
Citation: Wang, Y.; Yang, P.; Jin, T. A

Mach–Zehnder Fabry–Perot Hybrid

Fibre-Optic Interferometer for a Large

Measurement Range Based on the

Kalman Filter. Optics 2024, 5, 277–292.

https://doi.org/10.3390/opt5020020

Received: 19 March 2024

Revised: 8 May 2024

Accepted: 13 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

A Mach–Zehnder Fabry–Perot Hybrid Fibre-Optic Interferometer
for a Large Measurement Range Based on the Kalman Filter
Yixuan Wang , Peigang Yang and Tao Jin *

School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China
* Correspondence: jintao@usst.edu.cn

Abstract: To solve the short working distance and small measurement range of an all-fibre interfer-
ometer, we proposed a Mach–Zehnder Fabry–Perot hybrid fibre-optic interferometry system based
on sinusoidal phase modulation. In this paper, a low-finesse fibre interferometer with a larger linear
operating range for displacement measurement is realised using a self-collimating probe and incor-
porating a Kalman filter-based phase demodulation algorithm. Through experimental comparisons,
it is demonstrated that the interferometer proposed in this paper can effectively reduce the phase
delay, compensate for the depth of modulation drift, and correct the error due to parasitic interference
introduced by the optical path structure through the algorithm. A linear large measurement working
range of 20 cm is realised.

Keywords: fibre interferometer; displacement measurement; Kalman filter; parasitic effect

1. Introduction

Laser interferometry is the industry standard in the field of high-precision measure-
ment. Low-energy lasers do not touch and damage the target surface [1,2]. Laser interfer-
ometry has the advantages of traceability, high accuracy, and high sensitivity, and has been
used on a large scale in various industrial and scientific fields [3]. Taking the typical space
light-type Michelson interferometer as an example, its structure development is relatively
mature and high-precision, but the beam splitting and interference from the prism group
means that the instrument needs to adjust the optical path before use, and the stability of the
working platform has high requirements. Based on this, improved Michelson interferome-
ters achieve a larger measurement range and accuracy, but the optical path design is more
complex and the calibration is more difficult [4]. The structure of fibre-optic interferometers
has basically evolved from space light interferometers. Fibre-optic interferometers use
optical fibres as the medium of light transmission, so there is no need to adjust the optical
path. Using fibre-optic devices to achieve beam splitting and interference, the standardised
fibre-optic interface connection makes the fibre-optic interferometer configuration flexible
and can be adapted to a variety of complex spaces.

The mainstream fibre-optic interferometer structures used for displacement measure-
ment are facing the problems of short working distance and small linear measurement
range [5]. Therefore, improving the current interferometer structure and designing signal
processing algorithms that match the structure to solve the above problems are conducive
to improving the measurement performance and realising the miniaturisation of the inter-
ferometric displacement measurement system.

For a basic Fabry–Perot (F–P) fibre-optic interferometer, the light reflected from the
end face of the fibre is the reference beam, and the measurement beam consists of the
portion of the light reflected from the target plane coupled to the end face of the fibre.
The interfering signal is measured using the detector via a fibre-optic coupler. The fibre
end face and the reflection plane form the F–P cavity, which is located outside the fibre
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and is called the extrinsic type. The extrinsic Fabry–Perot interferometer is suitable for
displacement measurements. It has a streamlined structure and is resistant to environmental
interference [6]. The intrinsic F–P cavity is placed inside the optical fibre, and depending
on the application scenario, such as temperature sensing, pressure sensing, etc., the optical
fibre end face is fused to the sensor to form the F–P cavity. Compared with the intrinsic type,
the extrinsic type is more suitable for displacement measurements where the cavity distance
varies greatly [7]. As the cavity length increases, the intensity of the measurement beam
coupled back to the optical fibre decreases rapidly due to the optical fibre divergence angle,
resulting in a lower signal-to-noise ratio, which limits the operation of the interferometer
when the F–P cavity is used as a displacement sensing unit. This limits the working
distance of the interferometer when the F–P cavity is used as a displacement sensing unit.
In addition, in a low-finesse F–P cavity, as the measurement beam travels back and forth
within the cavity, the optical range difference between the measurement beam and the
reference beam is twice as large as the variation in cavity length, further limiting the linear
measurement range of the interferometer [8].

