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Abstract: After reviewing the use of electrical circuit elements to model dynamic processes or the
operation of devices or equipment, both in real laboratory implementations and through ideal
circuits implemented in simulation software, a network model design protocol is proposed. This
approach, following the basic rules of circuit theory, makes use of controlled generators to implement
any type of nonlinearity contained in the governing equations. Such a protocol constitutes an
interesting educational tool that makes it possible for nonexpert students in mathematics to design
and numerically simulate complex physical processes. Three applications to mechanical and chaotic
problems are presented to illustrate the versatility of the proposed protocol.

Keywords: network simulation method; numerical simulation; electrical analogy; educational tool;
physical process modeling

1. Introduction

The simulation of physical or engineering processes by means of models designed in
the laboratory is a very old resource that allows predicting both the steady state solution
and the time evolution of these systems in a simpler, more economical, and often reliable
way. For the elaboration of these models, based on the mathematical equivalence of the
physical equations of the real process and the equations of the laboratory prototype, dif-
ferent techniques were used, such as the use of membranes (soap film analogy), chemical
solutions (electrolytic tank), graph paper (analog field plotter), construction of electrical
circuits, and reduced models based on scale factors. Thus, and sticking to the subject
of electrical analogy, based on the laws of electric circuits, we should mention the first
attempts to successfully simulate processes governed by Laplace’s equation through the
construction of an electrolytic tank [1], or a century later with the use of graphite paper
(analog field plotter [2]). More recently, Arvinti et al. [3] implemented a laboratory electrical
model to solve the Laplace equation in the whole domain, approaching the solutions using
Lagrange polynomials. During the decades between 1940 and 1970, large analog equip-
ment consisting of resistors and capacitors were developed that allowed the simulation of
heat and mass flow processes both linear, with the ‘heat and mass analyzer’ of Paschkis
and Heisler [4], and nonlinear, by means of the ‘differential analyzer’ of Karplus and
Soroka [5]. After the development of computers, these physical models were replaced
by numerical computational techniques that directly address the solution to governing
equations using a variety of precise methods, such as finite elements, finite differences, and
variational techniques. Table 1 lists the different models developed in historical order with
their applications.
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Table 1. History of laboratory and computer-developed models.

Authors Year Model Problem

Kirchhoff [1] 1845 Electrolytic tank Electrical currents on
conductive surfaces

Paschkis and Heisler [4] 1944 Resistors and capacitors
(laboratory) Heat transfer

Kayan [2] 1945 Graphite paper Heat fluxes

Karplus and Soroka [5] 1959 Resistors and capacitors
(laboratory) Heat and mass transfer

Horno et al. [6] 1990 Network method (Pspice) Transport through
membranes

López-García et al. [7] 1996 Network method (Pspice) Colloidal systems

López-García et al. [8] 1999 Network method (Pspice) Thermodynamic colloidal
systems

Chen et al. [9] 2006 Pspice Heat transfer
Meca et al. [10] 2007 Network method (Pspice) Flow and salt transport

Bég et al. [11] 2009 Network method (Pspice) Magnetohydrodynamic
systems

Serna et al. [12] 2014 Network method (Pspice) Lid cavity problem
Cánovas et al. [13] 2015 Network method (Pspice) Flow and heat transport
Cánovas et al. [14] 2017 Network method (Pspice) Density driven flow

