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Abstract: The presence in a recipient of antibodies directed against donor-specific antigens represents
a major obstacle to transplantation. Removal of these antibodies represents a challenge for physicians
dealing with kidney transplantation. Several strategies, techniques, and old and new drugs are cur-
rently used for desensitizing these patients. Desensitization may either occur before transplantation,
at the time of transplantation, or after transplantation according to whether physicians are dealing
with living or deceased donors. Different techniques may be used to reveal the presence of antibodies
in the recipients; each technique has different sensitivities and specificities, and different advantages
and drawbacks. The targets of the drugs used to desensitize are B cells, plasma cells, the antibodies
themselves, and, finally, the complement that is the final actor causing tissue disruption. B cells are
relatively easy to target; targeting the plasma cell is more difficult. Indeed, several new drugs are
also used in randomized trials to defeat plasma cells. Antibodies may be removed easily, but their
removal is often followed by antibody rebound. The complement is not easy to defeat and new drugs
are currently used for this aim. Overall, despite difficulties, desensitization is currently possible in
many cases, to obtain a safe and successful transplantation.

Keywords: desensitization; donor-specific antibodies; HLA system; antibody identification; B cells;
plasma cells; complement

1. Introduction

Desensitization is among the different strategies that allow kidney transplantation in
highly sensitized and incompatible patients [1]. Indeed, humoral alloimmunity against
human leukocyte antigens (HLAs) is one of the major barriers for successful transplantation.
A number of B cell subsets drive this immune mechanism even if a number of intimately
related B and T cell subsets maintain an effective humoral alloimmune response. These
subsets are alloreactive memory B cells (mBC) [2], T follicular helper (TFH) cells, and
long-lived plasma cells (LLPC) located in different lymphoid organs.

2. Development of Sensitization

After the first alloantigen exposure, events such as pregnancies, transfusions, previous
transplants, or any contact with alloimmune antigens may cause a second exposure that
generates a memory alloimmunity, both cellular and serological [3,4].

When B cells bind to their cognate antigen, they initiate a migration toward the bound-
ary between the B and T cell zones in lymphoid organs, where they compete for interactions
with follicular helper cells. T follicular helper cells provide selection signals required for
their differentiation into Germinal Center (GC) cells and into antibody-secreting cells. Ad-
ditionally, it has been observed that after transplantation, circulating TFH expanded more
significantly in patients who developed de novo anti-HLA antibodies than in those who
remained not sensitized [5]. An important role in generating an alloimmune response is
exerted by the long-lived plasma cells. After the generation of memory B cells, these trans-
form into plasmablasts that are competent for homing into survival niches. Plasmablasts
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migrating to bone marrow generate long-lived plasma cells. The latter, under the effect of
pathogen-associated molecular patterns (PAMPs), migrate to survival niches [6,7]. Most of
the plasmablasts migrate to inflamed tissues, under the control of the interferon-gamma-
induced expression of CXC-chemokine receptor 3 (CXCR3), which binds CXC-chemokine
ligand 9 (CXCL9), CXCL10, and CXCL11 [8,9].

3. Techniques to Identify Sensitization Level and to Stratify the Risk

With different techniques, it is now possible to detect both the alloreactive serological
memory and the alloreactive cellular memory in patients waiting for kidney transplantation.
Through this approach, it is now possible to stratify the humoral and cellular risk of a
candidate to receive a specific solid organ transplantation [10].

The serological memory may be detected using complement-dependent cytotoxic-
ity [11], flow cytometry [12], solid-phase assays such as ELISA [13], and bead-based assays
such as Luminex [14]. All these assays are shown in Table 1. On the other hand, assays
to evaluate alloreactive cellular memory are, among others, flow cytometry [15], Elispot
assay [16], solid-phase assay [17], and flow cytometry [18].

Table 1. Available assays evaluating alloreactive serological memory.