Researchers around the world have conducted a lot of research based on the above
structure to improve the performance of fibre-optic interferometers for displacement mea-
surement. The existence of the divergence angle at the probe and the alignment deviation
between the probe and the target cause the coupling efficiency of the measurement beam to
decrease with the working distance, which affects the signal-to-noise ratio of the interfered
signal and limits the working distance of the fibre-optic interferometer. Klaus Thurner
et al., in their paper, proposed to improve the coupling efficiency of the measurement beam
by changing the structure of the F–P cavity. The working distance and signal quality are
investigated for different structural designs [9]. While increasing the working distance
of fibre-optic interferometers, researchers are also focusing on how to improve the linear
measurement range and accuracy of interferometers. Meiners-Hagen proposed to improve
the linear measurement range of interferometers up to 145 µm based on the wavelength
synthesis of three different wavelengths of laser light [10]. Erik A Moro presented a novel
white light F–P interferometer which obtains the displacement information based on the
power spectral density estimation, which can be controlled according to the bandwidth,
the displacement range, and the accuracy according to the application’s requirements [11].
From the above studies, we can see that if we want to achieve a larger range of measure-
ments, researchers usually need to use demodulation algorithms for F–P cavity lengths,
such as wavelength tracking [12], and inter-correlation algorithms [13] to incorporate more
interference fringes into the calculations. However, the above algorithms are still based
on the interference fringes to solve the displacement, the improvement of the linear mea-
surement range is more limited, and the accuracy is still affected by the nonlinearity of
the interference signal. B. K. Nowakowski proposed a fibre-optic interferometer structure,
whereby a spectrometer monitors the light source and compensates for it in real time while
sinusoidally modulating the light source output wavelength, thus avoiding the nonlinear
errors introduced by the light intensity modulation due to frequency modulation. The
structure achieves a continuous linear measurement range of 25 mm and sub-nanometre
accuracy [14]. S. Sharma proposed a structure that introduces phase modulation between
the fibre-optic end face and the target to be measured, which does not suffer from the
problem of light intensity modulation incidental to light source modulation but introduces
a complex alignment mechanism [15]. In order to increase the measuring distance, phase
modulation is introduced by adding a reference light path with an electro-optic modu-
lator (EOM) [16], but it also makes the interferometer a Mach–Zehnder structure, which
introduces new errors.

Time-varying noise is introduced by the parasitic effect. The noise is affected by
external factors. Hence, low-frequency variations in the signal are basically caused by
parasitic interference. Then the issue is changed from fixing the parasitic interference to
fixing the time-varying Lissajous figure. For Lissajous figure correction, the least squares
ellipse fitting approach is frequently employed. Zhang solved the unknown phase shift
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problem in the two-step phase shift algorithm using the least squares ellipse fitting algo-
rithm [17]. And, Zhang’s 2019 posting uses a two-step random phase retrieval approach
based on the Gram–Schmidt (GS) orthonormalisation and Lissajous ellipse fitting (LEF)
method (GS&LEF) to obtain relatively accurate phase distribution [18]. Park used the same
algorithm to achieve a vibration measurement of 0.4 nm standard deviation in the optical
quadrature interferometer [19]. The least squares ellipse fitting approach is capable of
achieving respectable accuracy, but it requires a significant amount of computation and
choosing the point set to be fitted, which limits its ability to remove time-varying offsets.
While numerous gratifying ellipse fitting algorithms have emerged in the field over the
decades, such as the Hough-based method [20] and information theory-based methods [21],
they are primarily designed for fitting static ellipses and are unsuitable for our specific
application. Some machine learning methods, like the deep learning approach [22], data
preprocessing [23], and online sequential outlier robust extreme learning machine [24], are
also introduced to detect and eliminate outliers. The novelty of their approach lies not
only in a different application technique but also in the improvement of other techniques.
Some researchers have also introduced a Lissajous figure correction scheme with enhanced
dynamic performance. The adaptive modulation algorithm addresses offset concerns by
independently collecting the maximum and minimum values of the quadrature signals
within a period [25]. Xie simultaneously extracts and compensates for phase delay and mod-
ulation depth drift using four sine and four cosine carriers [26]. Guo uses the Kalman filter
to eliminate the parasitic interference effect in the external sinusoidal phase-modulating
interferometer (ESPMI), which can correct the time-varying error caused by the parasitic
interference [27].