García-Ros et al. [15] 2017 Network method (Pspice) Soil consolidation
systems

Rossi et al. [16] 2018 Network models Semiconductors

Akram et al. [17] 2019 Network models
(LTspice) Thermal heating

Yaqoob and Obed [18] 2019 Semiconductor networks
(Proteus) Photovoltaic

Arvinti et al. [3] 2020 Electrical resistors
(laboratory) Electrostatic

Garratón et al. [19] 2023 Network models (Pspice) Delay differential
equations

Lineykin et al. [20] 2023 Electric analogy Thermoelectric harvest
equipment

Sánchez-Pérez et al. [21] 2023 Network method
(Ngspice) Burgers-Huxley problems

Thanks to the evolution of digital computers, the ideal zero-tolerance electrical models
that replaced the nonzero tolerance models—abandoned in the 1960s—have, in recent
decades, come back into use as a very useful simulation tool [9,16,20]. Nowadays, the
protocol of elaboration of these models and their numerical simulation is called the network
method [7,19,21,22]. We can say that the modeling technique based on electrical analogy
has been recycled so that the real circuits developed in the laboratory are now implemented
by ideal circuits, equivalent to the previous ones, that are numerically solved in the com-
puter by means of a suitable circuit simulation program, such as Pspice [23], Proteus [18],
LTspice [17], and others. The equivalence between these ideal circuits and the physical
processes to be simulated is ensured by the fact that both are formally ruled by the same
governing equations although with different dependent variables. The reliability of the
results, which has been verified by the solution of several benchmark problems [10,13],
is ensured by the powerful computational algorithms implemented in these programs
that allow the quasi-exact solution of the circuit when the only independent variable is
time–ordinary differential equations. Such is the case of the dynamic problems presented
in this work.

Advantages of models based on electrical analogy include (i) the circuits containing
ideal electrical devices (zero manufacturing tolerance) and ideal electric contact between
them, which does not induce errors in the solutions for this reason; (ii) the circuit resolution
programs containing in their libraries a wide range of electrical devices and programming



Modelling 2024, 5 412

sentences, which allows for implementing any type of physical problem in the models,
particularly the so-called controlled generators, which allow for implementing any nonlin-
ear or coupled term that is part of the governing equations; (iii) the computer algorithms
developed in these programs being perhaps the most up-to-date, optimized, and com-
putationally powerful, which results in the reliability of the numerical solutions and the
reduction of computation time [24]; and (iv) the programming rules for preparing the
text files of the models being relatively few and established on the basic theory of electric
circuits, i.e., on the constitutive laws of their elements and on the theorems of uniqueness
of the electric potential and conservation of electric charge (Kirchhoff’s theorems) [22]. In
fact, the researcher only has to worry about the correct design of the network model—or
equivalent circuit—which has to collect the boundary and initial conditions of the problem,
forgetting about the algorithms for numerical computation.

Numerous researchers have used this analogy by applying it to complex problems in
different fields of physics and engineering, as shown in Table 1. Horno et al. [22] apply
it to charge transfer processes in membranes, López-García et al. [7] to the study of the
electric double layer in colloids, Cánovas et al. [14] to the Bénard convection cell problem,
Bég et al. [11] to magneto-hydrodynamics processes, Serna et al. [12] to lid cavity problems,
and García-Ros et al. [15] to the nonlinear consolidation of soils.

The contributions of this work include (i) establishing a protocol for the design of
electrical circuit models (network models) ruled by ordinary differential equations, linear
or not; (ii) adapting the above design to the programming language of the Pspice software,
exploring the use of controlled generators as essential elements for the implementation of
second-order derivative terms and other complex terms of the equation; and (iii) to make
use of the above protocol as an educational tool to make it possible for students who are
not experts in mathematical and/or numerical calculation to simulate the solution of any
kind of ordinary differential equations.

Section 2 illustrates, step by step, the application of the protocol of the network simula-
tion method. The analytical solution to such problems, when it exists, is neither immediate
nor simple. In this section, constitutive laws of the basic passive elements (resistor and
capacitor) and the types of controlled sources or generators are described, explaining also
the use of theorems for the model design. Section 3 includes three applications to dynamic
problems, presenting the network models of each problem, the numerical simulation, the
graphical solutions with Pspice, and other aspects of the physical behavior of the sys-
tem, added or derived from these solutions. Finally, the conclusions are presented in the
last section.