Method Antigen Detection System Advantages Limitations

Complement-dependent
cytotoxicity [11]

Donor lymphocytes
Rabbit complement

PPV+++ of hyperacute
rejection

Low sensitivity for low-level
antibodies
FP may be caused by
non-HLA or auto-antibodies

Flow cytometry [12]

Donor lymphocytes
Fluorescently labeled
antibody to T/B cells and to
IgG

More sensitive than CDC
Detects low-level DSA
Predictive of early AMR

Positivity may be due to
nonspecific antibody
confirmed by a positive
auto-XM
In absence of DSA by SAB, a
positive FC XM is not
predictive of reaction

ELISA [13]
HLA molecules from platelet
donors or EBV-transformed
cells on a microtiter plate

First assays to use captured
HLA proteins, enabling
testing without donor cells

Low sensitivity and specificity

Bead-based assays on
Luminex [14]

HLA-purified antigen on
plastic beads
Fluorescently labeled
antibody to IgG. Beads can
have a mix or individual HLA
(SAB)

More sensitivity and
specificity than CDC and FC
in sensitized patients
Less FP than ELISA, especially
for class II antibody

Interpretation requires
expertise
Significant variations between
laboratories and kits
FP reactions for denatured
conformation of HLA on bead
surface not correlated with
AMR

AMR, antigen-mediated reaction; CDC, complement-dependent cytotoxicity; DSA, donor-specific antibody; EBV,
Epstein–Barr virus; ELISA, enzyme-linked immunosorbent assay; FC, flow cytometry; FP, false positive; HLA,
human leukocyte antigen; Ig, immunoglobulin; PPV, positive predictive value; SAB, single-antigen bead; XM,
crossmatch.

The immune-pathophysiology of DSA-mediated damages may cause antibody-mediated
rejection and graft loss. The pathogenicity of DSAs is routinely evaluated by their titer
(MFI or dilution) or their ability to bind donor cells (by flow cytometry crossmatch). Ex
vivo complement binding can be evaluated with the C1q and/or C3d assays. Analysis of
complement-fixing IgG subclasses or complement genetic variations, the number of innate
immune effectors, and the polymorphism of Fcγ receptors could all help achieve a better
stratification of the risk for antibody-mediated rejection (AMR). Measurement of DSA affinity
and glycosylation profile is not yet available. Finally, the characteristics of the target graft
endothelial cell (level of expression of HLA molecules, stress-induced ligands, or expression
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level of complement regulators or cytoprotective proteins) influence the pathogenicity of the
DSA.

All the cited assays for detecting the presence of HLA sensitization have different
sensitivities and specificities. CDC has the lowest sensitivity. Sensitivity increases with the
use of flow cytometry and a further increase is reached with the use of ELISA. The optimal
sensitivity and sensibility are obtained through the use of single beads and complement
binding. This fact allows for realizing the ENGAGE’s proposal for categorization of
the humoral risk of solid-organ transplant categories. The EuropeaN Guidelines for the
mAnagement of Graft rEcipients (ENGAGE) [10] is an initiative from the European Society
for Organ Transplantation that stratify the patient’s risk as follows:

(a) If the patient has no DSA and no cellular memory, the transplant is possible with a
low risk for AMR;

(b) If at the time of transplantation, there is an absence of DSAs but there is a potential
cellular memory against the donor HLA, the transplant is possible with an increased
risk for AMR. The cellular memory is possible if there are historical DSAs and/or
pregnancy or a previous transplant with repeat antigens. Other possibilities are
transfusions with no information on blood donors.

(c) If at the time of transplantation, there are DSAs, but with negative flow, the transplant
is possible with a risk for acute AMR and acceptable medium-term graft survival.

(d) If at the time of transplantation, there are DSAs with positive flow and negative CDC,
the transplant is possible, but there is a very high risk for acute AMR and accelerated
chronic AMR.