In this paper, a different structure of a sinusoidal phase-modulated fibre-optic interfer-
ometer system is proposed, where a sinusoidal signal is introduced into the reference arm
of the system via an electro-optic modulator (EOM) to modulate the phase, and a probe
with a collimating mirror is placed outside of the system for displacement measurement.
Compared to the original solution, the interferometer has a flexible built-in configuration
that ensures the compactness of the probe and avoids nonlinear errors introduced by the
light source modulation. The phase delay, modulation depth drift, and parasitic inter-
ferences are analysed in depth, and the phase is solved using a real-time ellipse fitting
algorithm based on Kalman filtering. Due to the improvement in the collimated mirror
structure on the return light coupling efficiency and the introduction of sinusoidal phase
modulation, the system achieves a working distance of 20 cm and a linear measurement
range at ambient temperature with repeatability, which can be used as a measurement tool
for other research applications.

The rest of the paper is organised as follows. Section 2 describes the Kalman filtering
algorithm and simulations are carried out to analyse the performance of the proposal.
Validation experiments based on the interferometer of this paper are performed in Section 3.

2. Sensor Structure and Measurement Principle

Figure 1 displays the schematic of the fibre-optic interferometer [16,28]. A monochro-
matic laser source with a wavelength of 1550 nm is powered with an optical fibre that
maintains polarisation. The light travels through the isolator and is then separated by
the OC1. The 10% of the laser goes into the reference arm which is equipped with a
fibre-optic EOM to change the optical phase sinusoidally, while 90% of the laser enteres
the measurement arm, and passes through the circulator onto the fibre-optic probe. The
fibre-optic probe is a sleeve added to the outside of the fibre-optic cladding and fused to
the metal housing together with the collimator mirror. When the target tilt angle increases,
the reflected spot will move radially along the end face of the fibre. When the reflected
beam is not directly coupled back to the core, thanks to the reflectivity of the cladding and
casing, part of the reflected beam deflected to the outside of the core will be reflected by the
casing and the cladding back to the F–P chamber; it will then be reflected back to the core
via the target to be measured, which is a self-focusing mechanism, and therefore, enhances
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the probe’s tolerance to the change in the angle of the target to be measured [9]. To achieve
nanoscale movement, the target is mounted on a piezo actuator using a capacitive sensor.
To travel several millimetres, the piezoelectric moving stage is carried by the step motor.
Two routes’ lasers recouple in the OC2, and an InGaAs photodiode detector picks them
up. Through the use of direct digital frequency synthesis (DDS), the digital-to-analogue
converter (DAC) transforms the sinusoidal digital signal produced by the FPGA into a
modulation carrier, which it then sends to the EOM. The displacement is retrieved with the
use of the modulation carrier and demodulation signal in accordance with the PGC algo-
rithm implemented on FPGA. The fibre paths are all fixed inside a container to withstand
additional disruption.
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Figure 1. Schematic diagram of the all-fibre low-finesse F–P interferometer with phase modulation.
ISO: optical isolator; OC1: a 90:10 optical coupler; OC2: a 50:50 optical coupler; EOM: electro-optic
modulator; VOA: variable optical attenuator; CIR: optical circulator; PD: photodiode detector; FPGA:
field programmable gate array.