2. Design of the Network Models—The Electrical Components of the Model

The starting point is the mathematical model of the problem, i.e., the governing
equation and the initial conditions. Each term of the governing equation is considered
an electric current that is implemented in the model by means of a single component
that is arranged in parallel—between the main node and the common or mass—with the
components associated with the other terms. All components are connected between the
main node and the common or ground node in such a way the balance of the equation is
ensured by the conservation of the currents converging at the main node (Kirchhoff’s first
theorem, which is valid in quasi-stationary regime) [25]. There are as many components
as there are terms in the differential equation. The equilibrium imposed by the law of
conservation of the free electric charges (inherent in the circuit theory software itself) forces
the potential at the main node (value of the variable sought) to be univocally the one that
satisfies this equilibrium, i.e., the solution to the problem.

Whatever the terms of the governing equation and its complexity, its simulation can be
carried out by means of a network model (electrical circuit) consisting of only a few electrical
components: (i) capacitors and resistors to implement the linear terms; and (ii) constant
or controlled sources to implement the rest of the terms. Table 2 lists the symbols of all
components and their constitutive equations. For resistors and capacitors, the constitutive



Modelling 2024, 5 413

equations or relationships between the electric current (iR) and the potential difference at
their ends (vR) are iR = vR

R and iC = C{ dvC
dt }, respectively. For the correct implementation

of the component in the model, the directions of the electric current and the potential
difference must be consistent with those indicated in the table. In the constitutive equations
of the controlled sources, the output variable (voltage or current, vout or iout) is an arbitrary
function—which is defined by programming—of the input variable (voltage or current, vin
or iin). Constant sources implement constant terms of the equation and time-dependent
sources implement time-dependent terms.

Table 2. Electrical components of network models and their constitutive equations.

Component Symbol Constitutive Equation

Resistor
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iout = f(i in)

There are four types of controlled sources, although the most commonly used are
the voltage-controlled current sources, to implement terms of the equation (linear or not)
that are a function of the dependent variable, and current-controlled current sources to
implement the second- and higher-order derivative terms. For some applications, for
example, when the governing equation contains time-dependent terms, it is necessary to
implement in the model an auxiliary circuit to define the time variable.

2.1. Basic Circuits

Among the most common summands or terms of a differential equation, we first
distinguish the derivative terms. The order of the largest existing derivative classifies the
type of equation: first order, second order, etc. Since the solution sought is going to be the
voltage vI(t) at the main node of the model (node I), the implementation of a capacitor (C1)
in one of the branches of the circuit of that node sets a current of value iC1 = C1(dvI/dt),
which is equivalent to implement the equivalent term of the first derivative (when it
exists). The value of C1 allows us to adjust the coefficient of this term to its particular value
in the equation. Each of the following derivatives is implemented by two components:
a current-controlled voltage generator (Hccvs) and a new capacitor (C). For example,
the second derivative (node II) does with the pair Hccvs,1 and C2. The input of Hccvs,1,
defined by programming in the source specification, is the current iC1 , while the output
voltage (connected to the ends of C2) has the same numerical value as that current, i.e.,
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vHccvs,1 = iC1 = C1

(
dvI
dt

)
. Thus, the current in C2 is iC2 = C2

(
dvHccvs,1

dt

)
= C1C2

{
d2vI/dt2 },

i.e., the second derivative term of the equation. Again, the value of C2 allows for the
adjustment of the coefficient of such a term. The third and successive derivative terms
follow the same rule for their implementation in the model, using the pair C3 − Hccvs,2 to
implement the third derivative, and so on. Figure 1a shows these components within the
network model.
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The independent term of constant value is implemented directly by a constant-current
generator (I) with a sense consistent with the algebraic sign of the term in the equation.
Figure 1b implements a constant-valued term of numerical value equal to that of the gener-
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ator current, iG. A term of the form aox (with x the dependent variable, vI) is implemented,
according to its constitutive equation, by a resistor (R) of value R = 1/ao, as shown in
Figure 1c. The remaining terms are always implemented with a new Hccvs, and as many
as there are summands in the equation. The expression of these terms, sometimes com-
plex, may require auxiliary circuits for implementation. Figure 1d implements a term of
the form boxco . The output current of the generator Hccvs (defined by programming) is
iHccvs = boxco = bovco

I . Other examples are shown in the Section 3.

