
Citation: Portugal, M.; Marta, A.C.

Optimal Multi-Sensor Obstacle

Detection System for Small

Fixed-Wing UAVs. Modelling 2024, 5,

16–36. https://doi.org/10.3390/

modelling5010002

Academic Editor: Ivano Benedetti and

Ivan Dimov

Received: 12 October 2023

Revised: 8 December 2023

Accepted: 12 December 2023

Published: 20 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimal Multi-Sensor Obstacle Detection System for Small
Fixed-Wing UAVs
Marta Portugal and André C. Marta *

IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal;
marta.portugal@tecnico.ulisboa.pt
* Correspondence: andre.marta@tecnico.ulisboa.pt

Abstract: The safety enhancement of small fixed-wing UAVs regarding obstacle detection is ad-
dressed using optimization techniques to find the best sensor orientations of different multi-sensor
configurations. Four types of sensors for obstacle detection are modeled, namely an ultrasonic sensor,
laser rangefinder, LIDAR, and RADAR, using specifications from commercially available models.
The simulation environment developed includes collision avoidance with the Potential Fields method.
An optimization study is conducted using a genetic algorithm that identifies the best sensor sets
and respective orientations relative to the UAV longitudinal axis for the highest obstacle avoidance
success rate. The UAV performance is found to be critical for the solutions found, and its speed is
considered in the range of 5–15 m/s with a turning rate limited to 45◦/s. Forty collision scenarios
with both stationary and moving obstacles are randomly generated. Among the combinations of the
sensors studied, 12 sensor sets are presented. The ultrasonic sensors prove to be inadequate due to
their very limited range, while the laser rangefinders benefit from extended range but have a narrow
field of view. In contrast, LIDAR and RADAR emerge as promising options with significant ranges
and wide field of views. The best configurations involve a front-facing LIDAR complemented with
two laser rangefinders oriented at ±10◦ or two RADARs oriented at ±28◦.

Keywords: sense and avoidance; collision avoidance; optimization; ultrasonic sensor; laser rangefinder;
LIDAR; RADAR

1. Introduction

Unmanned Aerial Vehicles (UAVs) have received considerable attention in a myriad of
operations due to their enhanced stability and endurance. Despite being initially developed
for military purposes [1], there has been a notable upsurge in the civilian market for
UAVs [2]. A survey on the safety aspects of civilian drones concluded that UAVs present a
high collision risk across most applications [3]. Due to their ability to work in a collaborative
and cooperative manner, swarms of drones are typically used for surveillance purposes,
i.e., tracking and localizing objects, and this is reflected in another survey [4]. One of
the most significant challenges regarding the navigation of a swarm of agents is collision
avoidance [5]. Collision avoidance systems are responsible for guiding an autonomous
agent to safely and reliably avoid potential collisions with other agents in the swarm, as
well as with other objects in the environment. The capacity to locally sense and avoid items
in the environment becomes more crucial for agents to be fully autonomous and, in turn,
for systems to be more robust. Drones are also required to exhibit a practical resolution for
a Sense and Avoid feature as part of the NextGen [6] strategy for integrating UAVs into the
U.S. National Airspace System (NAS). In fact, all UAVs must deploy an automated Sense
and Avoid intelligent system that provides safety levels comparable to, or even superior to,
those of manned aircraft [7].

Fittingly, this work specifically addresses the safety enhancement of small fixed-wing
UAVs (a maximum take-off weight of <25 kg, a range of <10 km, an endurance of <2 h,
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and a flight altitude of <120 m), particularly with regard to the detection of obstacles
during flight and the automatically triggered collision avoidance maneuver. In contrast to
rotary-wing UAVs (multiropters), whose hovering capabilities facilitate collision avoidance
strategies and for which many solutions are available, fixed-wing UAVs (conventional
aircraft with unmovable lifting surfaces) pose a greater challenge and fewer solutions exist
for it.

This work aims to address parts of a comprehensive obstacle detection and collision
avoidance system, thereby representing a two-stage “sense” and “avoid” problem. The
generic Sense and Avoidance (S&A) system architecture is depicted in Figure 1. Notice
that the outcome of the system is to feed updated flight trajectory information to the flight
controller, such that the UAV can continue to navigate safely. This all starts with the sensing
system, so its definition and performance are critical.

Figure 1. Sense and avoidance system architecture.

In this study, the sensors used to gather obstacle data are the ultrasonic sensor, laser
rangefinder, Light Detection and Ranging (LIDAR) sensor, and Radio Detection and Rang-
ing (RADAR) sensor.

Ultrasonic sensors generate sound waves, which are then reflected by the obstacle and
recorded by the sensor. In knowing the speed of the radiated sound in the air medium,
the distance from the point of greatest reflection to the obstacle can be calculated. Using
these sensors proves to be advantageous mainly due to the ease at which this simple
technology can be sized down, which is why ultrasonic-based systems were proposed for a
similar application [8]. However, because these are proximity sensors, their signal quickly
attenuates and their capacity to measure distance is typically limited to less than 10 m [9].

Laser rangefinders are able to compute the distances to obstacles by emitting a laser
pulse and measuring the time it takes for the reflected beam to be detected (given that laser
light beams move at a known speed). This principle is quite common among sensors, and it
accounts for lightweight, low-cost technology [10]. However, it is limited by weather condi-
tions, as laser light might scatter in the presence of clouds, fog, or atmospheric attenuation.

The Light Detection and Ranging (LIDAR) working principle is similar to the laser
rangefinder, except it is multi-directional thanks to an oscillatory base; thus, its execu-
tion goes beyond simply detecting an obstacle’s range, and a 2-D point cloud can be
acquired through a vast array of distance and azimuthal measurements pairs. LIDARs
installed on UAVs can accurately delineate the shapes of objects at fair distances, (more
than 30 m), as demonstrated on a LIDAR-based system for tree measurements [11], thus
making them main candidates to incorporate an obstacle detection system.

