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Abstract: Adenomyosis (ADM) is a multifaceted uterine pathology characterized by the ectopic
infiltration of endometrial tissue into the myometrium, affecting approximately 20% of women
in the reproductive age group seeking gynecological care. This condition manifests as a range of
debilitating symptoms, including dysmenorrhea, menorrhagia, impaired fertility, and heightened
susceptibility to miscarriage and obstetric complications. Substantial research has been dedicated
to exploring its underlying molecular mechanisms and developing non-invasive precision medical
therapies. ADM is primarily characterized by a dysregulation in sex steroid hormone homeostasis,
particularly estrogen and progesterone. However, emerging evidence suggests that additional
endocrine mediators and disruptors may play contributory roles in the etiology of ADM. Genetic
and epigenetic alterations of endocrine signaling pathways have been implicated as prevailing
mechanisms underlying the development and progression of the disease. The present review
aims to provide an updated and comprehensive overview of the current understanding of the
pathophysiology of ADM, with a particular emphasis on the dysregulated hormonal milieu
and the potential involvement of endocrine disruptors. By elucidating these intricate molecular
mechanisms, this review seeks to pave the way for novel research directions in the development
of targeted therapeutic strategies for ADM management.
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1. Introduction

Adenomyosis (ADM) is a benign, chronic, hormonal, and inflammatory uterine dis-
order, affecting between 8.8% and 61.5% of patients undergoing hysterectomy for diverse
medical indications. This important variability is primarily attributed to the absence of
consensus on histopathological diagnostic criteria. Image screening, potentially superior
for pre-menopausal women compared to hysterectomy, lacks standardized diagnostic
criteria. The prevalence of ADM also varies widely among subgroups of women with
concurrent uterine-related conditions, including leiomyomas, prolapse, abnormal uterine
bleeding, infertility, and endometriosis [1]. The most common clinical manifestations are
bleeding, dysmenorrhea, chronic pelvic pain, and infertility [2]. ADM increases the risk of
miscarriage and obstetric complications, but the underlying biological mechanisms remain
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unclear [3]. Historically categorized as “endometriosis interna”, ADM shares similarities
with endometriosis in terms of the ectopic presence of functional endometrial-like tissue.
However, the diseases differ in clinical profiles since endometriosis is often identified in
nulligravid, younger women during infertility investigations, while ADM is prevalent in
parous, relatively older women [4,5].

The ruling histological definition of ADM was given in 1972 by Bird, stating “Adeno-
myosis may be defined as the benign invasion of endometrium into the myometrium, producing a
diffusely enlarged uterus which microscopically exhibits ectopic non-neoplastic, endometrial glands
and stroma surrounded by the hypertrophic and hyperplastic myometrium” [6]. However, ADM
diagnosis by medical imaging remains a challenge. Because recent evidence revealed that
ADM also impacts younger women, uterus-sparing diagnostic methods are needed [7].
Transvaginal ultrasound and magnetic resonance imaging (MRI) have emerged as equally
effective noninvasive diagnostic alternatives [8]. ADM can hence be divided into focal,
diffuse, or rarely cystic adenomyoma, depending on the distribution of the lesion pattern
within the myometrium [9–11]. Further genetic studies are needed in order to define a
molecular signature of ADM in endometrium and blood-based biomarkers. All things
considered, there is potential for better diagnosis, or even prediction, of ADM [12].

While a consensus regarding the classification of ADM is yet to be reached, the
classification proposed by Kishi et al. in 2012 has gained recognition and can aid in
distinguishing various origins of the lesions. This classification system delineates four
distinct subtypes. Subtype I, referred to as intrinsic ADM, originates from the inner layer
of the uterus without impacting the outer structures. Subtype II, known as extrinsic
ADM, arises from the outer layer of the uterus, leaving the inner structures unaffected.
Subtype III, termed intramural ADM, exists independently and lacks direct continuity with
structural components. Lastly, subtype IV represents an indeterminate type, requiring
further investigation to determine its specific characteristics [13]. Unfortunately, this
classification is not associated with typical clinical symptoms; therefore, it does not help in
choice of treatment [14].

Despite the widespread occurrence and adverse effects on quality of life of ADM, the
absence of management guidelines or standardized treatments for this condition is likely
attributable to an insufficient understanding of its pathophysiology and etiology [15].

The present manuscript aims to elucidate the underlying mechanisms governing the
development of ADM with a focus on the role of hormones to enhance our understanding
of the endocrine aspects of the disease and potential therapeutic opportunities. We will
discuss the different theories and mechanisms with an insight into the endocrine mediators.
Specifically, the influence of hormones, as well as external endocrine disruptors, on ADM
will be considered. Additionally, we will address the potential hormonal role behind
infertility associated with ADM. Finally, this review will discuss the traditional, as well as
the emerging, hormonal therapies and other medical options for managing ADM.

2. Pathogenesis

In the past 15 years, an expanding body of research suggests a potential shared origin
between ADM and endometriosis. Recently, Leyendecker and colleagues introduced that
both conditions originate from the “archimetra”, which constitutes the endometrial–sub-
endometrial unit. Their theory suggests that the two illnesses are essentially the same and
proposes a new term, “archimetrosis”. Similar preventive measures could be explored,
such as early intervention to suppress hypercontractility shortly after menarche onset.
However, it is essential to note that several distinctions exist between these two conditions,
particularly concerning their triggers. As with all advancing theories, this one requires
further substantiating evidence [5,16].