The interferometric system calculates the phase difference by comparing the optical
path difference between the measurement beam and the reference beam. In the experimen-
tal environment, the drift of the EOM excitation current leads to the drift of the modulation
depth, and factors such as the measurement system optical transmission and circuit delay
introduce phase delay terms to the quadrature signals. If the quadrature signals are a
directly inverse tangent operation, it will introduce errors and lead to dephasing failure.
The interference frequency between the measurement arm and stray light is much lower
than the modulation frequency and is filtered out after mixing and filtering, while the inter-
ference between the reference arm and stray light is modulated, resulting in a demodulated
quadrature signal that will contain the offset caused by stray light. Due to the existence
of Mach–Zehnder structures, the reference beam not only provides a modulated reference
light but also introduces additional interference caused by environmental factors, such as
temperature drift, pressure changes, and platform vibration, which affect the system and
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cause changes in the optical path difference. The interferometric signal after introducing
interference is [29]

It =
∣∣∣Ic + Il + ∑n

j=1 Ij

∣∣∣2
≈ A2

c + A2
l + 2Ac Al cos(φc − ϕl)

+∑n
j=1 2Ac Aj cos(φc − φj) + ∑n

j=1 2Al Aj cos(φl − φj)

(1)

After mixing the interference signal with the fundamental frequency and double
frequency of the sinusoidal modulation signal, a set of quadrature signals P(t), Q(t) with
varying amplitude and offset can be obtained through low-pass filtering. To obtain the
phase solution, the tangent of P(t), Q(t) is calculated. When the phase delay θc ̸= 0 and the
modulation depth deviates by 2.63 rad [29], an error term caused by amplitude and offset
will also be obtained in addition to the phase to be solved.

P(t) = LPF[I(t) · cos(ωtt)] = X0(t) sin[φ(t)] + X1(t) (2)

Q(t) = LPF[I(t) · cos(2ωtt)] = Y0(t) cos[φ(t)] + Y1(t) (3)

The obtained P(t) and Q(t) are combined into a functional expression conforming to
the elliptic equation according to the form of their mathematical expression function.

pP2(t) + qQ2(t) + rP(t) + sQ(t) + e = 0 (4)

This elliptic equation represents the received interference signal. We use an algorithm
that adds Kalman filtering to the traditional PGC-Arctan process, and the prediction
process and update process of the Lissajous figure parameters formed using the orthogonal
components are based on the error between the predicted value and the measured value
to update the optimal estimation results in real time, so as to realise the estimation of
the system’s true value in the presence of noise interference and to avoid the interference
from entering into the arctangent operation. In this way, the effects of phase modulation
depth drift, phase delay, and parasitic interference are reduced. The concept of linear
discrete Kalman filtering is introduced and the process equation of Kalman filtering is
presented. The elliptic parameters are required for the Kalman filtering equation, and P
and Q are corrected according to the filtering results to eliminate errors and obtain the
correct interference signal.

xm+1 = Fm+1 × xm + vm+1 + wm+1 (5)

zm+1 = Gm+1 × xm + um+1 (6)

Equations (5) and (6) are the state equation and observation equation of the Kalman
filter. Fm+1 is the state transfer matrix; vm+1 is the control matrix; wm+1 is the process noise;
zm+1 is the system observation vector; Gm+1 is the observation matrix; and um+1 is the
observation noise, usually Gaussian white noise. The observation equation obtained after
discretising Pm and Qm is used as the input, where m is the number of samples. X0(t),
X1(t), Y0(t), and Y1(t) are treated as constants [29]; pm, qm, rm, sm, and em are the discretised
elliptic parameters.

Lm = l(xm, Pm, Qm), xm = [pmqmrmsmem]
T (7)

Since Lm is a nonlinear model and the discrete Kalman filter describes a linear model,
the linearisation is expanded for each sampling point in the observation model. Gm is a
linearised observation model and Rm is covariance.

Gm =
∂Lm

∂xm
(8)
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Rm = ∂

[(
∂Lm

∂Pm

)
+

(
∂Lm

∂Qm

)]
(9)

Based on the given system observation model and basic equations, the prediction
equation and update equation of the Kalman filter in Figure 2 are used to iteratively
calculate the optimal estimated state vector

∼
xm.
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∼
xm+1, respectively, represent

the (m + 1)st prior state estimation vector and optimal state estimation vector predicted from the mth

optimal state estimation vector. K̂m+1 and
∼
Km+1 represent the prior estimation covariance matrix

and optimal estimation covariance matrix for the m + 1st order. Hm+1 represents the gain matrix
of the m + 1st Kalman filter and represents the weighted matrix of the residual between the actual
observation value and the prior estimate value. E is the identity matrix.