Radio Detection and Ranging (RADAR) is one of the most popular sensing technolo-
gies. It consists of a transmitting antenna that produces electromagnetic waves (in the radio
or microwave spectrum) and a receiving antenna, which collects waves echoed from static
or dynamic obstacles [12]. Despite being very similar to LIDAR, RADAR technology is
distinguished by the frequency of the emitted radiation. The distance between the sensor
and the target is also computed by measuring the time lapse between the transmitted and
received signal since radio waves also move at a known speed.
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Vision technology can acquire richer information from surroundings, involving color
and texture, while being cheaper and easier to deploy in comparison to the aforementioned
sensors [13]. However, image sensors face challenges in achieving high accuracy due to
their dependency on texture, lighting, and weather conditions. Furthermore, all cameras
rely on real-time heavy image processing to extract useful information from the chunks of
raw data being provided by the sensor [14], thereby greatly increasing the computational
complexity of this application. Therefore, vision-based sensors were deemed unsuitable for
the present study.

It is important to note that most research in this field focuses on multirotor UAVs.
Among these, solutions typically include cameras [15], LIDAR technology [16], or both [17].
That was not the case for the solution presented in [18], where the solution was specifically
designed to map indoor spaces with planar structures through graph optimization. Using
many 1D lasers to maximize the orientations that are being covered, as opposed to using a
single 2-D LIDAR, allows for a more accurate hypothesis of the planar structures—one that
is free of assumptions about the horizontal and vertical planes. Furthermore, the viability
of an acoustic-based collision avoidance system for a fixed-wing UAV that resorts to
microphone data as the main input was also investigated with limited success [19].

Regarding flight planning and collision avoidance, a recent work aimed at imple-
menting UAV path re-planning and evasion maneuvers through deep reinforcement learn-
ing [20]. A deep reinforcement learning approach for three-dimensional path planning by
using local information and relative distance without global information, i.e., resorting to a
partially observable Markov decision process, was proposed [21]. In contrast, the present so-
lution focuses primarily on the detection capacity of different sensors and how to optimize
their resources, thus resorting to a simpler Potential Fields collision avoidance method.

Preceding this work, different detection systems were simulated using laser rangefind-
ers and RADARs in different configurations [22]. Through the Potential Fields method
and resorting to an optimization algorithm, a possible configuration of a UAV detection
system was reached. Subsequently, ultrasonic sensors and laser rangefinders have been
employed in the hardware implementation of an effective sense and avoid system on a
simple rover [23].

The main goals are to (1) perform a comprehensive study of the four main, active
non-cooperative sensor types (ultrasonic sensor, laser rangefinder, RADAR, and LIDAR);
(2) develop models for each type and embed them in an obstacle detection and avoidance
simulation tool; and (3) perform off-line simulations using randomly generated collision
scenarios to obtain optimal multi-sensor configurations in terms of sensor types, positions,
and orientations that maximize the obstacle sense and avoidance success rate for a given
set of performance parameters of a small fixed-wing UAV.

The current work is limited to 2-D problems, and it is assumed that the UAV is in level
flight (constant altitude) at cruise conditions and remains so during the obstacle detection
and avoidance stages. For fixed-wing aircraft, this might represent the vast majority of
its flight.

2. Sensor Modeling

The next subsections describe the models of active non-cooperative sensors: the
ultrasonic sensor, the laser rangefinder, the LIDAR (Light Detection and Ranging) sensor,
and the RADAR (Radio Detection and Ranging) sensor. These are illustrated in Figure 2,
and are followed by a comparative analysis, as shown in Table 1. Certain models were
developed by [24] and are further adapted to the present work.

The relevant sensor specifications are summarized in Table 1. Although the obstacle
detection capability depends greatly on the range, field-of-view (FOV), accuracy, and up-
date rate of the sensors, other aspects should also be taken into account during the selection
of parts. The size and weight of sensors are crucial factors to consider when designing a
S&A system for small UAVs since it may be counterproductive to add detection capability
at the cost of reduced vehicle maneuverability. This is likely not the case for the particular
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set of sensors in this study, with the MB1242 sonar being the smallest and lightest; followed
by the slightly larger and heavier LW20/C laser; then the SF45/B LIDAR that is almost
double in size; and the US-D1 RADAR, which—while the largest and heaviest—is still
sufficiently compact for application in small UAVs. Power consumption can be particularly
important since most UAVs are battery powered; thus, LIDAR and RADAR are at a clear
disadvantage compared to the ultrasonic sensor. Regarding acquisition cost, the ultrasonic
sensor is the cheapest sensor, while the laser-based and RADAR sensors are considerably
more expensive. Unexpectedly, the SF45/B LIDAR with a variable FOV is more costly
than the LW20/C one-dimensional laser rangefinder, and the US-D1 RADAR is the most
expensive at twice the cost of the laser due to its pricier technology.

(a) Ultrasonic sensor (source: MaxBotix).
(b) Laser rangefinder (source: LightWare).

(c) LIDAR (source: LightWare). (d) RADAR (source: Ainstein).
Figure 2. Active non-cooperative sensors.

Table 1. Sensor hardware specifications.

Ultrasonic
Sensor

Laser
Rangefinder LIDAR RADAR

MB1242 [25] LW20/C [26] SF45/B [27] US-D1 [28]

Range (m) 7 100 45 50
Horizontal FOV (◦) 0 0.3 20–320 43
Resolution (cm) 1 1 1 –
Accuracy (m) 0.1 0.1 0.1 0.04
Update rate (Hz) 7 388 5000 100
Power supply voltage (V) 3–5.5 4.5–5.5 4.5–5.5 5–5.5
Power supply current (mA) 4.4 100 300 400

Outputs and interfaces Serial and I2C Serial and I2C Serial and I2C,
Micro USB UART, CAN

Dimensions (mm) 22 × 19 × 15 30 × 20 × 43 51 × 48 × 44 108 × 79 × 20
Weight (g) 5.9 20 59 110
MSRP (e) 40 300 450 600

2.1. Ultrasonic Sensor

This type of sensor has a wide FOV that translates to a beam pattern with axial
symmetry, as represented in Figure 3.