2.2. Text Files

The model can be entered into the program using the schematics tool included in the
software itself, which uses the standard circuit theory symbols, or through a text file using
a minimal set of writing rules. For resistors, capacitors, and constant sources, it is sufficient
to indicate their name, the nodes of the circuit to which they are connected, and their value,
and for controlled sources, their name, the nodes or element from which they read the
input, the nodes where their output is connected, and the control function that is specified
by programming. Table 3 shows the specification of the text lines corresponding to the
elements listed in Table 2 (Pspice [23]). In the Section 3, the text files of the studied models
are shown and explained.

Table 3. Lines of the text file specifying the electrical components of the network model.

Component

Sentence

Symbol
Connection Nodes

Value
Input Output

Resistor R RI RII Ro
Capacitor C CI CII Co

Constant voltage source v vI vII vo
Constant current source i iI iII io

Voltage-controlled
voltage-source E EI,in EII,in EI,out EII,out vout = f(v in)

Voltage-controlled
current-source G GI,in GII,in GI,out GII,out iout = f(v in)

Current-controlled
voltage-source H HI,in HII,in HI,out HII,out vout = f(i in)

Current-controlled
current-source F FI,in FII,in FI,out FII,out iout = f(i in)

3. Applications and Simulation

Three applications to mechanical and chaotic dynamic processes have been selected that
sufficiently illustrate the application of the protocol of the network simulation method. These
processes contain in their governing equations both linear and nonlinear summands—terms
in the first and second derivative, terms as a function of the dependent variable, rational
exponents, etc.—and can therefore be taken as very representative of any kind of dynamic
process. For each application, the design of the network model is described in detail, showing
its text file to be read and executed in the software. The simulation results obtained with the
graphical output environment of the software itself are also briefly discussed.

3.1. Mass Falling in Air or Viscous Fluid

This simple process, ruled by a differential equation of three addends and nonlinear
because of the existence of the exponent bo in general different from unity, governs the
motion of a mass falling in air or viscous fluid. It is also named the skydiver equation,
as it governs the movement of a parachutist falling towards the earth by the action of
gravitational force but slowed down by air friction with a force dependent on the instan-
taneous velocity. The balance of forces (Newton’s second law) is given by the equation
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∑ f = Weight − ffriction = m d2x
dt2 . With P = mg, and expressing the frictional force in the

form ffriction = γvao = γ
(

dx
dt

)ao
, the balance equation yields

d2x
dt2 +

γ

m

(
dx
dt

)ao

− g = 0, (1)

with m the mass of the parachutist, v its instantaneous velocity, g the acceleration of gravity,
γ and ao constants of the friction force expression, and x the dependent variable position.
The initial conditions are: xt=0 = vt=0 = 0.

The network model, shown in Figure 2, consists of a main circuit (node I) with three
branches corresponding to the three summands of the equation and two auxiliary circuits
(nodes II and III), which implement the first and second derivatives. The solution to the
problem is the main node voltage, x(t) = vI(t). In the first auxiliary circuit, formed by
Evcvs,1 and C1, with C1 = 1, the generator output current is equal to the input voltage,
iEvcvs,1 = vI, so iC1 = C1

dvI
dt = dx

dt . The second auxiliary circuit consists of Hccvs,1 and C2,
with C2 = 1. The output current of this controlled source (iHccvs,1,out = iC2) has the same

value as the current iC1 . Thus, iHccvs,1,out = C2
dvNodeIII

dt = d2x
dt2 .
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Having the first derivatives as currents in C1 and C2, iC1 = dx
dt and iC2 = d2x

dt2 , it is
immediate to implement the branches of the main circuit corresponding to the summands
d2x
dt2 and γ

m

(
dx
dt

)ao
. The first contains generator Fcccs,2, whose input and output have the

same value, iout,Fcccs,2 = iin,Fcccs,2= iC2 = d2x
dt2 . The second contains generator Fcccs,3, whose

input is iin,Fcccs,3 = iC1 = dx
dt , and with output a function of this value defined by programming,

iout,Fcccs,3= γ
m

(
iin,Fcccs,3

)ao
= γ

m

(
dx
dt

)ao
. Finally, the constant term g is implemented with

the constant current generator I1 towards the main node (because of the negative sign),
iout,I1 = g. Figure 2 shows the network model of the problem. The initial conditions of
position and velocity, xini and vini, are applied as initial voltage on capacitors C1 and C2,
vini,C1 = vt=0 = 0, and vini,C2 = xt=0 = 0, respectively. The flow chart in Figure 3 explains the
procedure for creating the network model text file.