(e) If at the time of transplantation, there are DSAs with positive CDC, the transplant
is not possible and there is the need of desensitization before proceeding with the
transplant.

4. Incidence of Hyperimmune Patients and Graft Survival with Desensitization

The number of hyperimmune patients on the waiting list for kidney transplantation is
increasing with time and with the technique used. According to Spanish data of 2020, the
proportion of sensitized patients with CDC-PRA > 50% ranged from 10% to 15%, but the
same patients evaluated by PRA-SAB (single antigen beads) increased to 40–50% [19].

In the USA, according to data from Montgomery et al. [20], more than 20,000 candidates
for kidney transplant are sensitized. The authors conducted a study with desensitization
on 211 sensitized patients and found that patient survival rates were 80.6% at 8 years
from transplantation, as compared with 30.5% for patients that remained on the waiting
list. In a different multicenter study on the risk of incompatible kidney transplantation,
Orandi et al. [21] compared the graft survival of patients with positive Luminex and
negative flow cross match (PLNC) with positive flow and negative CDC (PFNC) and
patients with positive CDC (PCC). All these patients were compared with compatible
transplants. The hazard ratio (HR) for graft loss was 1.20 for PLNC, 1.65 for PFNC, and
1.80 for PCC. The graft loss for the last two groups was significant (p < 0.001). In a
different study conducted in the UK, Manook et al. [22] compared hyperimmune patients
desensitized before transplantation with compatible living donors (CLDs) and compatible
deceased donors (CDDs). The 5-year graft survival rates were similar and the authors
concluded that desensitization has no detrimental influence on patient survival rates even
if it does not offer a survival benefit.

5. Timing of Desensitization

Considering the day of transplantation, different timing and strategies may be applied.
In the case of living donation, an early pre-transplant desensitization is preferred until

obtaining CDC or Flow X-match-negative. Clearly different drugs at different dosages may be
applied. In case deceased donors do not exist for enough time, two strategies may essentially
be applied: the immediate pre-transplant desensitization as used principally in Austria [23] or
the post-transplant desensitization as used at the Necker Hospital in Paris [24].
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In the case of immediate pre-transplant desensitization, Immunoadsorption (IA) is
the preferred method due to its ability to efficiently remove IgG [25,26]. The IA treatment
is immediately followed by the administration of anti-thymoglobulin (ATG) and/or anti-
CD20 (rituximab). The graft survival rates at 3 years are similar in CDCXM-positive and in
CDCXM-negative patients.

The protocol used at the Necker Hospital in the case of deceased donors consists of
an induction therapy with ATG, which is started on the day of transplantation, followed
by high-dose immunoglobulin (IVIg) that is repeated every 3 weeks for a total of four
courses. At the end of plasmapheresis, 1 or 2 rituximab infusions are administered. The
graft survival rates 7 years post transplantation are 80% even if lower than the graft survival
of the control group represented by patients that do not need desensitization.

6. Desensitization Strategies and Drugs

Summarizing what has been described above, four steps can be seen in the process
leading to target tissue destruction. B cells are formed after antigen binding and B cells
may act as antigen presentation and are precursors of plasma cells. The second step is
represented by plasma cell formation with consequent antibody formation. The antibod-
ies that form immune complexes and activate the complement represent the third step.
Finally, complement activation induces chemotaxis and leads to target tissue destruction
(Figure 1) [27].
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Figure 1. Targeting different cells or functions.

Different drugs may act on each step described. These drugs are well described by the
study of Jordan et al. [28] and their action is summarized in Table 2. In addition to the drugs
described, there is an old but efficient pleiotropic drug that may act at any stage. This drug
is intravenous immunoglobulin (IVIg), generally given at a dose of 2 g/kg multiple times.
The efficacy of IVIg, frequently associated with other drugs, has already been described [24].
Vo et al. [29] conducted an interesting study documenting the efficacy of IVIg in association
with rituximab in inducing desensitization.

Table 2. Summary of pharmacologic options.