Since the ultrasonic sensor only outputs a distance, it leaves all the interior beam
points located at a specific distance from the UAV as potential object positions. This results
in errors that can be avoided, as well as other issues that arise from sound reflection. The
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sound reflection law states that the reflected sound wave’s angle with the normal of the
surface is preserved. Thus, the ultrasonic sensor requires a perpendicular surface in order
to detect an object, which, in turn, implies that the targets format is crucial to the mission’s
success. It is vital to recognize that the final results can only be used as a reference given
that these simulations only use spherical shape targets (and different target formats could
either improve or worsen the outcome). In short, the model must check for the following
possibilities at all times:

1. The presence of any spherical surface point within the sonar beam pattern;
2. The perpendicularity of the sound wave direction with its reflecting surface.

Figure 3. Ultrasonic sensor beam pattern [23].

Verifying these conditions requires considerable computing time. Therefore, a pro-
gressively complex approach was implemented [23]. First, the beam pattern is reduced
to a cylinder. When the center of the obstacle is found to be inside the cylinder, a more
thorough analysis is performed to identify which portion of the spherical surface, if any,
is in fact inside the beam pattern. The last stage addresses the perpendicularity issue.
The final surface computed in the preceding phase is defined as a list of points. The aim
is to calculate the angle between the direction of the sound wave and the tangent surface
of the sphere at that precise location. The point is deemed to have been picked up by the
sonar if the angle is close to 180◦ (with a 5◦ tolerance). Although the vast majority of the
final surface points were inside the beam pattern, all of the points that were designated as
detectable required a second examination. The closest point to the UAV position (among
those that passed these filters) was chosen as the detected point. The UAV reference point,
which will serve as the reflection point for the trajectory re-planning algorithm, will be
situated on the beam pattern axis at the same distance from the UAV as the detected point.

2.2. Laser Rangefinder

Considering the obstacles as spheres, the reflection point can be modeled as a simple
interception between a line and a spherical surface in Figure 4, which is given by

∥x − c∥2 = r2 , (1)

x = o + dû , (2)

where x is the detection point on the line and/or sphere, c is the center point of the sphere,
r is its radius, û is the unit vector that defines the line direction in 3D space, and d is the
distance from the origin of the line o. Combining both equations leads to an easily solvable
quadratic equation,

d2(û · û) + 2d[û · (o − c)] + (o − c) · (o − c)− r2 = 0 , (3)
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which returns a solution d if 0 < d < Rd, where Rd is the sensor detection range. In
real conditions, the laser would not reach the furthest point, it would instead reflect on
the closest one. Therefore, if there are two solutions in this interval, only the smallest
one prevails. The reflection point with a spherical surface can be easily obtained from
Equation (2).

Figure 4. Laser rangefinder detection model.

2.3. LIDAR

This type of sensor is not limited to a distance output as it can also provide the system
with an azimuthal angle where the distance was measured, i.e., the LIDAR model has to
account for outputs with polar coordinates. The LIDAR model is very similar to the laser
rangefinder’s, in which it makes only the points that are closest to the sensor detectable.
This implies that if an object is completely visible, then only half is detected, and the
remaining half of the obstacle is reconstructed via symmetry, where the center of symmetry
is the medium point of the segment connecting the first and last point of the cluster. In
the present simulations, this distance corresponds to the diameter of the obstacle. The
symmetry assumption brings no drawbacks since the LIDAR is continuously scanning and
updating the detected points, thus providing an up-to-date front-facing geometry of the
obstacle. The model discards obstacles that are hidden or outside the field of view (FOV).

A common issue lies within higher distances between consecutive points in farther
obstacles, which results in smaller detected dimensions (compare Obstacle and Obstacle
Model in Figure 5). To solve this problem, the measured diameter is passed through the
time filter, as proposed in [29],

Dk = Dk−1 + G(Dm − Dk−1) , (4)

where G(0 < G < 1) is the filter gain, Dk is the filtered diameter at instant tk, Dk−1 is the
filtered diameter at instant tk−1, and Dm is the measured dimension at instant tk. The gain
must be carefully chosen because it affects how quickly the dimensions change. While a
small gain (i.e., a slow variation) is better for noisy surroundings, it is not appropriate for
objects with high relative speeds. The gain is given by

G = 1 − n
√

1 − p , (5)

where p corresponds to a fraction that represents the desired accuracy of the dimensions
and n corresponds to the number of filter cycles required to get an accuracy of p. Classic
Kalman filters [30] were employed for the tracking phase, where the motion of obstacles
was assumed to be two-dimensional, linear, and constant over successive scans. This
simplification, which takes into account a high scanning frequency, accurately captures the
targets’ state.
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Figure 5. Obstacle reconstruction using a LIDAR (adapted from [24]).

The LIDAR model in use (based on the LightWare’s SF45/B) has a specific update
rate, but it is possible to set its angular velocity (scanning speed) up to a maximum of
6.3 rad/s. However, by choosing faster sweep speeds, the arc of circle that is not being
detected between each measurement increases, thus increasing the likelihood of missing
an obstacle smaller than that arc. This effect is illustrated in Figure 6, where the length
of the arc traversed ∆s varies analytically with the distance to the sensor and the angular
velocity. At maximum scanning speed (ωmax), this 45 m range LIDAR might not detect
obstacles that are smaller than 8 m wide at this distance. However, if covering a larger
area quickly is more important, sacrificing some visibility at the maximum range might
be acceptable. Ultimately, the compromise should be based on the specific needs and
constraints of the system.

Figure 6. SF45/B undetectable arcs for different scanning speeds.