The text file of the model is as follows:

*Solution of ordinary differential equations
*Governing equation: m × g − (γ) × (vao ) − m × a = 0.
G1 I 0 VALUE = {m × g}
Gcccs,3 I 0 VALUE = {γ × vao }
Gcccs,2 0 I VALUE = {m × a}
Gvccs,1 II 0 VALUE = {V(I)}
C1 II 0 1
Gcccs,1 III 0 VALUE = {iC1}
C2 III 0 1
Vtime 100 0 PWL(0,0 500,500)
.TRAN 1 s 1.5 s 0 UIC
.END



Modelling 2024, 5 417

Modelling 2024, 5, FOR PEER REVIEW 8 
 

 

with m  the mass of the parachutist, v  its instantaneous velocity, g  the acceleration of 
gravity, γ and a  constants of the friction force expression, and x the dependent varia-
ble position. The initial conditions are: x  =  v  = 0. 

The network model, shown in Figure 2, consists of a main circuit (node I) with three 
branches corresponding to the three summands of the equation and two auxiliary circuits 
(nodes II and III), which implement the first and second derivatives. The solution to the 
problem is the main node voltage, x(t)  =  v (t). In the first auxiliary circuit, formed by E ,  and C , with C =  1, the generator output current is equal to the input voltage, i ,   =  v , so i = C = . The second auxiliary circuit consists of H ,  and C , 
with C =  1. The output current of this controlled source (i , , = i ) has the same 

value as the current i . Thus, i , , =  C  =  .  

Having the first derivatives as currents in C  and C , i =  and i = , it is 
immediate to implement the branches of the main circuit corresponding to the summands 

 and γ . The first contains generator F , , whose input and output have the 

same value, i , ,    = i , ,   = i   =  . The second contains generator F ,  , 
whose input is i , ,  = i  = , and with output a function of this value defined by 

programming, i , ,  = iin,Fcccs,3 =  γ . Finally, the constant term g is imple-
mented with the constant current generator I  towards the main node (because of the 
negative sign), i ,  = g. Figure 2 shows the network model of the problem. The initial 
conditions of position and velocity, x  and v , are applied as initial voltage on capaci-
tors C  and C , v ,  = v    = 0, and v ,  = x    = 0, respectively. The flow chart in 
Figure 3 explains the procedure for creating the network model text file. 

 
Figure 2. Network model of the mass falling in air or viscous fluid. 

 
Figure 3. Flow chart for creating the network model text file. 

The text file of the model is as follows: 

Figure 3. Flow chart for creating the network model text file.

The asterisk implies that this line of text is not executed by the program. In the voltage
source, time is read is vtime, while the sentence ‘.TRANS’ specifies the time interval to
be simulated. The curves in Figure 4, in the Pspice graphical environment, show the
simulation results—position (x), velocity (v) and acceleration (a), as a function of time—for
the parameters g = 9.81, m = 1, xini = 0, γ = 2 and 1.8, ao = 1.5 and 0.6, and vini = 0 and 5.
Note that in both cases, as expected, the location increases monotonically until lineal, and
velocity increases progressively until a steady value is reached and acceleration diminished,
converging to a zero value. Initial conditions determine the starting point of the curves.
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Figure 4. Simulation results of the mass falling in a viscous fluid. (a): g = 9.81, γ = 2, m = 1, ao = 1.5,
xini = vini = 0. (b): g = 9.81, γ = 1.8 m = 1, ao = 0.6, xini = 0, vini = 5.

