the emissivity or absorptivity
(due to gray body radiation assumption) of the object and is defined as an input parameter
in Table 4, Tcure is the curing temperature occurring from the IR lamps and specified as
input property in Table 4 and Tobj is the temperature of the object at each timestep.

The side surfaces (Figure 6A,B) and bottom surface (Figure 6C) exhibit convection and
radiation thermal losses with the environment according to Equations (16) and (17).

Q = h × A × (Ts − Ta) (17)

where Q is the convection heat transfer rate, h is the convection heat transfer coefficient, A
is the surface area, Ts is the surface temperature of the object and Ta is the temperature of
the surrounding air (22 ◦C). The convective heat transfer coefficient of air can be estimated
utilizing the Nusselt number, in which the Nusselt number itself varies, depending on
problem geometry and flow conditions [59]. For this case (natural convection), the studied



Appl. Mech. 2024, 5 202

geometry consists of planar surfaces, so the convection coefficient can be estimated as
5 W/m2 ∗ C for the side surfaces and 2 W/m2 ∗ C for the bottom surface. These values are
provided in ANSYS [58] and are also supported by heat transfer theory [60–62].
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An iterative solver with a Newton–Raphson method is chosen and the heat conver-
gence criterion is enabled, with the value automatically calculated by the solver (5× 10−3 W)
to be acceptable. Regarding the selection of timestep and mesh size, a convergence anal-
ysis for the mean case is performed according to Figure 7. The dense grid ensures mesh
convergence, while a relatively low timestep size has to be chosen to accurately capture
the designs with low heat of reaction, low activation energy and high applied temperature.
The above values can capture the transient nature of the phenomenon while also providing
reasonable computational cost.
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4. Results

Before examining the results and obtaining conclusions, the correlation between the
inputs of the analysis has to be examined. A partial correlation coefficient is chosen as it
provides more accurate results in non-full factorial designs (for 20 input variables with
three to five levels each, a full factorial analysis would result in unreasonable computational
cost). Since each variable provides a different quantity in the examined problem, the inputs
should be uncorrelated. These are presented in Figure 8, where the correlation matrix



Appl. Mech. 2024, 5 203

between inputs exhibits the highest value of 0.272. This serves as an initial validation test
of the data presented in this work.
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To examine the effect of each parameter on each output (explained in Section 2.5), a
factor analysis is performed using the Student method. Figure 9 shows the main factors
(high significance) of each output variable. The average and minimum degrees of cure
(Figure 9A,B) exhibit the same factors: initial degree of cure, activation energy and applied
curing temperature. Precured specimens (~10% degree of cure) tend to slightly cure
more uniformly, while, as expected, higher applied temperatures lead to higher overall
cure values. Low activation values mean that lower energy requirements are needed to
complete the process, and thus, an inverse effect is reasonable. The main factors affecting
total curing time (Figure 9C) are cure duration, activation energy and power n. Total
curing time is linearly dependent on cure duration, while higher activation energy values
indicate that more energy is required to be provided, which, for a constant temperature,
translates to higher curing times. Higher power n values indicate an increased rate of
reaction at low curing percentages, while a slower rate of reaction at high percentages
results in slightly longer total cure times. As expected, the main factor affecting maximum
measured temperature (Figure 9D) during the analysis is the applied curing temperature,
which further validates the numerical results. Lower activation energy values indicate
that the curing reaction is more easily started and the exothermic heat is more rapidly
generated, especially at higher applied temperatures. Initially, uncured specimens possess
more exothermic heat generation capabilities (higher total heat of reaction), which is
contradictory to the findings of higher measured temperatures. However, due to the low
range of initial degree of cure [0–0.1] and its effect size (value of 36), being almost at the
value of the high-significance criterion (≥30), the result can be regarded as negligible.

Finally, Figure 10 indicates the Pareto Front of time minimization with respect to
applied temperature, where designs with high Pareto dominance (Equation (4)) are high-
lighted in green. Higher temperatures complete the curing process faster, while applied
temperatures over 194 ◦C produce designs that violate the max temperature constraint.
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Table 6 indicates the predictive performance of each response surface type on each
output. The Neural Network outperforms kriging and SVD in terms of curing prediction,
while kriging exhibits the highest score in the maximum temperature prediction. All models
exhibit high accuracy in total curing time due to their simple forms. Figure 11 plots the
predictions of the kriging response surface methodology. Average degree of cure (z-axis) is
plotted with activation energy (x-axis) and applied curing temperature (y-axis), with all
the other variables at mean value (Tables 1–3). The model has captured the non-linearity
exhibited in the problem while also indicating that higher activation energy values require
higher temperatures to achieve a high degree of cure. The above, along with the absence of
unreasonable points and local extrema, further validates the results.

Table 6. Predictive performance of each RSM.