2.4. RADAR

In this case, the state estimation is more complex than the one employed in the LIDAR
model (given the RADAR sensor provides the distance, azimuth, and elevation of the
observed obstacles). These outputs are spherical, but only the polar components (distance
and azimuth) are considered in the 2-D model. Since the intruder dynamics are best
described in rectangular coordinates, the converted measurement Kalman filter (CMKF)
was used to convert the measurement data in polar coordinates into a Cartesian coordinate
system, so that the tracking could be realized through a linear Kalman filter [31]. The 2-D
model used in the simulations was then represented by{

xu
m = λ−1

α rm cos(αm)

yu
m = λ−1

α rm sin(αm)
, (6)

where (xu
m, yu

m) are the measurements converted to the Cartesian frame, rm is the measured
range, αm is the measured azimuth, and λα is the bias compensation factor expressed as

λα = e−σ2
α /2 , (7)
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where σα is the standard deviation of the noise in the azimuth measurements. The compen-
sation of the bias is multiplicative due to the use of the unbiased conversion and modeling
the measurement errors as Gaussian white noise. The covariance matrix used in the Kalman
Filter is given by

Ru =

[
var(xu

m | rm, αm) cov(xu
m, yu

m | rm, αm)
cov(xu

m, yu
m | rm, αm) var(yu

m | rm, αm)

]
, (8)

with the details of the computation of these variances found in [32].

2.5. Multi-Sensor Data Fusion

All of these sensors (and respective models) provide inputs that allow the avoidance
system to actuate. However, if the system’s architecture is composed by more than one
sensor, the data provided must be merged in some way. The sensor models previously
described provide the required mutual transformation of their measurements into one
global Cartesian coordinate system. Also, synchronization is guaranteed by the time
schedule used for retrieving the obstacle sensing data from models.

Following the best practices proposed in a similar application [33], the weighted filter
method was used in the present study for data fusion. The principle behind this method
is simple: each sensor is given a weight that is based on how reliable it is. Reference data
sensors that provide information about the UAV state must be installed. Considering that
changes in the distance to obstacles correspond to changes in the UAV location, reference
data sensors like IMUs and optical flow sensors are used to assess the accuracy of the
main data and aid in selecting the best sensor. In the particular case of fixed obstacles,
the aforementioned variances in distance ought to match. The weights are then calculated
by applying a differential norm to compare all of the conceivable sensor combinations of
the main data and reference data. In each instant, the obstacle distance measurement corre-
sponding to the sensor with the lowest weight is chosen, and the remaining measurements
are discarded on the grounds that they are corrupted. Nonetheless, the sensor readings are
fused in accordance with their weights if the computed weights have a low variation.

3. Collision Avoidance

Following previous works [22,24], the Potential Fields method was chosen to solve the
local path planning problem. A brief explanation of the algorithm and its implementation
in the simulation tool are described next.

3.1. Potential Fields Method

Based on Coulombs law, the Potential Fields method conceptualizes waypoints and
obstacles as oppositely charged particles. It translates the pre-determined UAV flight path
to the waypoints charged with an attractive potential, while the detected obstacles become
charged with a repulsive potential. Upon the successful implementation of this collision
avoidance method, the simulated UAV tries to avoid obstacles by trajectory re-planning.

Each obstacle is modeled as a circle with various safety zones, which serve pivotal
roles in both collision detection and avoidance simulations, as seen in Figure 7. The collision
radius Rc circumscribes the obstacle size, triggering a collision event if the UAV violates
this radius. The safety radius Rs specifies the minimum separation distance between the
UAV and the obstacle, accounting for deviations and uncertainties during detection and
avoidance stages, which trigger a close call event if breached. The detection radius Rd
represents the sensor detection range.
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Figure 7. Safety zone radii.

For each potential collision scenario (see its generation in Section 4.1), there are three
possible outcomes of the avoidance maneuver, as represented in Figure 8, based on the
radii breach: success, close call, and failure.

3.2. Implementation in Simulation Tools

By gathering the obstacle distances from the onboard sensors from the obstacle de-
tection stage (according to Section 2.5), an obstacle screening process was run. A list of
obstacles was strategically organized based on the urgency of the detected collision pos-
sibilities, thereby assuming the straight projection method, i.e., the current state of the
obstacle is projected into the future along a straight trajectory that is made at a constant
velocity. An evasive maneuver will be triggered if the minimum distance between the UAV
and an obstacle is smaller than the safety radius.

(a) Collision scenario.

(b) Success.

(c) Close call. (d) Failure.
Figure 8. Possible outcomes of a collision avoidance maneuver.

Mathematically, the collision detection method consists of computing the closest point
of approach (CPA) between the UAV and the obstacle, and it is assumed that both vehicles
will maintain constant velocities. Then, the motion of two vehicles, A and B, are described
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as A(t) = A0 + vAt and B(t) = B0 + vBt, and the distance between them at an instant
t is given by ∥A(t) − B(t)∥. By solving its derivative, the instant corresponding to the
minimum distance between the two points (tCPA) is given by

tCPA =
−(A0 − B0) · (vA − vB)

∥vA − vB∥2 . (9)

Through knowing the value of tCPA, the minimum distance between the two vehicles can
be easily computed as

dCPA = ∥A(tCPA)− B(tCPA)∥. (10)

To overcome linear projection simplification, these computations are regularly repeated to
account for other possible UAVs and moving obstacle maneuvers. In the case of multiple
collisions being detected, the obstacles are sorted by the ascending order of their tCPA.

Upon detecting a potential collision, an avoidance strategy is implemented to main-
tain a safe separation between the UAV and the identified obstacles. To accomplish this,
iterative local paths are generated until there are no longer any obstacles representing
potential collision risks. If waypoints are found to be blocked by obstacles and have become
unattainable, they are discarded in this re-planning stage.