According to the five basic equations in Figure 2, during the iterative computation,
the state vector

∼
xm to be solved (elliptic parameter) is considered a stable matrix when

|x̃n+1 − x̃n| < 5 × 10−5, the iteration from the mth to the (m + 1)st, can be completed. By
substituting the values in

∼
xm into Equation (10), the amplitude and bias of the discrete

quadrature component can be obtained.
X0(m) =

√
q̃m

Y0(m) =
√

p̃m
X1(m) = −r̃m/2p̃m
Y1(m) = −s̃m/2q̃m

(10)

where
∼
pm,

∼
qm,

∼
r m,

∼
s m, is the elliptical parameter after iterative calculation. According to

Equation (11), the measured phase that eliminates the effects of carrier phase delay and
modulation depth fluctuations can be obtained.

φ(t) = arctan
[

P(t)− X1(t)
X0(t)

· Y0(t)
Q(t)− Y1(t)

]
(11)

Figure 3 shows the optimal estimation results of the Kalman filter for the quadrature
signal amplitude and bias during the ellipse fitting process. It can be seen that after about
1/4 of the cycle, the filtering results start to converge and accurate quadrature component
parameters are obtained. Meanwhile, compared with the ellipse fitting algorithm based on
the least squares method, the output of the Kalman filter is a dynamic optimal estimation,
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which changes according to the real-time measurements and, thus, can be used to solve the
displacement results in real time. Figure 3c demonstrates this performance of the Kalman
filter, simulating a slowly varying amplitude phase based on the previously mentioned
interference model, and Figure 3d shows the results of the optimal estimation.Through
simulation, the effectiveness of Kalman filter correction for ellipse parameter fitting and its
necessity in this study are verified.
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3. Experiments and Processes

In Guo’s paper, three methods of least squares ellipse fitting correction, coherence
length control, and Kalman filter correction were used in the experiments for parasitic
interference error correction. Table 1 presents a comparison of the elliptical fitting cor-
rection, coherence length control, and Kalman filter correction approaches. By lowering
the measurement standard deviation from 10.1 nm to 1.8 nm, the Kalman filter correction
approach clearly had the best suppression effect on parasitic interference, demonstrating
the algorithm’s efficacy [27].

Table 1. Performance of three error correction methods during dynamic measurements [27].

Error Correction Method Peak Value/nm Standard Deviation/nm

Coherence length control 36.2 10.1
Ellipse fitting correction 12.0 3.5
Kalman filter correction 8.6 1.8
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Here, several sets of comparative tests are conducted to verify that the phase generated
carrier (PGC) demodulation algorithm with the addition of Kalman filtering performs better
than the previous fibre-optic interferometric system in displacement measurement, and
the resolving power of the interferometer is also calibrated to obtain the measurement
capability in general environment.

The detection target moves with the piezoelectric displacement stage at a uniform
speed, the measurement signal is modulated with the phase carrier and collected using the
detector, the modulated interference signal is processed using the principle of phase-locked
amplification, and the first-order and second-order harmonic components are extracted
from it using the finite-length impulse response (FIR) filter [30], and the results of the
displacement and the PGC solving are shown in Figure 4, which shows that the PGC phase
demodulation algorithm based on Kalman filtering can solve the real displacement of
the object efficiently. The real displacement of the object can be solved effectively. After
stabilisation, the error is sinusoidal with an amplitude of less than 0.001 µm, which is due
to the fact that the Kalman filter itself is in the process of continuous iterative estimation,
which is dynamic.
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Figure 4. Displacement measurement results: (a) target displacement; (b) displacement solution
results and solution error.

When dephasing the results, phase delay and phase modulation depth drift as well as
parasitic interference introduce different amplitude variations and bias variations, respec-
tively, in the quadrature signals used for arctangent. Here we continue to discuss the effects
of disturbances such as phase delay, modulation depth drift, and parasitic interference dur-
ing signal processing, as well as validate the ability of the Kalman filter-based dephasing
algorithm to correct errors.