3.2. Crimped Bead Sliding on a Parabolic Shaped Wire

In Figure 5, by the action of gravity, the ball attached to the wire falls (sliding without
friction) following the parabolic trajectory y = aox2. The balance between the gravitational
force and the normal reaction of the wire (Newton’s law) allows us to write the governing
equation in the following form:(

d2x
dt2

)(
1 + aox2

)
+ aox

(
dx
dt

)2
+ box = 0, (2)

The mathematical model is completed with the initial conditions that we will choose
simply, as xt=0 = 5 and vt=0 = 0. The position y(t) is given by the trajectory equation once
the solution x(t) is obtained.
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Figure 5. Sliding bead strung on a fixed wire.

The network model is shown in Figure 6. The derivative factors
(

dx
dt

)
and

(
d2x
dt2

)
are

implemented with circuits similar to those explained in the previous application, auxiliary
circuits of nodes II and III. The terms

(
d2x
dt2

)
and aox2

(
d2x
dt2

)
are implemented in the main

circuit by the current generators Fcccs,2 and Fcccs,3, the term aox
(

dx
dt

)2
is implemented by

Fcccs,4, and finally, the term box is implemented by a resistor of value R = 1/bo.
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Figure 6. Network model of the bead crimped to the wire.

The text file of the model is as follows:

*Solution of ordinary differential equations

*Governing equation:
(

d2x
dt2

)(
1 + aox2)+ aox

(
dx
dt

)2
+ box = 0

Gcccs,2 I 0 VALUE = { d2x
dt2 }

Gcccs,3 I 0 VALUE = {aox2 d2x
dt2 }

Gcccs,4 I 0 VALUE = {aox
(

dx
dt

)2
}

R 1 0 bo
−1

Gvcvs,1 II 0 VALUE = {V(I)}
C1 II 0 1
Gvccs,1 III 0 VALUE = {iC1}
C2 III 0 1
.TRAN 1 s 50 s 0 UIC
.END

Figure 7 shows the solutions x(t) and v(t) (above figure), and a(t) (below figure), of the
problem for the following values of its parameters: m = 1, b = 2, g = 10, xini = 5, and vini = 0.
Curves show a clear influence of the nonlinear terms of the equation. On the one hand, as
it is an undamped harmonic motion, there is no loss of energy due to friction, so the height
reached by the ball at the ends of the motion is the same and its value is ao(xt=0)

2. Because
of the symmetry of the parabola, the maximum and minimum horizontal positions are also
the same and their absolute value is xt=0. On the other hand, Table 4 shows the influence
of the parameters ao and bo on the maximum velocity (which occurs at x = 0) and on the
oscillation period (τ). While the coefficient bo associated with the elastic restoring force is a
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clear determinant of the maximum velocity, the coefficient ao, which affects the concavity
of the parabola, does not influence this velocity. As for the period of oscillation, it decreases
with increasing bo and increases with increasing ao.
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Table 4. Influence of parameters ao and bo on solutions xmax, ymax, vmax, and τ.

ao 4.00 4.00 4.00 1.00 2.00 3.00
bo 1.00 2.00 3.00 1.00 1.00 1.00

xmax(m) 5.00 5.00 5.00 5.00 5.00 5.00
ymax(m) 100.00 100.00 100.00 25.00 50.00 75.00

vmax(m·s−1) 22.53 31.77 39.00 22.53 22.53 22.53
τ (s) 8.15 6.48 5.28 4.76 6.57 7.96

3.3. The van der Pol Oscillator

The mathematical model of this nonlinear oscillator [26] is

d2x
dt2 − x2

(
dx
dt

)
+ x + 1 = 0, (3)

with the initial conditions vt=0 = vo and xt=0 = xo, respectively. The network model,
shown in Figure 8, which retains the auxiliary circuits of the first application (to implement
the current d2x

dt2 ) and of the second (to implement the voltage dx
dt ), has four branches in its

main circuit (node I). The first one implements the term d2x
dt2 through the controlled source

Fcccs. The second branch, which implement the term x2( dx
dt ) through the controlled source