As for the path re-planning strategy, since UAVs must always give way to manned
aircraft (and as the sensing is assumed to be non-cooperative), the UAV will always make
an evasive maneuver while respecting the Rules of the Air [34]. In the case of an imminent
collision, the avoidance strategy is as follows: (i) the UAV turns right if the intruder is in a
head-on collision path or to the right of the UAV; (ii) the UAV turns left if the intruder is
approaching from the left; and (iii) in the case of a static obstacle, the direction in which
the obstacle is circled around is the one that corresponds to the smaller path to reach the
goal. Climb and descent rules do not need to be taken into consideration as this work only
presents a 2-D level flight simulation. In the current version, the UAV response is based
solely on the system dynamics, which is limited by its maximum turning rate without any
legislative restrictions being considered. More details about the implemented avoidance
algorithm can be found in [35].

3.3. The Benchmark of Sensor Performance

Prior to any optimization, the response of the UAV to imminent collisions was studied
to compare the performance of each sensor type. The UAV was set traveling at 8 m/s
and equipped with a single sensor pointing forward. First, the UAV was set on a head-on
collision course with an obstacle at an incoming speed of 10 m/s with a radius of 2 m
and a safety radius of 4 m. The resulting collision avoidance trajectories are shown in
Figure 9a. Although the obstacle is always properly tracked and avoided, the re-planning
maneuvers differ. When equipped with a ultrasonic sensor, the UAV was already inside
the obstacle action radius when detection occurred, so it could not avoid breaching the
safety radius (close call). When equipped with a laser rangefinder, the UAV reacted the
earliest and slightly changed its direction but, as a result of the obstacle stopping being
tracked due to the sensor having an almost null FOV, the safety radius ended up also being
breached. As for the RADAR and LIDAR sensors, the corresponding evasion maneuvers
started approximately at the same point due to their similar range, and this resulted in a
successful evasion.

A similar test was made with the UAV set on a 60◦ angled collision course with an
obstacle moving at a speed of 12 m/sm, as represented in Figure 9b. In this case, only the
LIDAR sensor was able to properly track and execute the evasion maneuver, without ever
breaching the safety radius, in a timely manner. All other sensors were unable to track the
obstacle in a timely manner due to their reduced range or FOV, thus leading to a collision.
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(a) A head-on collision.

(b) A 60◦ angled collision.
Figure 9. UAV collision avoidance response to obstacle detection when equipped with different sensors.

4. Optimal Sensing System

An optimization study was conducted to find the types of sensors and respective
orientations relative to the UAV longitudinal axis that result in the best collision avoidance
performance. To do so, a set of randomly generated collision scenarios with both fixed and
moving obstacles were generated. The sensors modeled in Section 2 were tested for each of
these scenarios, and their orientations were varied until optimal configurations were found.

4.1. Scenario Generation

To create scenarios suitable for this study, a scenario generation algorithm was used,
in which the predetermined path and waypoints of the UAV as an input was accepted
before combining them with a list of moving and static obstacles to produce a scenario [23].
Each scenario must specify the obstacle’s initial position, velocity, and radius. It should
also include a pre-planned path and waypoints that the UAV must follow.

Different bounds were defined regarding the kinematic and dimensional properties
of the obstacles and the UAV itself. Various stochastic and partially stochastic processes
were then extracted from these intervals, creating random values for the different variables,
as depicted in Figure 10. Partially stochastic processes were used in two different cases:
determining the velocity orientation of moving obstacles and setting the position of static
obstacles. In the former, the goal was to ensure that, initially, the direction of the obstacle’s
velocity should point to the center of the domain rather than pointing outward, thus
increasing the possibility of collision. In the latter, the position of any static obstacle must
not be within a determined safety radius around the waypoint given that the UAV must
pass through it. All remaining bounds but one were used to select a completely random
value that ultimately defined each set of obstacles. In addition, a pre-determined flight
path was loaded, which accounted for a non-stochastic process, into each scenario.
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Figure 10. Scenario generation algorithm [23].

Finally, each scenario was tested for potential collisions using a flight simulator without
any sensors (with the obstacle avoidance strategy turned off). This was then discarded if
the UAV did not go beyond any obstacle’s safety radius Rs throughout the whole flight
simulation. This function was repeated until n scenarios with an impending collision
were generated.

In this study, forty collision-leading scenarios were randomly generated, with obstacle
parameters varying according to the limits set in Table 2 for the UAV speed, number, and
size of fixed and moving obstacles, as well the velocity of the latter. The UAV speed and
maneuvering capabilities were based on the Tekever AR4 small fixed-wing model, in which
a maximum turning rate of 45◦/s [36] was assumed.

An example of a resulting collision scenario is plotted in Figure 11, where two moving
obstacles in a collision course with the planned UAV flight path can be observed.

Table 2. Data for the randomly generated collision scenarios.

UAV Speed
Number of

Fixed
Obstacles

Number of
Moving

Obstacles

Obstacle
Radius

Obstacle
Speed

Obstacle
Direction

[5, 15] m/s {0, 1, 2} {0, 1, 2} [0.5, 2] m [5, 15] m/s [0, 90]◦

Figure 11. Randomly generated collision scenario.

4.2. Optimization Technique and Problem Formulation

To determine the optimal sensor configuration, different sensor sets were tested. The
parameters that characterize each sensor model were obtained from their technical manuals
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or inferred from the available data summarized in Table 1. Since our simulations were
restricted to the horizontal plane of motion, the vertical FOV was not relevant.

Given that all sensors may be mounted at an angle β relative to the UAV longitudinal
axis, our model assumed the use of two symmetrical sensors at the angles β and −β
whenever β ̸= 0.