The effect of the presence of parasitic interference due to end face-reflected light,
etc., on the quadrature signals and demodulation results is experimentally verified with
the Kalman filter correction method to correct for bias variations with the final demod-
ulation capability. Parasitic interference is mainly caused by multiple reflections from
high-reflectivity targets, as well as temperature drift, the vibration of the working abut-
ment, pressure changes, and other factors introduced in the Mach–Zehnder structure of
the interferometer in this paper. The mathematical model is based on the Equation (1).
The parasitic interference of the mixture of interfering signals with different frequencies
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and intensities, and the amplitude of the systematic parasitic interference in the general
environment was measured experimentally at 0.2 rad, which is equivalent to 50 nm.

The results of Kalman filtering to correct the effect of parasitic interference are shown
in Figure 5. Figure 5a,b shows the effect of parasitic interference on the Lissajous figure,
and it can be seen that the Lissajous figure in the direction of y-axis (in fact, the x-axis is
also biased) at different moments will have different offsets, which is due to the fact that
the parasitic interference introduces bias to the orthogonal components, respectively, and
Figure 5b is the signal data after correcting for the error, and the optimally estimated bias is
in line with the actual bias after Kalman filtering. It can be seen that the optimally estimated
bias after Kalman filtering is consistent with the actual bias, which can effectively eliminate
the parasitic interference in the modulation and demodulation process of the PGC method.
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Figure 5. The Lissajous figure of quadrature signal after amplitude change. (a) Quadrature signal
before correction of bias; (b) Quadrature signal after correction of bias; (c) The Lissajous figure
under the influence of phase delay and modulation depth drift; (d) The Lissajous figure after the
demodulation algorithm to correct for the amplitude change.

Figure 5c shows the Lissajous figure formed via the quadrature signals after the
amplitude change under the influence of phase delay and modulation depth drift. It can be
seen that the existence of phase delay and modulation depth drift will introduce different
amplitude terms in the quadrature signals, in which X(t) = 0.0175, Y(t) = 0.0595. The
quadrature signals from the Lissajous figure shape deviate from the quadrature figure.
If the quadrature signals directly execute the inverse tangent operation, it will introduce
the periodic error, the range of error by the phase delay, and the modulation depth drift
of the specific value of the decision. In some specific values, there is a zero value for
the denominator of the inverse tangent, which can lead to the failure of the solution.
Figure 5d shows the Lissajous figure fitted using the quadrature signal after the amplitude
change is corrected with the demodulation algorithm. Firstly, the amplitude is optimally
estimated using the Kalman filter, then the amplitude of P(t), Q(t) is corrected according to
Equation (10), the Lissajous figure fitted using the quadrature signal after the correction is
a positive circle, and the inverse tangent operation is performed to avoid the periodic error
in the figure.
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In Figure 6a, it can be seen that the interference signal received by the photodetector
varies with time. Since the phase of the cosine component of the signal can exist greater
than 2π, a dip in the signal plot is observed in Figure 6a. From the Fourier expansion
of the interferometric signal in Figure 6b, it can be seen that there are multiple peaks
in the frequency domain signal, which proves the existence of multiple order harmonic
components in the detected interferometric signal. Through the displacement solving
results in Figure 6c, it can be observed that the measured displacement shows a linear
change with time. The interferometer in this paper, as can be seen in Figure 6c, increases the
linearity of the working range to 200 mm. By comparing bare optical fibre, it can be seen
that the linearity of the interferometer is always well maintained within the working range.
This experiment provides strong support for the further development and application of
interferometer technology and helps to promote research and application in related fields.
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Figure 6. The displacement measurement experimental data and displacement solution results;
(a) the time-domain interference signal; (b) the frequency-domain interference signal; and (c) the
displacement solution result.

It is proved that the interferometer in this paper can ensure the displacement mea-
surement works in the working range of 20 cm and solves the correct displacement. These
results validate the functionality and performance of the interferometer for the intended
application.