Hccvs,2, is controlled by the voltages vI = x and vIII =
dx
dt , according to the mathematical

expression of the term. The summand x is implemented directly by a resistor (R3) of unity
value, while the independent term is implemented by the constant current generator Io,
whose output is iio = 1.
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The solutions for position, velocity, and acceleration evolution over time and the po-
sition versus velocity phase diagram are shown in Figure 9. For the initial conditions im-
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The solutions for position, velocity, and acceleration evolution over time and the
position versus velocity phase diagram are shown in Figure 9. For the initial conditions
imposed, the motion of this oscillator converges over time to a point where both velocity
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4. Discussions and Conclusions

The numerical solution of differential equations is not currently a problem for students
or researchers thanks to the existence of specific software capable of reliably solving any
type of equation, linear or nonlinear. However, the application of this software does
not allow the user to deepen complementary aspects of knowledge such as the physical
meaning of each term of the equation and its direct effect on the solution. The network
models based on the electrical analogy proposed in this work, and the necessary association
between physical and electrical variables that such an analogy entails for the elaboration of
the model, allows the user to delve into and better understand the phenomenological and
physical aspects involved in the governing equation. For this reason, the protocol proposed
to design the network model can be considered a powerful educational tool, as it allows
students unfamiliar with numerical or differential calculus techniques to easily access the
solution and understand the physical processes once the numerical simulation has been
carried out.

The design of network models (electrical circuits) has proven to be a useful and accu-
rate tool for simulating a wide range of dynamic processes. The design protocol presented
in this work, based on the elementary rules of circuit theory and the constitutive equations
of its basic components, includes the incorporation of so-called controlled current or voltage
generators. These are capable of implementing in the model any type of summands of the
governing equation, such as nonlinear second-order derivative terms, terms that depend on
time or on the main variable, etc. Each term of the equation is assumed as an electric current
that balances at a common node with the currents of the other terms. The fulfillment of
such balancing imposes a unique instantaneous value on the voltage at that node, a value
that is the solution to the problem.

The numerical solution is carried out by standard circuit simulation software, such
as Pspice. There are two main advantages in the use of electric models: (i) few rules are
needed for the design, as the elements that compose the model are very few (resistors,
capacitors, and constant or controlled sources); and (ii) the use of powerful computer
algorithms contained in these programs, meaning the numerical computation provides a
quasi-exact solution to the network model. In addition, the graphical output environment
of these programs offers the user an immediate representation of the solutions from which
the temporal evolution of the variables, phase diagrams, spectral representation of the
harmonic responses, etc., can be selected.

The applications of the proposed protocol to two problems of nonlinear dynamics and
one of chaotic motion illustrate the advantages mentioned in the previous paragraph. In
all three cases, it is immediate to infer first the dependence of the unknowns of interest,
position, velocity, and acceleration on the parameters of the equation, and second, the
convergence or not of these unknowns to a stationary final position.
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Nomenclature

a acceleration (m2/s)
ao, bo . . . constants
C capacitor
I constant current generator
Evcvs voltage controlled voltage source
Gvccs voltage controlled current source
Hccvs current controlled voltage source
Fcccs current controlled current source
f force (Newtons)
g gravitational acceleration (m2/s)
iC current through a capacitor
iG out current of a constant current generator (G)
iin input current of a current controlled source
iout output current of a controlled current source
iR current through a resistor
m masa (Kg)
P weight (Newtons)
R resistor
t time (s)
v velocity (m/s)
vo constant, initial velocity (m/s)
vC voltage at the ends of a capacitor
vin input voltage of a voltage-controlled source
vR voltage at the ends of a resistor
vout voltage at the output of a controlled voltage source
vI(t) solution to the equation (voltage at node I)
x, y spatial coordinates (m)
xo constant, initial location (m)
γ constant
τ period (s)
Subscripts
ini refers to initial values
max refers to maximum values
time refers to time-dependent sources
I, II. . . nodes of the network model (I: main node)
1, 2, 3 defines each component of the same type in the network
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