In order to optimize the sensor orientation β, a Sense and Avoidance (S&A) metric
function f (β) was minimized and defined as

f (β) = ∑
j

∑
i

(
−dmin(i) + ϕ1|max(Rs(i)− dmin(i), 0)|2 + ϕ2|max(Rc(i)− dmin(i), 0)|2

)
, (11)

where the first term drives the evasion maneuver to maximize the minimum distance
dmin between the UAV and the obstacle i, the second term represents the penalty when the
minimum distance violates the safety radius Rs(dmin ≤ Rs), and the last term represents the
penalty when the minimum distance violates the obstacle collision radius Rc(dmin ≤ Rc).
The metric accumulates not only for every obstacle i in each scenario, but also for all
scenarios j. In order to penalize collision cases more than close calls, the weights were set
to ϕ1 = 10 and ϕ2 = 50. Notice that the sensor orientation β was kept fixed during the
simulations with the 40 scenarios, and it was only considered variable when determining
the best installation orientation of the sensor attached to the aircraft (Equation (12)).

The deceptive look of the metric function defined in Equation (11), might suggest that
least-squares or quadratic programming methods would be adequate. However, the metric
is far from satisfying the required properties since the terms dmin(i) vary in a highly
non-linear fashion with variable β. Figure 12 shows the metric function value defined in
Equation (11) for two particular sensor sets: (i) using only a pair of laser rangefinders with
a 100 m range that symmetrically pointing forward with an angle β with respect to the UAV
longitudinal axis; and (ii) adding a RADAR with a 120 m range pointing in the direction of
the UAV longitudinal axis. In both cases, the metric function f (β) proved to be multimodal
and noisy.

(a) A pair of laser rangefinders. (b) A pair of laser rangefinders and one RADAR.
Figure 12. S&A metric as a function of laser rangefinder orientation.

These identified metric function properties conditioned the choice of the optimizer.
Gradient-based optimization methods were discarded since they would struggle in the
presence of noise and would become stuck in local minima. Among the vast choice of
gradient-free (or derivative-free) methods available in the literature [37], in particular those
that find near-global solutions for non-convex problems, the Genetic Algorithm (GA) im-
plemented in MATLAB was selected in this work. While there are other newer and better
performing methods, its ease of implementation prevailed when making the choice. Its
higher computational cost is acceptable since its usage occurs in the design stage of the
obstacle detection system, i.e., prior to the installation of the sensors and pre-flight. The
stochastic nature of GA, as it involves crossover (exploitation) and mutation (exploration)
operators over a population of solutions, allows for it to explore a broader solution space
and adapt to the challenges posed by noise and multimodality, as well as allows for it to
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handle the uncertainty introduced by noisy objective functions more effectively. Addi-
tionally, the exploration–exploitation balance in the GA enables it to navigate multimodal
landscapes by maintaining a diverse population and evolving solutions over generations
(iterations).

The problem can be posed as a non-linear-bound-constrained optimization,

minimize f (β)

w.r.t. β

subject to βmin ≤ β ≤ βmax

, (12)

where βmin and βmax are the lower and upper bounds of β, respectively, to be defined for
each particular case. Notice that β is a vector if multiple sensors are used.

The initial GA population was set to be created with a uniform distribution. The
crossover function was set to create 80% of the population in each generation. Moreover,
because the variables were bounded, the mutation function randomly generated directions
that were adaptive with respect to the last successful or unsuccessful generation, where the
chosen direction and step length satisfied the set bounds. The convergence criteria were
set such that the global minimum was found in a timely but accurate manner: a function
convergence of 10−3 was used with 10 stall generations, and a maximum of 50 generations
were prescribed. The population size was set to 30 individuals. These parameters were
chosen following best practices. Larger populations and stricter convergence criteria were
also tested but led to no significant impact on the results presented. The simulations were
run on an 1.4 GHz Intel quad-core i5 with 8 GB 2133 MHz RAM.

4.3. Optimal Sensing Configurations

The following subsections are dedicated to detailing the proposed sensing architec-
tures, in which further explanations of each solution and the respective optimal results
are detailed. In the end, the performance of the different sensor sets are summarized and
compared in order to implement the best solutions.

4.3.1. Two Ultrasonic Sensors

For a set of two ultrasonic sensors, the orientation of each sensor was bounded between
0◦ and 90◦ from the longitudinal axis, and the range was set to 6 m. To simplify the problem,
the two sonars were considered to have a symmetrical orientation, resulting in just one
design variable. A narrow beam pattern was adopted to reduce computational cost.

The GA minimization terminated after 20 iterations due to average changes in the
fitness value being less than the specified tolerance. It performed 592 function evaluations
in 18 h and 36 min, and it reached an optimal orientation of 36.5◦ (see Figure 13).

Figure 13. Optimal orientation for two ultrasonic sensor configurations.

The results, summarized in the second line of Table 3, were far from satisfactory
since the safety radius was breached many times, thus leading to a collision rate of 10 %.
Compared to a single sonar pointing forward (see first line in Table 3), a pair of sonars
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brought little to no gains in the detection performance for the type of UAV under study. This
was expected due to the short range of ultrasonic sensors, which makes it impossible for
the UAV to detect the obstacle, re-plan its trajectory, and perform the avoidance maneuver
in a timely manner.

When considering a UAV traveling at maximum speed (15 m/s), the ultrasonic range
(6 m) was traversed in 0.4 s. In the worst case with an obstacle moving at 15 m/s head on,
the available reaction time of just 0.2 s was clearly insufficient.

4.3.2. Two Laser Rangefinders

Analogous to the previous case, a set of two laser rangefinders with symmetrical
orientations but with a sensing range of 100 m was considered.

After 19 generations, the GA optimization algorithm finished having completed
564 function evaluations in a computing time of 1 h 25 min. The optimal sensor orientation
was 34.4◦, which corresponds well with one of the approximate minimums shown in
the preliminary study, as shown in Figure 12. The optimal two laser rangefinder sensor
configuration is illustrated Figure 14.

Figure 14. Optimal orientation for a two-laser rangefinder configuration.

The performance of this optimal configuration is summarized in the fourth line of
Table 3. Although the optimal configuration only failed once in 40 scenarios, the safety
radius was breached in 23 of them. This result was expected since a UAV equipped only
with two laser rangefinders (with extremely narrow FOVs) is not capable of properly
tracking moving obstacles when collisions are imminent. Also, there were gains when
using more than one laser (see third line of Table 3), which made up for the reduced, almost
zero, individual FOVs.