Drug Mechanism of Action

Rituximab Murine/human mAb binding CD20 present on pre-B and mature lymphocytes

Daratumumab IgG1k-humanized mAb directed against CD38

Eculizumab mAb-binding protein C5, inhibiting cleavage to C5a and C5b and formation of membrane attack
complex C5b-9

C1 esterase inhibitor Inhibits activation of complement and intrinsic coagulation pathway

Tocilizumab Recombinant humanized antihuman IL6 receptor mAb. Binds both soluble and membrane-bound IL6R

Clazakizumab Genetically engineered, humanized IgG1 mAb; IL6 ligand inhibition

IgG-degrading enzyme of S. pyogenes. IdeS Enzyme that cleaves all 4 IgG antibodies into F(ab)2 and Fc
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7. Drugs Acting on B Cells

Three main drugs act on B cells leading to their reduction and reducing their activity
of Rituximab (RTX), ATG, and Belimumab. In a study of Ramos et al. [30] conducted on
25 recipients of living donors needing desensitization, the effectiveness of RTX, IVIg, and
ATG in reducing the number of splenic B cells and plasma cells was evaluated. The effect
of multiple plasmapheresis plus low-dose IVIg reduced naïve B cells, plasma cells, and
memory B cells. Adding RTX to the treatment was effective in a further reduction in naïve
B cells, without an effect on memory B cells and plasma cells. Finally, adding ATG to the
treatment led to a reduction in memory B cells (CD27+), but again without any effect on
plasma cells.

Belimumab inhibits the growth and differentiation of B cells by blocking B lymphocyte
stimulator (BAFF or BlyS). Indeed, in normal conditions, BAFF binds to the receptors,
BAFF-R, B cell maturation antigen (BCMA), and transmembrane activator and CAML
interactor (TACI), leading to immature B cell survival and maturation, plasma cell survival,
and B cell survival and proliferation [31–33]. Belimumab is a complete human IgG1λ
recombinant monoclonal antibody directed against BAFF, initially used for the treatment of
systemic lupus erythematosus (SLE) [34].

Belimumab monotherapy was studied as a desensitization agent in kidney trans-
plantation. Nevertheless, the study was terminated early for a reported lack of efficacy
(NCT01025193) [35].

Another phase 2 double-blinded randomized placebo-controlled trial of Belimumab
plus standard-of-care therapy is being examined for prevention of allograft rejection in
renal transplant recipients (NCT01536379) [36]. Finally, the study of Banham et al. [37] in
an experimental medicine, randomized, placebo-controlled trial documented the efficacy
of Belimumab. In this study, the concentration of activated memory B cells decreased
from week 21 to 28 of the treatment and the addition of Belimumab to standard-of-care
immunosuppression significantly reduced de novo IgG antibodies.

8. Drugs Acting on Plasma Cells

The second step is represented by plasma cells both short and long living that are
principally responsible for antibody production. FcγRIIb, which is an inhibitory receptor
for the Fc portion of IgG, controls the persistence and apoptosis of bone marrow plasma
cells. It is expressed on B cells [38]. The crosslinking of FcγIIb on naïve B cells may induce
apoptosis of B cells [39,40]. Another study documented that FcγIIb controls bone marrow
plasma cells and, when crosslinked, induces plasma cells apoptosis [41]. Inside the germinal
centers, the balance between survival and apoptosis is related to several factors, such as
FcγRIIB. Indeed, the overexpression of FcγRIIB regulates protein phosphorylation and
suppresses B cell activation to ameliorate SLE, as documented in mice and in vitro. [42].