Even though theories have emerged to clarify the mechanisms driving ADM devel-
opment, none of them have been accepted yet. The three theories proposed are (a) the
invagination of basalis endometrial cells in the myometrium caused by the activation of
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tissue injury and repair (TIAR) mechanism, (b) metaplasia from Mullerian rests, and (c)
retrograde menstruation of adult stem cells [17].

2.1. Theory of Invagination of Endometrial Basalis in the Myometrium

Regarding the etiology of ADM, the prevailing hypothesis suggests that the endome-
trial myometrial junction zone (JZ), susceptible to steroid hormonal influences, undergoes
trauma from myometrial contractions. As a result, the disjunction of this ”barrier” allows
the endometrial basalis cells to enter the myometrium [17]. Supporting the myometrium’s
participation in pathogenesis is the presence of myometrial cell nests embedded within the
endometrium in a model of induced ADM [18]. That said, the reason for their presence
is vague. Therefore, two major assumptions are made to explain the origin of the vicious
cycle present in ADM [19,20].

The first theory relies on the mechanism of tissue injury and repair (TIAR). It posits
that repeated chronic hyperperistalsis of the uterus under the influence of estrogen induces
trauma and activates this system in return [5,16]. This biomechanical stress leads to the
localized release of additional estrogen. Evidence shows that, due to the injury at the JZ,
inflammatory cascade reactions will lead to the elevation of interleukin 1B (IL-1B). This
local elevation in IL-1B subsequently triggers the production of prostaglandin E2 (PGE2)
by cyclooxygenase-2 (COX-2). Then, an increase in P450 aromatase levels leads to upregu-
lation of the steroidogenic acute regulatory protein. This in turn activates estradiol (E2) to
increase the expression of estrogen receptor (ER) beta isoform (ERβ). Hyperestrogenism
from aberrant levels of ER-b is hypothesized to initiate the growth of adenomyotic le-
sions [21]. This can spur a vicious circle: estrogen-mediated contractions > auto-traumatization
> wound-healing > inflammation > more local estrogen production [20,22]. The tissue repair
mechanisms also involve macrophages, platelets, and their secreted cytokines, leading to
chronic inflammation at the JZ and facilitating endometrial attachment, as well as infiltration.
This theory elegantly elucidates the fibroblast-to-myofibroblast trans-differentiation and the
recruitment of heterogenous cells with ADM-specific signatures, contributing to local changes
in the extracellular matrix [23].

The second theory, endometrial–myometrial interface disruption (EMID), states that
the injury can be iatrogenic because of mechanical or thermal stress. These disruptions
may be induced surgically, for example. In 2020, the EMID theory was demonstrated in
mice [24]. Various mechanisms are theorized to be at play, including hypoxia, epithelial–
mesenchymal transition (EMT), the recruitment of bone-marrow-derived stem cells, and
increased survival of endometrial cells that have been dispersed and displaced due to
iatrogenic procedures. At the molecular level, on one hand, activated platelets induce the
expression of hypoxia-inducible factor-1 (HIF1), potentially influenced by transforming
growth factor-beta (TGF-β) signaling. On the other hand, tissue damage increases substance
P levels, triggering the hypothalamic–pituitary–adrenal axis to release adrenaline and
noradrenaline, subsequently leading to a reduction in cell-mediated immunity [25]. A link
between the TIAR and EMID theories offers a possible explanation for epidemiological
observations. Indeed, these theories suggest that multiparity and uterine surgeries such
as curettages or caesarian sections may be risk factors for ADM due to their potential to
disrupt the integrity of the JZ [26]. Numerous factors, such as inflammation, heightened
nociceptive sensitivity, biomechanical strain, chemical exposure, neurogenic distress, pain
awareness, and oxidative stress, possess the capacity to trigger this tissue response [27,28].
Repeated tissue trauma interrupts the sectarian vascularization, leading to hypoxia and
therefore platelet aggregation, increased estrogen production, induction of angiogenic
factors, and overexpression of COX2 and PGE2. This all intensifies the stress, resulting in
the invagination process described hereinabove [29].

2.2. De Novo Development Theories

The EMID theory claims that adenomyotic lesions arise de novo, autonomously
from metaplasia of misplaced embryonic pluripotent Müllerian remnants in the my-
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ometrium [30]. These ducts, composed of surface epithelium and urogenital mesenchyme,
can potentially develop into endometrial glands and stroma. Within adult myometrial
tissue, residual cells have the capacity to undergo metaplastic changes, giving rise to new
ectopic endometrial tissue [31,32].

The last theory, the retrograde hypothesis, is based on the transformation of multipotent
adult stem cells in the myometrium. It is thought that these stem cells settle in the endometrial
basalis, within niches, ensuring cell regeneration in healthy endometrium [33–35]. However,
they can also promote unregulated proliferation that can extend beyond the endometrium
into the myometrium [36]. Adult stem cells may (a) be deposited in the uterus after
retrograde menstruation and differentiate into endometrial glands and stroma or (b) be
activated by tissue injury altering the niche and permitting their differentiating progeny to
move toward the myometrium rather than toward the endometrial functionalis resulting in
focal ADM [17,34,37]. Also known as the “outside to inside invasion” theory, this notion is
strongly supported by the established association between posterior focal ADM (extrinsic)
and deep infiltrating endometriosis nodules in the posterior compartment [11,38].