Compared to the previous case of ultrasonic sensors, these simulations demonstrated
that laser rangefinders not only prevent more collisions, but also more close calls. This is
mainly a consequence of their large detection range advantage (100 m), which prevail over
their almost zero FOV. Overall, these sensors perform better under the given circumstances.

When considering a UAV traveling at 15 m/s, the laser range was traversed in 6.7 s.
If an obstacle was also moving at 15 m/s head on, the available reaction time was 3.3 s, so
it was typically enough to track an obstacle and re-route, provided it was tracked because
of a reduced FOV.

4.3.3. Two RADARs

Once again, the two RADAR sensors were considered to be symmetrical on the UAV
longitudinal axis and the orientation spanned from 0◦ to 90◦. Each RADAR had a range of
50 m, an accuracy of 0.04 m, and a FOV of 43◦.

After 11 generations, the optimizer finished 340 function evaluations and a computing
time of 1 h 11 min. The optimal RADAR orientation was 9.2◦, as illustrated in Figure 15.
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Figure 15. Optimal orientation for a two-RADAR configuration.

Another configuration worth studying would be a sensor orientation that is close
to 21.5◦, which would yield the same result as if the UAV were equipped with a single
RADAR with a double FOV (86◦). Table 3 includes a comparison of a single RADAR
pointing forward and a solution with two RADARs in the seventh to eighth lines.

Regarding actual collisions, obstacles that approach the UAV from an angle are more
likely to be detected by the optimal solution rather than by the single-RADAR configuration.
As can be seen in Table 3, the number of failures increased as the orientation decreased (for
this particular case), which in turn made the success rate decrease.

By overlapping the FOV of the two sensors, the accuracy was reduced through the
data fusion algorithm. Thus, in this case, having a narrower FOV (β = 9.2◦) and, in turn,
the juxtaposition of both RADARs proved to be almost as effective as the double FOV
configuration (β = 21.5◦).

These simulations showed that the accuracy of RADAR proved to be impactful on the
precision of obstacle tracking compared to that of the laser sensors. The latter’s accuracy
can not be reduced through the data fusion algorithm since a laser FOV would not overlap
(0◦). Despite having a broader FOV and resulting in less close calls, the RADAR solution
led to just as many collisions, which means that the two-laser rangefinder configuration
displayed the same success rate. It is reasonable to say that, while RADAR FOVs are
more crucial for detecting obstacles, the sensor’s accuracy is the most significant factor for
effective collision avoidance.

When considering a UAV traveling at 15 m/s, the RADAR range (50 m) was traversed
in 3.3 s. If an obstacle was moving at 15 m/s head on, the available reaction time was
1.7 s, which might be a challenging time to successfully complete an evasion maneuver.
However, the tracking is likely to be more successful given the large FOV.

4.3.4. Two LIDARs

Each LIDAR was modeled with a range of 45 m, an accuracy of 0.1 m, and a variable
FOV. According to hardware specifications (see Table 1), this FOV can range from 20◦ to
320◦; thus, a FOV of 180◦ was chosen. This value ensures a reasonable trade-off between
timely scanning frequency and a broad scope.

However, this makes optimization redundant due to the nature of the scenario gener-
ation algorithm used: because the obstacles spawn inside the limits of the scenario, it is
worthless to track the area behind the UAV in the initial instant. Furthermore, from this
instant on, if an obstacle was positioned behind the UAV, it would have already been
tracked before due to the wide FOV and long range of the LIDAR. The overlapping of the
FOV in the case of a two-LIDAR solution did not prove to be advantageous either. (Note
that this was only verified for a FOV of 180◦). The problem would only arise if a narrow
FOV was set due to measurement speed considerations (see Section 2.3). For a smaller FOV,
it would be convenient to optimize the sensor orientation.

In this particular case, it is fair to state that the most beneficial solution would be to
use a single LIDAR pointing forward since it decreases hardware cost. This configuration
is illustrated in Figure 16.
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Figure 16. Single-LIDAR configuration.

The last line of Table 3 includes the performance of the single-LIDAR configuration.
Compared to the previous types of sensors studied, the LIDAR performed better overall.
The reasonable detection range and the wide FOV reduces the chances of close calls and
eliminates the possibility of failure.

When considering a UAV traveling at 15 m/s, the LIDAR range (45 m) was traversed
in 3 s. If an obstacle is moving at 15 m/s head on, the available reaction time is 1.5 s, so a
similar obstacle detection and avoidance performance to the RADAR is expected.

4.4. Performance Comparison of Sensor Sets

Other solutions that involved three sensors were optimized; for example, two laser
rangefinders that were symmetrical about the UAV longitudinal axis and whose orienta-
tions were bonded between 0◦ and 70◦, and one fixed RADAR pointing forward. This
configuration was also replicated with two lasers and one LIDAR; two RADARs and one
laser; and two RADARs and one LIDAR. The performance of the optimal version of these
sets of sensors, as well as the results from the solutions with only one type of sensor
that are discussed in the previous subsections, is summarized in Table 3. Optimizations
with different sets of sensors were performed but left out of this table in order to avoid
redundancy in the results.

Table 3. Comparison of the optimal performance for the different sensor sets studied.