A drug efficient in acting against plasma cells is proteasome inhibitors. It is well
documented that after proteasome inhibitor administration such as Bortezomib, there is
a reduction in the number of antigen-specific plasma cells in candidates of living-donor
kidney transplantation [43]. Bortezomib is able to reduce serum levels of DSAs in patients,
which were not affected by IVIg or RTX. In addition, Bortezomib reduces the number of
antigen-specific plasma cells, without decreasing the total number of plasma cells. In a
different study [44], proteasome inhibition caused apoptosis of normal human plasma cells,
preventing alloantibody production. Treatment with Bortezomib resulted in a significant
increase in the percentage of apoptotic cells, while RTX, ATG, and IVIg had no effect.

However, in different well-conducted studies, Bortezomib did not confirm its efficacy
compared to other treatments in reducing DSAs after transplantation in sensitized patients.
In particular, Ejaz et al. [45] divided their patients into four groups. One group received
ATG alone, a second group received ATG + RTX, a third group received ATG + Bortezomib,
and a fourth group received ATG + RTX + Bortezomib. The results in their capacity to
reduce DSAs post transplant were similar for all groups, as shown in Table 3. Similarly,
Eskandary et al. [46] conducted the study BORTEJECT. The study was a randomized,
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placebo-controlled trial to investigate the effect of Bortezomib on the course of late ABMR.
Bortezomib given as a single agent did not obtain an improvement in the course of late rejec-
tion. These studies called for new, more effective agents acting on plasma cells. Carfilzomib
is a second-generation irreversible proteasome inhibitor. It is an epoxyketone nonboronated
molecule that proved to be effective and with a reduced toxicity in the treatment of patients
with multiple myeloma [47]. In a randomized clinical trial (NCT02442648) [48], the B-cell-
targeted desensitization with Carfilzomib for preformed anti-HLA antibodies in patients
awaiting kidney transplantation was evaluated. A study from Tremblay et al. evaluated the
prospective [49], iterative, adaptive trial of carfilzomib-based desensitization. The study
documented that HLA antibodies were substantially reduced in the group treated with
carfilzomib alone.

Table 3. DSA monitoring for the first year after transplantation with different treatments [45].

rATG Alone
(n = 10)

rATG + RTX
(n = 10)

rATG + Bortezomib
(n = 10)

rATG + RTX + Bortezomib
(n = 10) p-Value

Development of de novo DSA 3/10 (30%) 3/10 (30%) 1/10 (10%) 3/10 (30%) 0.70

Time to de novo iDSA
appearance (days) 38 101 10 185 0.33

Time to de novo iDSA
peak (days) 38 323 11 186 0.13

De novo iDSA level at the end
of 1-year follow-up (MFI) 0 0 0 0 0.68

Number of patients with
increase in de novo iDSA 0/3 1/3 0/1 0/3 1.00

Number of patients with
decrease in de novo iDSA 3/3 2/3 1/1 3/3 1.00

A different strategy for effective desensitization is the use of the Interleukin-6-receptor-
specific humanized monoclonal antibody, better known as Tocilizumab. Indeed, IL-6 promotes
B cell differentiation to plasma cells and induces Th17 cells. Vo et al. [50] used Tocilizumab
in addition to IVIg in patients difficult to desensitize. In their study, Tocilizumab reduced
DSA strength and numbers at transplant and 12 months after transplantation. Protocol
biopsies showed no evidence of antibody-mediated rejection or transplant glomerulopathy.
In the study, after effective desensitization and transplantation, patients subsequently re-
ceived IVIg once and Tocilizumab monthly for 6 months. The number of patients is low
and the authors themselves highlight that larger controlled studies are needed. Later on,
Doberer et al. [51] verified the efficacy of a different anti-IL-6 antibody, Clazakizumab, on late
ABMR. Clazakizumab is a humanized monoclonal IgG1 antibody. Compared to Tocilizumab,
it has a higher affinity for IL-6 and a longer half-life, as documented by studies on psoriatic
arthritis [52].