Based on recent evidence, these de novo theories account more for the external subtype
of ADM. A recent article showed that the immunohistological pattern of Ber-EP4-stained
glands and CD10-stained stromal cells of extrinsic ADM is like that of coexistent DIE
lesions. In contrast, the pattern of the gland and stromal cells resembled the endometrium
in the cases with intrinsic ADM. In addition to these theories, the possibility that extrinsic
ADM may also arise directly from coexistent DIE warrants further study [39].

3. Endocrine Pathogenic Mediators and Molecular Mechanisms

ADM involves a multitude of mechanisms, and this review focuses on elucidating the
endocrine aspects of the disease in the pursuit of identifying potential therapeutic opportu-
nities. The other mechanisms, including dysregulation of cell proliferation, resistance to
apoptosis, inflammatory responses, neurogenesis, angiogenesis, and fibrosis, have been
recently examined in separate reviews [25,37]. In this section, we examine (1) intrinsic
endocrine factors, including steroid imbalances, pituitary influences, genetic and epige-
netic contributions, and (2) environmental implications, in particular, the role of endocrine
disruptors (Figure 1).

3.1. Intrinsic Hormonal Dysregulation
3.1.1. The Imbalance of Sex Steroid Hormones

Pronounced estrogen dependency is a unique characteristic of the disease and is cen-
tral to its development. Indeed, the lesions develop in a hyperestrogenic environment,
exhibit distinct patterns of ERs, and manifest signs of localized estrogenic effects, namely
an estrogen-responsive uterine contractility. It has been three decades since elevated E2
levels were observed in the menstrual blood of a limited cohort of ADM patients, showing
notably higher concentrations compared to patients with endometriosis [40]. Interestingly,
increased E2 was limited to the lesions, while circulating levels were unaffected. Conse-
quently, the localized estrogen synthesis in ectopic endometrial cells has been attributed to
high estrone (E1) sulfatase levels, which activates circulating sulfated steroids and local
activity of aromatase, an enzyme that converts androgens into estrogens [41]. In the context
of ADM, sulfatases and sulfotransferases also contribute to the activation of steroids, partic-
ularly in the modulation of estrogen levels. Sulfatases, such as estrone sulfatase, play a role
in local estrogen synthesis in ectopic endometrial cells by activating circulating sulfated
steroids. Additionally, sulfotransferases are involved in the conjugation of sulfate groups
onto steroids, affecting their bioavailability and enhancing their activity [42,43]. This ex-
planation was further supported by a specific polymorphism of aromatase cytochrome
P450 found in the eutopic endometrium of ADM [44,45]. The role of aromatase in ADM
remains a topic of debate, with another group failing to identify a significant contribu-
tion of aromatase in endometriosis [46]. Most recently, however, clinical evidence has
demonstrated the effectiveness of low-dose aromatase inhibitors in improving symptoms
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of ADM, such as menorrhagia, hemoglobin levels, and lesion size [47]. Using a recent
transgenic murine model, Heinosalo et al. demonstrated that overexpression of the human
estrogen biosynthetic enzyme hydroxysteroid, 17-beta-hydroxysteroid dehydrogenase type
1 (17β-HSD1), catalyzing the last step in estrogen activation, leads to the development of an
ADM-like phenotype [48]. Conversely, the activity of 17β-HSD2, which deactivates E2 to
E1, is downregulated in their eutopic and ectopic endometrium [17,49]. Two components
are hypothesized to be responsible for the hyperestrogenic status observed in patients with
ADM. An increased local aromatization process and a decreased local estrogen metabolism
within both the eutopic and ectopic endometrium are thought to give rise to this occurrence.
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Effects of High Estrogen Concentration

The local increase in estrogen concentration with normal peripheral E2 levels may
cause hyperperistalsis of the uterus [50]. These specific steroids seem to create a paracrine
effect, presumably mediated by the endometrial oxytocin (OT) signaling. This estrogen
dominance is considered the “primum movens” in the chain of key events [37].

Hypersensitivity to Estrogen

The higher risk of developing ADM is associated with hypersensitivity to estrogen via
specific polymorphism and relatively increased expression of ERα. A decreased expression
of progesterone receptor isoform B (PR-B) is also understood to intensify the risk of develop-
ing ADM. Concerning the cognate receptors, ERα (NR3A1) and ERβ (NR3A2), membrane
ERα and β, and G protein-coupled ER (GPER) were expressed significantly more in ADM
than in normal myometrium. These findings are the same as those in endometriosis. The
ERα isoform plays dominant roles in uterine development and estrogen sensitivity during
the early proliferative phase and differential subtype expression in later phases [51,52].
Accordingly, ERα mediates the E2-induced uterine epithelial cell proliferation of human
endometrial cells [53]. Given the central role of this isoform, an in vivo study discovered
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specific PvuII restriction fragment-length polymorphisms (PP, Pp, pp genotypes) of the ERα
gene in ADM patients. The findings suggested a protective characteristic of the P allele, as
well as how the local estrogenic effect is more potent with the P allele than with the p allele.
Even if it is still unclear how the ERα gene polymorphisms influence its protein function,
the authors suggested a possible explanation by a modulation of the ligand estrogen [54].
The ERβ isoform was described as upregulated in adenomyotic lesions and was proposed
to be responsible for inflammation in ADM [55]. In regard to the GPER receptor, it enhances
contractile responses to OT in the myometrium, seemingly supporting the TIAR theory in
ADM [55,56].