Sensor Configuration Set Metric f (β) Failure Close Call Success Rate

1 SONAR @ 0◦ 1203.8 4/40 32/40 87.5%
2 SONARs @ 36.5◦ 804.0 4/40 30/40 90.0%
1 laser @ 0◦ 111.1 2/40 28/40 95.0%
2 lasers @ 34.4◦ −414.0 1/40 23/40 97.5%
2 lasers @ 63.4◦ + 1 RADAR @ 0◦ −1240.4 0/40 11/40 100.0%
2 lasers @ 10.0◦ + 1 LIDAR @ 0◦ −1606.4 0/40 8/40 100.0%
1 RADAR @ 0◦ −312.3 4/40 13/40 90.0%
2 RADARs @ 9.2◦ −1171.0 1/40 12/40 97.5%
2 RADARs @ 21.5◦ −1141.7 1/40 12/40 97.5%
2 RADARs @ 35.3◦ + 1 laser @ 0◦ −1480.1 0/40 9/40 100.0%
2 RADARs @ 28.1◦ + 1 LIDAR @ 0◦ −1574.3 0/40 9/40 100.0%
1 LIDAR @ 0◦ −1480.1 0/40 9/40 100.0%

As seen before, for the set of scenarios tested, RADAR performed better than the laser
rangefinder, which, in turn, performed better than the ultrasonic sensor if only one sensor
type was to be used. Nonetheless, this is tightly dependent on the sensor characteristics,
such as range, FOV, and accuracy. Furthermore, a single LIDAR was enough to outperform
all other types of sensors.

As expected, all the solutions that present a 100% success rate include either a RADAR
or a LIDAR in their configuration, thus attesting the importance of sensor range and FOV
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for a timely trigger of the avoidance maneuver. If the LIDAR is kept out, it is the two-
RADAR and one-laser rangefinder solution represented in Figure 17a that produced the
least collisions and led to the least close calls. From these findings, and because of the 0◦

FOV of a laser rangefinder, it is expected that increasing the number of sensors even more
would lead to an even better performance, though at a higher hardware cost.

When comparing the solutions that include a LIDAR, it was proved that it is not
significantly advantageous to pair it with other types of sensors since it already performs
distinctively well on its own. The single-LIDAR solution, as shown in Figure 17d, exhibited
a 100% success rate. This meant that no collisions were registered due to its wide FOV
and considerable range, thus making it able to detect obstacles before they become a threat
without the aid of additional sensors. Regardless, the two-laser (Figure 17b) and the two-
RADAR (Figure 17c) solutions were beneficial for also reducing the likelihood of close
calls. Despite the LIDAR configuration having a wide FOV that was not increased by
either configuration, the chances of breaching the safety radius decreased because the other
sensors provided additional detection capacity, i.e., since the LIDAR swept the designated
area at a certain frequency, there were time instants when a fraction of the area within the
LIDAR FOV was ’unsupervised’. Therefore, it is useful to have another set of sensors that
track obstacles approaching from that specific area.

(a) Two RADARs and one laser rangefinder. (b) Two lasers and one LIDAR.

(c) Two RADARs and one LIDAR. (d) Single LIDAR.
Figure 17. Highest performance optimal sensor configurations.

To summarize, the optimized configuration had a very similar performance in four
different cases (reflected in the Metric column). The most promising one (with the smallest
metric value) was composed of one LIDAR pointing forward complemented by two laser
rangefinders pointing at 10◦ sideways. That was the only configuration that resulted in
only 8 close calls out of 40 maneuvers. The other three configurations, also with which
no collisions registered, resulted in 9 close calls. It is also interesting to note that, in the
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configurations listed in the last three lines of Table 3—despite having the exact values for
failure, close call, and success rate—the metric function value varied. Recalling that not
only does the metric function penalize breaching the safety and collision radii, but also
accounts for the maximization of the minimum distance between the UAV and obstacles
(see Equation (11)), then the lowest metric value of the two-RADAR and one-LIDAR
solution reflected its ability to maintain a greater distance to the surrounding obstacles
among these three configurations.

5. Conclusions

This work presents a comprehensive solution for enhancing the safety of small fixed-
wing UAVs by addressing the critical issue of obstacle detection during flight. A set of
select sensors, namely the ultrasonic sensor, laser rangefinder, LIDAR, and RADAR, were
identified and further employed in modeling collision detection and avoidance simulations
using the Potential Fields method.

To determine the best combination of sensors and their orientations, these simulations
were used in an optimization study. The study revealed that relatively simple detection
configurations can yield a high success rate in collision avoidance. While the ultrasonic
sensor was found to be inadequate due to its limited range, the laser rangefinder benefited
from a long range but had a restricted FOV. On the other hand, both the LIDAR and RADAR
configurations proved to be the most promising options, offering not only a substantial
range, but also a wide FOV. Based on the optimization study, the recommended multi-
sensor configurations consist of a front-facing LIDAR accompanied by either two laser
rangefinders pointing sideways at ±10◦ or two RADARs at ±28◦.

The two most promising solutions included a LIDAR, so it is important to note that
the practical implementation of this type of sensor brings forth a set of challenges that
must be carefully navigated for optimal performance in real-world scenarios. Cost is a
critical factor influencing the feasibility of LIDAR-based obstacle detection systems. While
LIDAR technology has advanced rapidly, the associated costs can be prohibitive, especially
for smaller UAVs with limited budgets, so striking a balance between affordability and
performance is crucial to ensure the widespread adoption of obstacle detection systems.
Also, the compromise between sweep angle and speed is a nuanced consideration in
optimizing collision avoidance systems since a wider sweep angle with faster sweeping
speeds enhances coverage at the expense of possible missed detections, thus limiting the
system’s ability to identify threats.

While the particular solutions found here are strictly valid for the set of UAV flight
performance parameters used, this work provides a generic comprehensive methodology
for determining an optimized multi-sensor system configuration that holds great potential
for enhancing the safety of small fixed-wing UAVs in flight.

Future work is twofold. Firstly, the extension to 3-D problems, both in terms of obstacle
detection and collision avoidance maneuvers, adds an additional degree-of-freedom to the
sensors’ optimal orientation and elevation angle, as well as allows for climb and descent
maneuvers. Lastly, the validation of the proposed multi-sensor system configurations
implies challenging hardware and flight controller software implementations for flight
testing. The collision avoidance method is then meant to run real time on board, and it is
fed by live distance sensor data.
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