Output Variable R2 Kriging R2 Neural Network R2 SVD

Average degree of cure 0.82 0.98 0.72

Minimum degree of cure 0.8 0.98 0.72

Maximum temperature 0.81 0.72 0.75

Total time 0.99 0.99 0.99

In Figure 12, through the use of the RSM, factors that displayed minimal effect on
curing results during the factor analysis are examined. In Figure 12A,B, density, specific
heat, power m, and thermal conductivity in the x-direction are set at the lower and upper
ends (Tables 2 and 3), respectively. All other input parameters are set at mean values. The
occurring RSM plots present high similarity between them and with the RSM plot, with
all parameters at mean values (Figure 11). This validates that these parameters contribute
negligibly to the curing results.
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Figure 13 examines the effect of thickness on both curing and maximum temperature
difference throughout the plate. Specifically, the thinnest allowable plate in the design space
of this study is compared with the corresponding thickest one, while all other parameters
are set at mean values (Tables 1–4). The degree of cure reveals similar patterns for the thin
and thick plates, while differences of 3.5 ◦C and 8 ◦C are observed.
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maximum temperature difference throughout the thick and thin plates.

Use Case

Finally, to demonstrate and prove the utility of the data-driven models presented
in this study, an optimization of the cure cycle of a 2 mm thick plate carbon fiber–epoxy
composite is performed. Resoltech® 1070 is chosen as the resin, which possesses a density
of 1100 kg/m3 [63]. The cure-related properties were examined by Lascano D. et al. and are
given in Table 7 [49]. Their analysis showed very good agreement between experimental
and numerical data (autocatalytic model). To capture the average composite case, all
temperature-related properties (Table 2) are set at mean values. This choice is further
validated since temperature-related properties exhibit low significance in the factor analysis
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and the density and cure-related properties of the resin are close to the mean values of each
parameter presented in this study.

Table 7. Cure-related properties of Resoltech® 1070 resin [49].

Activation Energy (J/mol) Pre-Exponential Factor (J/mol) m n

57,400 1,000,000 0.15 1.7

These values are used in the RSM (kriging) to find the cure cycle that enables uniform,
complete curing without excessive heat generation within the time constraint of 1 h:

• Average degree if cure ≥ 0.95.
• Minimum degree of cure ≥ 0.95.
• Maximum temperature ≤ 200.
• Total cure duration ≤ 1 h.

Kriging was selected due to its higher accuracy in maximum temperature prediction.
The optimal cure cycles are near the maximum temperature constraint, and using NN can
result in temperature overshoot and enter the degradation temperature region of the resin.
The cure cycles proposed by the RSM are simulated in ANSYS according to Section 3 to
account for possible inaccuracies arising from data-driven models, given their overall high
but not perfect R-squared values. Also, this way, an assessment between cycles can be
performed and the optimal cure cycle can be identified. The corresponding results are
given in Figure 14. Essentially, temperatures above 160 ◦C finish the process (degree of cure
≥ 0.995) between 50 min and 1 h, while temperatures below 120 ◦C do not provide enough
energy to complete the curing of the composite within the time limit. The maximum
temperature is 198 ◦C when applied temperature is 188 ◦C. In Figure 15, the duration of
the cycle produced by the current methodology is compared with the cure cycles proposed
by the manufacturer [63] and the cure cycle used by Lascano Diego et al. [49] in specimens
used for dynamic mechanical thermal analysis (DMTA). Cure cycle duration reductions of
94% and 44%, respectively, are achieved.
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5. Conclusions

In this numerical study, the effect of each parameter involved in the IR curing of
composites is examined. The range of all parameters involved in the process (geometry,
material properties, IR-curing heat transfer) is initially recorded. These data are fed into a
finite element solver to obtain the average and minimum degrees of cure, the maximum
temperature during curing and curing duration. Through parametric simulation based
on 60 Sobol points and a multi-objective genetic algorithm, the effect of each parameter is
examined. The results indicate the following:

• All input variables were found to be uncorrelated.
• The curing cycle was mostly dependent on resin properties (activation energy was

found to be the most important parameter).
• Higher energy activation values require higher applied temperatures to complete

uniform curing but also lead to higher curing duration times.
• Precured specimens (~10% degree of cure) tend to cure slightly more uniformly but

have little to no effect on total curing time.
• Thicknesses of [1–3] mm have little effect on the curing results. The max temperature

difference throughout the thickest plate (3 mm) is 8 ◦C and 3.5 ◦C throughout the
slimmest plate for all other parameters at mean value. Similar differences were
experimentally observed by other researchers [21].

• Density, specific heat, power m, and thermal conductivity in the x-direction show
insignificant effects on the results and can be considered as constants in future analyses.

• Response surfaces are created with the Neural Network outperforming kriging and
polynomial SVD in terms of cure prediction but exhibiting smaller accuracy in max-
imum temperature prediction. All models show excellent accuracy in total cure
time prediction.

• Applying the data-driven models on a 2 mm thick composite plate manufactured
using Resoltech® 1070 resin resulted in 94% and 44% faster curing compared to the
proposed curing duration of the manufacturer [58] and other researchers [44].

Finally, the results presented in this work provide support for a carbon–epoxy or
graphene–epoxy (UD) composite, as they are the ones applied typically in aeronautic
or automotive applications, where fast and energy-efficient curing systems (IR curing)
are required.
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6. Future Work

This study deals with the IR curing of composites in automotive or aeronautic applica-
tions. In future, more complex cure kinetic models will be examined for resin formulations
that deviate from activation-controlled reactions (epoxy–amines). Also, thick laminates
(10–15 mm) with different layup orientations will be examined. The process should also be
examined from a mechanical point of view, so in the future, the authors will connect the
cure kinetics solver with the mechanical one to calculate process-induced distortions, while
the numerical results (mechanical properties, degree of cure, energy consumption) will be
compared with specimens manufactured from a mid-size autoclave.
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