Progesterone Resistance

Also proposed is the notion that progesterone resistance may contribute to the hor-
monal imbalance theory in ADM, as with endometriosis [57]. With this in mind, the
proliferative effect driven by hyperestrogenism is not enough when counteracted by pro-
gesterone during the secretory phase of the cycle. As a result, hyperproliferation of the
endometrium is promoted [58].

The predominance of ERβ over ERα leads to the suppression of PR-B expression
and thus the development of progesterone resistance. PR-B and PR-A, two isoforms
of the nuclear receptor PR, have dynamic cellular localization, influencing the effect of
progesterone. PR-B can promote uterine epithelial cell proliferation but only when not
repressed by PR-A. In ADM, PR-B was reportedly suppressed by DNA hypermethylation.
Conversely to endometriosis, however, a recent study did not find decreased expression
of progesterone membrane receptors in ADM, suggesting molecular differences between
ADM and endometriosis [55].

Summary on Sex Steroid Dysregulation

In short, the highly localized concentrations of estrogen combined with altered ex-
pression of steroid receptors are central mechanisms leading to ADM (Figure 2). The
local conversion of androgens and estrone sulfate into estradiol is catalyzed by increased
activity of CYP19A1, STS (steroid sulfatase), and 17βHSD1 enzymes. Additionally, an
altered expression pattern of steroid receptors (Erβ >> Erα > PRA > PRB) contributes to
ERβ hyperactivation and progesterone resistance. These characteristics lead to reduced
decidualization, increased proliferation of endometrial and myometrial smooth muscle
cells, and endometrial angiogenesis. Together, these are key elements in the onset and
progression of ADM lesions [17].

3.1.2. The Pituitary Gland Influence
Prolactin

Several in vivo studies identified the role of prolactin (PRL) in ADM. In 1981, an ectopic
anterior pituitary gland transplantation into the uterine lumen was sufficient in inducing
ADM in mice. Circulating levels of PRL were consistently higher in pituitary isograft
mice than in control mice with submaxillary gland grafts. This emphasizes the significant
role of PRL in synergy with ovarian steroid hormones. Indeed, steroid supplements
were necessary in pituitary grafts of ovariectomized mice to induce ADM [59]. Similar
results were obtained after the administration of PRL or dopamine antagonists, inducing
hyperprolactinemia. Moreover, induced ADM mice exhibited a significant upregulation
of the messenger ribonucleic acid (mRNA) coding for PRL receptors [59,60]. These early
findings were confirmed when observed in spontaneously occurring bovine ADM, where
the levels of PRL and its receptors were found to be abnormally high during necropsies.
When cells were isolated in vitro, E2 decreased the expression levels of PRL receptors
in non-adenomyotic stromal cells and adenomyotic myometrial cells while increasing
the secretion of PRL in adenomyotic myometrial cells [61]. In a murine model of ADM
exposed to a potent suppressor of pituitary prolactin secretion, the treatment resulted in
the absence of adenomyosis in all 39 experimental mice at 12 months of age, while 46.9% of
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32 control mice developed the condition. These findings indicate a potential protective role
of dopamine agonists within the context of ADM [61,62]. Validating this preclinical data,
serum PRL is reported to be higher in patients with ADM than controls. A correlation was
even suggested between the rise of PRL levels as an adverse effect of serotonin reuptake
inhibiting antidepressants and the development of ADM [63]. The hyperprolactinemic state
leads to the invasion of endometrial stromal cells and then glands into the myometrium.
This coincides with the overall loosening and disruption of the myometrial layer and the
disintegration of individual muscle cells [64]. Moreover, PRL enhances E2 actions in the
uterus and stimulates ER expression in the endometrium. This initiates a vicious cycle
within the ADM myometrial cells [61]. If not a sufficient explanation for the whole process
by itself, the surgical act of grafting mice may cause mechanical disruption, aiding the
invasion of endometrial tissue [65]. The intravaginal administration of bromocriptine, a
dopamine agonist reducing PRL level, proved significant in decreasing menstrual bleeding
and pain [66].
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Oxytocin

Through estrogen-mediated contractions in the inner myometrium, OT is suspected
to intervene in the microtrauma of the JZ event. It provokes hyperperistalsis of the my-
ometrium via the cognate OT receptor (OTR), resulting in the TIAR effect. OTRs are
expressed both in normal endometrium and myometrium, but their expression fluctuates
with the cycle phase [67]. However, high non-cyclic expression was observed in a histologi-
cal biopsy from ADM patients [68]. OTR expression at the JZ is higher in the fundal region
of ADM uteri compared to control during the proliferative phase. Moreover, expression of
the OTR was lower in the isthmic region than in the fundus region of ADM uteri during the
proliferative phase, which is the opposite of control uteri. The dysperistalsis event can be
explained by the overexpression of the fundal myometrial OTR in pathological uteri. The
opposite expression pattern between fundus and isthmus may even interfere with fertility
and the sperm track by disturbing the direction of the JZ contractions [69]. Furthermore,
relative overexpression of the OTR in the myometrial cells of ADM patients combined
with high-amplitude muscle cell contractility was positively correlated with the severity of
dysmenorrhea in patients with ADM. Thus, treatments known to reduce OTR expression,
like deacetylase inhibitors and andrographolides, hold potential in treating ADM [70].