To ensure the reproducibility of the interferometer in long-distance measurements,
a rigorous experimental setup was employed, involving repeated trials and meticulous
data analysis. The experimental procedure entailed the linear displacement of the stepper
motor within the range of 5 mm to 45 mm. However, to mitigate potential errors arising
from mechanical characteristics, data collection was focused on the segment spanning
10 mm to 40 mm. Seven iterations of the experiment were conducted, each yielding a
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dataset of displacement measurements. These datasets were subjected to thorough analysis
and statistical treatment to extract meaningful insights. Through the careful fitting of the
data points, a straight-line model was established, capturing the underlying trend of the
measurements. In Figure 7a, the results of the fitting process are presented, accompanied
by a root mean square error (RMSE) of 0.0013 µm. This metric serves as a quantitative
indicator of the fidelity of the fitted model to the experimental data. Moreover, to provide
a closer examination of the fitting accuracy, Figure 7b offers a zoomed-in view, reveal-
ing minimal y-axis deviation, typically below 10 nm, along the fitted straight lines. It
is noteworthy that the observed y-axis deviation is primarily attributed to the inherent
resolution limitations of the stepping motors rather than intrinsic flaws in the interference
system. This distinction underscores the meticulous attention paid to isolating and un-
derstanding sources of measurement uncertainty. Furthermore, the exemplary linearity
exhibited in the fitted lines corroborates the interferometer’s robust reproducibility across
varying displacement ranges. This characteristic is pivotal in ensuring the reliability and
consistency of measurements, essential for scientific and industrial applications demanding
high precision. In essence, the comprehensive analysis and optimisation efforts undertaken
in this experiment underscore the commitment to achieving accurate and reproducible
long-distance measurements using the interferometer setup.
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The interferometer’s displacement measurement resolving power underwent calibra-
tion through step displacement experiments shown in Figure 8. The process began with
deactivating the controller of the nano-displacement stage, allowing it to stabilise over
several days to mitigate the creep effect commonly associated with piezoelectric ceramics.
Subsequently, step displacement experiments were meticulously conducted.

The nano-displacement stage served to execute five step displacements, each with a
precise step size of 10 nm. Following each displacement, sufficient time was allocated for
stabilisation before measurements were taken. The comprehensive results of these system
measurements are graphically represented in Figure 9. The measurement outcomes are
clearly displayed, revealing the system’s remarkable resolution, exceeding 10 nm under
normal environmental conditions. This calibration process, including the pre-stabilisation
period and step displacement experiments, underscores the meticulous approach employed
to ascertain and validate the interferometer’s high-resolution capabilities. This calibration
process not only validates the interferometer’s technical specifications but also instils
confidence in its ability to deliver precise and reliable measurements in real-world scenarios.
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Figure 9. The suppression effect on the measurement error of parasitic interferences. (a) The
phase delay and modulation depth drift extraction and compensation method based on four sine
and four cosine carriers proposed by Xie [26]; (b) the PGC phase demodulation scheme based on
Kalman filtering.

In order to demonstrate the effect of the interference system on the suppression of
parasitic interference in this paper, the experiments compare the measurement displacement
errors of two different demodulation algorithms, using collimated probes to reduce the
nonlinear errors caused by the attenuation of the return optical coupling, and show the
measurement errors of the same measurement displacement before and after the parasitic
interference correction.

The stepper motor drives the target to linearly displace 20 cm from the initial position,
and the modulated interference signal received by the photodetector is shown in Figure 9.
As can be seen from the figure, Xie’s method is able to complete the measurements but
produces errors in the case of repeated measurements. Observing the error variation
curve generated via Xie’s method, it can be seen that the error curve contains larger value
fluctuations, indicating that Xie’s method will contain errors in phase delay and modulation
depth drift during the measurement process and is not corrected in time for them to be
included in the measurement results. In comparing the experimental results in Figure 9, it
can be known that the demodulation algorithm combined with Kalman filtering proposed
in this paper is advantageous in suppressing parasitic interference. Xie’s compensation
method, although it can partially compensate for the effects of phase delay and modulation
depth on the results, is unable to deal with the parasitic interference, as a result of which a
slow amplitude drift and nonlinear error are introduced in the displacement measurement
process. In contrast, the PGC phase demodulation algorithm based on Kalman filtering
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significantly reduces the measurement error and can effectively suppress the effect of
parasitic interference while ensuring the displacement measurement results. It is proved
through experiments that the PGC phase demodulation algorithm exhibits higher stability
and reliability during long-time measurements and can significantly improve the accuracy
of displacement measurements. Compared with the four-sine and four-cosine carrier
compensation methods, the PGC phase demodulation algorithm based on Kalman filtering
is more suitable for combating interference in the environment. These results provide new
ideas and methods for interference suppression in future optical measurement systems and
provide strong support for improving measurement reliability and accuracy.