The receptor specific for plasma cells is CD38. Daratumumab is a human immunoglob-
ulin IgGk1 monoclonal antibody that targets the CD38 surface antigen on plasma cells.
Daratumumab has been used successfully in treating multiple myeloma and AL amyloido-
sis. Moreover, unlike Bortezomib, Daratumumab targets nonmalignant plasma cells, hence
its efficacy in desensitization and in treatment of ABMR [53,54].

Daratumumab has been successfully used in sensitized kidney transplantation in a
nonhuman primate model [55]. Recently [56], four cases of transplant patients desensitized
and treated with Daratumumab for AMBR have been reported [55,57–59] (Table 4).
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Table 4. Results of 4 patients with ABMR treated by anti CD38 [56].

Transplant Sensitization Treatment Anticd38 Use Evolution

Heart + kidney Immunized:
Preformed DSA

Steroid Pulse
+ATG+IVIG+RTX+
Eculizumab

16 mg/kg infusion for
8 weeks

Clinical good
HLA dramatic decline

Kidney Immunized:
preformed DSA

No treatment added to
the standard of care

16 mg/kg for 8 weeks +
1 monthly infusion for
9 months

DSA undetectable
Stabilization of renal
function

Kidney Immunized:
AB0i (Anti A)

Steroid pulses
ATG
Immunoadsorption
Eculizumab

16 mg/kg for 6-week
infusions

Kidney function
recovered
Reduction in anti A
titer

Heart Immunized:
Preformed DSA

Steroid pulses
Immunoadsorption

16 mg/kg infusion for
8 weeks + 1 infusion
monthly for 9 months

Improvement
Only slight reduction
in DSA

Another drug acting on DSAs is Belatacept, but its efficacy is only documented when
associated with proteasome inhibitors as documented by the studies of Alishetti et al. and
of Jain et al. [60,61].

A clinical trial is ongoing (NCT04827979) [62] to verify the efficacy of Belatacept when
associated with Daratuzumab.

9. Drugs Acting on Antibodies

Plasma cells produce antibodies that are dangerous by generating immune complexes
and by activating the complement cascade.

Removal of DSA antibodies is essential in the different methods of desensitization or
in the treatment of ABMR.

The use of IVIg has already been described and represents an important strategy for
desensitization as used at the Necker Hospital [24].

A pioneer study suggested that polyclonal Ig could be efficient in decreasing anti-HLA
antibodies [63]. Later on, a randomized trial (NIH IG02) compared the pre-transplant ad-
ministration of polyclonal Ig with placebo in highly sensitized patients [64]. Unfortunately,
the NIH IG02 documented that, even if the transplantation rates were higher in the IVIg
group, there was only a mild and transient effect on PRA. This fact led to a higher incidence
of ABMR in the IVIg treatment group.

IVIg seems to be more efficient when associated with mechanical antibody removal
as obtained with plasmapheresis. Montgomery et al. [65] conducted a study in sensitized
living-donor kidney transplant recipients. Desensitization was conducted with a combina-
tion of plasmapheresis (PE) and administration of IVIg. Post-transplant ABMR occurred as
an effect of antibody rebound after contact with allogenic antigens. The ABMRs were easier
to control with new cycles of PE and low-dose IVIg. As recommended by the already men-
tioned desensitization protocol [24], it is essential that the administration of IVIg always
follows the PE to avoid the removal of Ig with the PE treatment.

According to the European Guideline for the management of kidney transplant pa-
tients with HLA antibodies, both PE and Immunoadsorption are effective [66]. Their
efficacy is higher when associated with IVIg and RTX. IA is more selective and is the
preferred method by some authors, particularly in the preparation of AB0-incompatible
kidney transplantation [67–69].