Insulin-like Growth Factor 1

Insulin-like growth factor 1 (IGF1) is a multifaceted factor that plays a pivotal role
in regulating growth and development. In the uterus, IGF1 is essential for adequate
decidualization of the endometrium and directly affects fertility. Significant hormonal
crosstalk exists between estrogen and IGF1. E2 enhances IGF1 synthesis and IGF1 poten-
tiates the effects of estrogen [71]. In the endometrium, IGF1 expression and secretion
are prominent in stromal cells, while IGF1 receptors are expressed in epithelial cells.
In patients with ADM, the expression of IGF1 receptors is significantly elevated, con-
tributing to the aberrant growth of endometrial tissue within the uterine wall [72]. IGF1
may exacerbate inflammation and fibrosis. Furthermore, the interplay between IGF1
and estrogen could further promote lesion formation. These findings warrant greater
research to fully elucidate the precise mechanisms by which IGF1 contributes to the
development and progression of ADM.

3.1.3. Genetics and Epigenetics Alteration of Endocrine Signaling

Genetic variants influence enzyme activity and increase the risk of estrogen depen-
dency in ADM. In particular, cytochrome P450 (CYP) and catechol-O-methyltransferase
(COMT) gene variants are involved [73]. When comparing ADM to disease-free patients,
a recent study found an increased frequency of the C allele in T/C and C/C genotypes of
the CYP1A1 gene (CYP1A1 M1 polymorphism), the A allele in C/A and A/A genotypes
of the CYP1A2 gene (CYP1A2*1F polymorphism), and the T allele in C/T and C/C geno-
types of the CYP19 gene (Arg264Cys polymorphism). The study also found a decreased
frequency of the mutant allele and heterozygous and mutant homozygous genotype
of the CYP1A2 gene in ADM patients. These results suggest that ADM is triggered by
the active hormones and their metabolites’ higher concentration due to enzymes under
these polymorphisms’ influence [73].

Another presumption is that the KRAS gene mutation is part of the genetic predisposi-
tion to ADM. Among micro-dissected eutopic samples, KRAS mutations were observed in
55.6% of those with ADM, 50% of those with endometriosis, and only 29.1% of the disease-
free cohort [74]. KRAS-activating mutations stimulate signaling pathways to enhance cell
survival and proliferation and are associated with progesterone resistance in ADM [75]. Re-
cent findings support genetics as a driver in the pathogenesis of ADM through alterations
in gene functions, governing not only the steroid function but also the extracellular cell
matrix dysregulation, angiogenesis, TIAR mechanism, and inflammatory mediators. This
was thoroughly reviewed by Zhai et al. and will not be detailed in the present review [17].
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Evidence also reports several types of epigenetic alterations in ADM. In relation to the
deoxyribonucleic acid, increased expression of deoxyribonucleic acid methyltransferases
DNMT1 and DNMT3B were found in the ectopic endometrium of ADM patients [76].
These enzymes catalyze the transfer of a methyl group to DNA for gene silencing [76,77].
Therefore, they are a candidate for explaining the hypermethylated status of the PR gene
observed in ADM and its progesterone resistance [78]. Histone epigenetic modification
is a second potential mechanism of the disease. Aberrant expression and localization of
class I histone deacetylases (HDACs) was demonstrated in the endometrium, and the
immunoreactivity of HDAC1 and HDAC3 was elevated in the adenomyotic endometrium
(both ectopic and eutopic) [79]. Hence, the use of valproic acid, a well-known HDAC
inhibitor, has been proposed as an effective treatment in refractory disease based on murine
observations [80]. In patients with ADM, alterations in epigenetic modifications were
detected in RNA molecules. A decrease in RNA methyl regulators and, specifically, lower
levels of N6-methyladenosine was observed in the pathological endometrium compared
to controls. This contributes to an increase in the expression of various factors, including
IGF1 [81]. Finally, the expression of regulatory microRNAs was dysregulated in the eutopic
endometrium of ADM patients, including namely members of the miRNA-200 family
pivotal in EMT, and Let-7 involved in cell cycle control. The detailed discussion of those
examples can be found in the review by Khan et al. and will not be included here [26].
Although there is continuing evidence from several studies that support the involvement
of the epigenetic system in ADM, additional research is needed to conclusively pinpoint
epigenetic aberrations as a mechanism of disease upgrowth.

3.2. Extrinsic Factors
3.2.1. Medical Therapies

A possible correlation between the use of hormonal contraceptives and the occurrence
of ADM has been considered, but a consensus has not been reached yet. Templeman et al.
proposed a positive association between past hormonal contraceptive use and ADM onset,
yet ambiguity persists regarding whether subjects primarily employed contraception for
birth control or symptom management [82]. It is plausible that the use of the hormonal
contraceptive was preferred by the patients already experiencing ADM, rather than the con-
traceptives being a risk factor for the development of the condition. Conversely, Parazzini
et al. could not establish significant association between ADM and a history of hormonal
contraceptive use [83,84]. While heightened exposure to exogenous estrogen through
hormonal contraceptives may contribute to the development of lesions, such exposure
could lead to a reduction in endogenous estrogen production, thereby lowering the risk
of ADM [1]. Continued research is necessary to clarify the specific relationship between
hormonal contraceptive use and ADM, considering the various reasons for contraceptive
use among individuals.