A comparison of the results of the error-corrected interferometer implemented in this
paper with the results of other experiments can be seen in Table 2. The corrected error is
reduced to 13 nm and on this basis, the measurement working range of the interferometer is
greatly extended. However, the measurement accuracy of the interferometer has decreased,
which is a disadvantage of the large working range.

Table 2. Performance of error-corrected interferometry results during dynamic measurements.

Error Correction
Method

Working
Distance/nm Resolution/nm Standard

Deviation/nm

Four sine and four
cosine carriers [16] 20 0.045 53.4

Kalman filter 200,000,000 40 13

To further elaborate on the experiment, it is essential to delve into the specific chal-
lenges posed by hysteresis and nonlinear effects in piezoelectric ceramic-based displace-
ment stages. Hysteresis refers to the phenomenon where the output of the piezoelectric
actuator depends not only on the current input signal but also on its history of excitation.
This means that even if the input signal is the same, the output response may vary depend-
ing on previous states, leading to inaccuracies in positioning and control. Additionally,
nonlinearities in the piezoelectric ceramic’s behaviour can further complicate control efforts.
These nonlinear effects can arise due to factors such as material properties, mechanical
constraints, and electrical characteristics, making it difficult to establish a straightforward
relationship between the input voltage and resulting displacement. By experimentally
observing and quantifying these hysteresis and nonlinear effects, researchers can assess
their impact on the performance of the displacement stage.

The analysis presented in Figure 10 highlights an important observation regarding the
performance of the nano-displacement stage. While the ideal motion state of the stage is
expected to exhibit uniform motion, the actual detected absolute displacement deviates
from this ideal behaviour, displaying nonlinearity. This deviation provides evidence of the
presence of the hysteresis phenomenon, indicating a nonlinear error in the movement of
the displacement stage. By comparing the actual detected absolute displacement with the
standard triangular wave curve, researchers are able to quantify the extent of the nonlinear
error caused by the hysteresis phenomenon. The extreme value of this error is determined
to be 0.4 µm, indicating the maximum deviation from the expected linear behaviour. This
finding underscores the significance of addressing hysteresis effects in the design and
control of nano-displacement stages. Strategies for mitigating hysteresis and minimising
nonlinear errors are crucial for improving the accuracy and reliability of such stages in
practical applications requiring precise motion control and positioning.
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4. Conclusions

In this paper, an all-fibre low-finesse F–P interferometer with phase modulation
based on Kalman filtering is proposed. For the parasitic interference problem faced in
interferometer measurements, a Kalman filter is introduced to improve the demodulation
algorithm and suppress the interference of parasitic interference. This paper analyses
the interference and noise faced by signal demodulation in optical fibre interferometric
systems and describes a Kalman filter-based PGC dephasing algorithm suitable for this
interferometric system with respect to the characteristics of the interference. The algorithm
adds the prediction process and update process of the characteristic parameters of the
quadrature components of the Lissajous figure in the traditional PGC-Arctan process to
avoid interference from entering into the arctangent operation.

The experimental results show that the interferometer, compared with previous in-
terferometer devices, has a working distance in this paper increased to 200 mm and has
better linearity. In the general environment, the resolution of the system reaches more than
10 nm, and the root mean square error is 0.0013 µm after the data are fitted to a straight line.
Compared with other processing methods, the system in this paper can reduce the slow
amplitude drift introduced by the parasitic interference in the displacement solution results
and avoids the introduction of nonlinear errors in the displacement solution results. The
realisation of the large working range of the interferometer makes it possible to measure
the hysteresis phenomenon of the long-distance movement of the precision instrument and
provides a basis for the compensation of the hysteresis error.
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