A different method to neutralize antibodies is the use of the IgG-degrading enzyme
derived from Streptococcus pyogenes (IdeS) that cleaves intact IgG. Intact human IgG is
cleaved by IdeS in two steps. The first step results in a single cleavage of the IgG molecule in
which one heavy chain remains intact. The second step generates a fully cleaved molecule
that cannot mediate complement-dependent cytotoxicity (CDC) or antibody-dependent
cytotoxicity (ADCC) by means of Fcγ receptors [70,71]. A study from Jordan et al. [72]
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represents the first pilot study that combines two phase 1–2 trials undertaken independently.
Overall, 25 highly immunized recipients were treated: 14 in the USA and 11 in Sweden.
One shot of IdeS 4 to 6 h was taken before transplantation. IdeS is extremely potent at
cleaving circulating IgG, but the effect may be transient. The extent and frequency of
DSA rebound after transplantation highly varied between the Swedish and the American
arms of the study. Indeed, in the Swedish group, DSAs remained undetectable up to
14 days from transplantation, with a subsequent rebound. In the USA patients, the rebound
was very low. This is possibly the effect of the use of IVIg plus RTX before and after
transplantation [73,74].

Later on, the safety and efficacy of IdeS were documented by the studies of Lorant [75]
and Ge et al. [76].

10. Drugs Acting on Complement

The fourth and final step to be targeted is the complement that favors chemotaxis and
leads to tissue destruction. It has been documented that terminal complement inhibition
decreases ABMR rates in sensitized renal transplant recipients [77]. In this study, comple-
ment inhibition and desensitization were obtained with the use of the anti C5 eculizimab.
Eculizumab was given at a dose of 1200 mg immediately prior to transplantation, 600 mg
on postoperative day 1, and 600 mg weekly for 4 weeks. Eculizumab was then discontinued
if DSAs had significantly decreased or continued until the B flow crossmatch channel shift
was <200. Graft survival and ABMR rates were significantly lower in the eculizumab group
than the control group. However, considering the outcomes beyond 1 year, the incidence of
transplant glomerulopathy did not differ in the two groups [78]. In a more recent study,
Marks et al. [79] conducted a randomized trial on the safety and efficacy of eculizumab
in the prevention of antibody-mediated rejection in living-donor kidney transplant recip-
ients requiring desensitization. There were lower rates of ABMR in the eculizumab arm
than the arm with standard-of-care therapy. However, at 3 years, there were similar graft
survival rates.

A different and new way of targeting the complement is to target the enzymes of the
initiating complement cascade [80]. This can be obtained by the use of the serine protease
inhibitor (C1INH) [81]. There are two forms of C1INH: the ultra-pure derived C1INH
and the full-length recombinant C1INH. These drugs have their advantages and their
drawbacks. An advantage is represented by the knowledge of the drugs because they
represent the standard of care for hereditary angioedema [82,83]. Additionally, plasma-
derived molecules are not immunogenic and they have a broad effect on classical and
lectin pathways. The main drawback is the lack of specificity. Indeed, C1INH also controls
mannose-binding lectin-associated serine protease (MASP) and proteases in the coagulation
and kinin systems. These drugs are new and promising. Indeed, Vo et al. reported that
C1-INH resulted in significant elevations in C1-INH levels, C3, and C4, and reduced
C1q+HLA antibodies, and that the combination of antibody reduction and C1-INH may
prove useful in the prevention and treatment of AMR. Anyway, further controlled studies
are warranted [84].

11. Conclusions

The improvement of techniques to detect both serological and cellular memory in
recipients waiting for kidney transplantation has allowed us to detect a larger number of
sensitized patients than previously achived. As a consequence, the improvement of drugs
and strategies to allow desensitization is of outmost importance. In particular, new drugs
acting on plasma cells, on antibodies and on complement cascades are promising.

12. Future Directions

New drugs acting on different cells and proteins involved in sensitization and acting
on ABMR represent the most important developments for the future. Many trials are
ongoing to verify the efficacy and safety of proteosome second-generation and new anti
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IL-6 monoclonal antibodies. Similarly, new complement inhibitors have been reported
as highly promising. Finally, the association of two or more desensitizing drugs, such as
belatacept in association with daratuzumab, is an interesting avenue to explore.
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