Tamoxifen (TAM) is the prototypical selective ER modulator (SERM), a class of non-
steroidal drugs exhibiting agonist and/or antagonist effects given the target tissue. TAM
displays anti-estrogenic effects in breast tissue and pro-estrogenic activity in uterine tissue.
Due to its demonstrated impact on endometrial tissue, the use of TAM has been identified
as a risk factor for ADM [1]. Clinical findings showed that women undergoing treatment
for breast cancer with involving TAM are at a higher likelihood of developing ADM than
control patients (53% compared to 18%) [85]. Mice studies complemented the human
data by revealing an association between TAM exposure and ADM development and
progression as mice aged. Interestingly, the study uncovered significant contributions of
platelets in the development of TAM-induced lesions, affirming their involvement in the
disease and indicating that TAM induces ADM through the TIAR mechanism [86,87].

3.2.2. Endocrine Disrupting Chemicals

Endocrine disrupting chemicals (EDCs) are exogenous compounds that interfere with
the endocrine functions, potentially affecting health and promotion of disease [88]. EDCs
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can be divided into persistent and non-persistent organic pollutants (POPs, nonPOPs),
based on their lipid solubility [89]. Both groups are lipophilic, but nonPOPs have a lower
lipid solubility, resulting in a short half-life in humans. On the other hand, POPs are not
readily biodegradable. Their bioaccumulation in the adipose tissue and slow release in
the bloodstream account for the long-term effects [90]. Unfortunately, industrialization
has made exposure to EDCs inevitable, either through packaged consumer products or
contaminated foods. Since the end of 20th century, warnings have been issued against
the harmful effects of EDCs, prompting the ban of polychlorinated biphenyls (PCBs),
dichloro-diphenyl-trichloroethane (DDT), and diethylstilbestrol (DES) [91].

Animal studies conclusively demonstrated that EDCs are sufficient to induce ADM
or endometriosis. Specifically for ADM, murine studies contributed to the understanding
of the role and toxicity of EDCs [18,92,93]. The significant clinical coexistence of both
conditions within a patient strongly supports a high probability of a causal relationship
between EDC exposure and the initiation of endometrium-related diseases [90]. The
probable association of early life exposure to EDCs with ADM offers valuable insights for
therapeutic approaches and essentially its prevention [94].

Persistent Organic Pollutants

POPs are a group of synthetic chemicals resistant to environmental degradation, such
as PCBs (mainly used as insulant), perfluoroalkyl substances (PFAS, notably in firefighting
foams and non-stick cookware), tetrachlorodibenzo-p-dioxin (TCDD, present in Agent
Orange), and dichlorodiphenyltrichloroethane (DTT, insecticide). They persist in the
environment for decades, or even centuries, and can bioaccumulate in trophic networks.
The hydroxylated metabolites of POPs can also have estrogenic activity.

Multiple epidemiological studies investigated the involvement of PCBs in the context
of endometriosis [94]. Reflecting potential prenatal exposure, a Chinese study reported a
notable correlation between a shorter anogenital distance amongst patients diagnosed with
endometriosis or ADM [94]. Moreover, the sum of PCB levels was significantly higher in
patients with rectovaginal ADM compared to patients with endometriosis and controls.

The ENDO study found that two types of PFAS were associated with increased
incidence of endometriosis diagnosis. No association has been reported for ADM yet [95].

Association studies established a link between TCDD and endometriosis [96,97].
TCDD has the capacity to modulate signaling pathways mediated by the steroid hor-
mones in the normal uterine physiology [98]. Bruner-Tran et al. conducted a retrospective
investigation to identify mice with ADM-like lesions resulting from any type of exposure to
TCDD over multiple generations [18,99]. Deep adenomyotic lesions were detected in more
than half of the mice with a history of either direct (F1-F2) or indirect (F3) exposure [18].
Nonetheless, further studies are needed to assess a potential link between TCDD and ADM.

Non-Persistent Organic Pollutants

NonPOPs, such as glyphosate, phtalates, bisphenol, and pyrethroids, can degrade and
break down relatively quickly in the environment, often within days to months. They are
typically less likely to bioaccumulate in organisms than POPs and have lower potential for
long-range transport through air and water.

Clinical studies address the potential role of gene–environment interactions in the
context of ADM. Huang et al. revealed an increased risk for ADM in individuals who carry
the glutathione S-transferase M1 polymorphism (GSTM1) and are exposed to high levels of
phthalates compared to those unexposed [100]. Although rare cases of EDCs induce genetic
mutations, most EDCs are unable to alter DNA sequences. Conversely, an association
between epigenetic modifications and EDC exposure has been expressed. Some toxic
agents in the environment were also proven to generate epigenetic modifications within
the germline, hence causing multi- and transgenerational repercussions [101]. Despite a
lack of evidence regarding the exact bond between EDCs and epigenetics, it seems like they
act with two mechanisms: gene-specific and global action [102].
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Phthalates are EDCs characterized by an anti-androgenic and pro-estrogenic effect [103].
The concentration of phthalates in endometriosis patients’ blood is significantly higher
than in control patients [104,105]. Other studies showed an increase in urinary phthalates
in patients suffering from endometriosis [100,106]. Similar results were seen in an addi-
tional study from this group that identified a modest increase in urinary phthalates in
patients with either endometriosis or ADM [107]. In a case–control study, urinary levels of
phthalates, particularly MEHP (the primary metabolite of DEHP), were higher and strongly
associated with significantly increase in risk for ADM (OR = 10.4; 95% CI, 1.26–85.0) [100].

Bisphenols are estrogen-mimicking molecules that maintain a low concentration of
PRs, eventually leading to uterine cyclicity disruption [108]. Using a murine model, New-
bold et al. identified a correlation between BPA neonatal exposure and suggested a link
between parental EDC exposure and the onset of endometriosis and ADM in the female
offspring [109]. In 2010, another research group demonstrated that prenatal exposure
to BPA in mice caused development of endometrial glands and stroma within adipose
tissue neighboring the reproductive tract, accompanied by the expression of ERs and HOX-
A10 [92]. However, the substantiating evidence linking BPA to ADM remains relatively
scant in comparison to its association with endometriosis.

Diethylstillbestrol (DES) is a synthetic potent estrogen that was given to mitigate the
risk of pregnancy loss but was prohibited in the 1970s following the disclosure of significant
morbidities to females and their female offspring [110]. Further studies highlighted a
link between in utero exposure to DES and the risk of endometriosis [111]. Although
epidemiology studies have not identified a link between DES exposure and ADM in
humans, mice studies suggested a positive correlation between DES and ADM [112,113].

3.2.3. Natural Endocrine Disruptors

Phytoestrogens can function as endocrine disruptors by binding to ERs and either
mimicking or blocking the effects of natural estrogen. These actions can result in hor-
monal imbalances. They can exert ER-independent mechanisms of action, such as altering
hormone-binding globulin levels. Furthermore, some phytoestrogens inhibit aromatase
and other enzymes involved in the synthesis of steroid hormones. Several studies have
suggested that phytoestrogens may be involved in the development or progression of
uterine diseases, such as endometrial cancer [114,115].

3.2.4. Mode of Action of Endocrine Disruption

Most endocrine disruptors act gene-specifically by interfering with NR function, but
global action is considered. NRs regulate gene-specific chromatin states by engaging his-
tone modifiers and recruiting DNMTs and thymine DNA glycosylases (TDGs) to specified
genomic loci [116]. This is supported by different studies in mice, though still not demon-
strated in humans [93,117]. EDCs act globally on DNMTs by downstream regulation of
messenger RNA and/or microRNA expression by defective receptors [118,119]. Moreover,
studies showed a dysregulation of DNA demethylases and histone-modifying enzymes by
EDC exposure [120,121].

Based on current scientific knowledge, endocrine disruptors can have an agonist or
antagonist effect on hormone receptors or alter hormone receptor expression, as described
with the TCDD and decreased PR expression in mice uteri [122]. EDCs, with the help of EDC
co-factors, are also linked to a perturbation of both nuclear steroid receptors and cell surface
membrane receptors, causing a dysregulation of downstream signal transduction [123,124].
Furthermore, they can alter the activity of hormone-responsive cells by interfering with
hormonal transport [123].
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4. Infertility in ADM

ADM could exert detrimental effects on fertility and perinatal outcomes. Inflamma-
tion, immune modulation, oxidative stress, extracellular matrix remodeling, and aberrant
angiogenesis have all been implicated as factors contributing to altered oocyte development,
uterine receptivity, implantation, and successful maintenance of pregnancy.

A recent prospective randomized study called ADENOFERT (NCT05937490) analyzes
the association of ADM with fertility outcomes in relation to different GnRH agonist
protocols of assisted reproductive technology (ART). The study started in July 2023 and
will last until 2025. The goal of this clinical trial is to not only investigate the pregnancy
and neonatal outcomes of women under different protocols in ART but also how the
endometrial interface stimulates decidualization markers in response to treatments in ART.
Via an in vitro study, ADENOFERT also plans to evaluate the immune changes during the
pregnancy [125].

Both medical and surgical treatments of ADM have positive results on fertility [126].
However, fertility outcomes were better in focal ADM than diffuse ADM treated by surgical
and/or medical treatment [127]. Despite many studies on the pathogenesis of fertility
failure in ADM, there is a lack of correlation between their results and treatments. Therefore,
more evidence is needed to explain the real association between ADM and infertility. This
will allow a standardized protocol to be established for fertility treatment in ADM.

Various mechanisms are suspected to be part of the fertility disturbance in ADM
patients. The local inflammation during the endometrial cell infiltration process is sug-
gested to be a central cause of infertility. The platelet aggregation and hypoxia preceding
the production of cytokines/prostaglandins and local estrogen may prompt both uterine
hyperperistalsis through estrogen receptor induction of OT signaling and fibrosis [128].
The biological mechanisms suspected have been reviewed by Szubert et al. in 2021. How-
ever, there is still a lack of conclusive data in humans that prevents us from drawing
conclusions [129].

In general, endometriosis and ADM are associated with a negative impact on fertility.
All things considered, the clinical weight given to the different effects of endometriosis and
ADM on fertility is still uncertain, with only weak associations based on a limited number
of studies and events [128].

5. Therapeutics Options
5.1. Conventional Hormonal Treatments

Because of the strong estrogen dependency of ADM, like endometriosis, several
hormonal mechanisms have been studied to control the hormonal medium [44]. Although
no drug is specifically approved for the treatment of ADM, some off-label treatments show
promise for clinical management [15] (Figure 3).

5.1.1. Non-Steroidal Anti-Inflammatory Drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) are used to relieve pain without
treating the pathology. In fact, they are believed to relieve the hypercontractility of the
uterus by inhibiting endometrial prostaglandin production through cyclooxygenase en-
zyme inhibition. They also have a direct analgesic effect at the central nervous system
level [130,131]. Recent research evaluated the effects of the selective COX-2 inhibitor cele-
coxib on the development of uterine adenomyosis in mice. Celecoxib significantly reduced
disease severity by inhibiting infiltration into the myometrium, decreasing estrogen levels,
reversing epithelial–mesenchymal transition, and relieving fibrosis. Further studies are
needed to validate these findings and to determine the optimal dosage, duration, and
potential side effects [86].
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5.1.2. Combined Oral Contraceptives and Progestin

Combined oral contraceptives (COCs) inhibit LH and FSH and subsequently block
follicle development and endometrial proliferation [132]. They are proven to be beneficial in
treating dysmenorrhea, regardless of the underlying cause [133,134]. Regarding ADM, two
clinical trials found that both the levonorgestrel-releasing intrauterine device (LNG-IUD)
and dienogest were more effective in managing associated pain and bleeding [135,136]. A
recent meta-analysis of prospective studies by Abbas et al. demonstrated that LNG-IUDs
effectively reduced symptom severity, uterine volume, and endometrial thickness while
also improving laboratory outcomes [137]. The proposed mechanism of action is based
on the decidualization and atrophy of the endometrium and downregulation of ERs due
to high progestin release [138]. There is ongoing debate regarding the optimal duration
of treatment for ADM, with efficacy reported for durations between 1 and 6 years [139].
For ADM patients with contraception desires, LNG-IUDs are considered preferable to
other hormonal therapies due to their direct action on the uterus, low systemic hormone
levels, and long-acting user-independent administration. Despite encouraging results from
several clinical trials, progestin efficacity in ADM is still debated. Moreover, metrorrhagia
was a very frequent side effect that led patients to discontinue their treatment [139].

The primary drawback of progestins is the significant proportion of non-responders,
which is likely due to a progesterone resistance mechanism, previously documented in
both ADM and endometriosis [139,140]. A case report on hormonal receptor expression
suggested that the abnormal expression of ER and PR isoforms in ADM uteri contributes
to disease pathogenesis, symptomatology, and resistance to medical treatments [58].

5.1.3. Gonadotropin-Releasing Hormone Agonists and Antagonists

Gonadotropin-releasing hormone (GnRH) agonists possess greater potency and a
longer half-life compared to native GnRH and initially stimulate pituitary gonadotrophs,
known as the initial flare-up. With continued non-pulsatile administration, their therapeutic
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effect is achieved by binding to and sequestering natural GnRH receptors, inhibiting
gonadotropin secretion, and ultimately reducing E2 concentration [15]. Despite promising
results regarding pain, amenorrhea, uterine volume [141], and JZ thickness [142], they are
associated with more adverse effects due to the induced hypoestrogenism effect. One of
note is a reduction in bone mineral density that limits the duration of the treatment without
add-back therapy. Furthermore, symptoms tend to reappear upon treatment cessation [143].
On the other hand, encouraging results, named in the review of Stratopoulou et al. in 2021,
suggest pre-treatment with GnRH analog therapy before in vitro fertilization (IVF) [139].

Promising results were reported for GnRH antagonists as a potential drug to treat
ADM. GnRH antagonists allow dose-dependent control of E2 levels and are characterized
by the absence of a flare-up effect and rapid reversibility. Two studies were published by
Donnez’s team on the subject, concluding that an initial course of 200 mg/day linzagolix
for 12 weeks and further treatment with either 100 mg/day linzagolix or 200 mg/day
linzagolix with add-back therapy should be evaluated for long-term management [144].
Clinical randomized trials are suggested to certify these encouraging findings.

5.1.4. Hormonal Targeting Therapies
Selective Hormonal Receptor Modulators

The development of multiple pharmaceutical agents that selectively target hormonal
receptors (selective hormonal receptor modulator, SHRM), with a particular focus on
ERs, arises from the strong dependence of endometriosis and ADM on estrogen [145].
Despite extensive efforts and investments, this therapeutic strategy experienced a series of
unfortunate clinical failures, as reviewed by Guo and Groothuis [146].

Raloxifene, another SERM binding both ERα and ERβ, displays tissue-specific activities
based on the expression of ERs, and co-activators or repressors. For example, it has an
estrogenic agonist effect on bone but an antagonist effect in both the breast and the uterus. In a
murine model, raloxifene effectively reversed the implantation of endometriosis lesions. One
proposed mechanism suggests that raloxifene counteracts the EMT process and impedes the
migration of epithelial cells. However, a phase 2 clinical trial revealed a potential drawback, as
raloxifene exposure was associated with a faster recurrence of pain symptoms and an elevated
risk of venous thromboembolism as compared with a placebo [146].

In 1981, mifepristone (or RU-486) was synthesized as the first selective PR modu-
lator (SPRM). A preclinical study showed that mifepristone inhibits the development
of ADM in mice [147]. Mifepristone downregulates the expression of various genes
(CDK1/CDK2/Cyclin B/Cyclin E/CXCR4) in the endometrium, inhibiting the prolif-
eration, migration, and invasion of endometrial cells through the JZ. Individuals diagnosed
with ADM who received treatment with mifepristone 5 mg/day experienced a reduc-
tion in uterine volume, restoration of hemoglobin levels, and a significant reduction in
dysmenorrhea [148]. Laboratory investigation of the treated patients showed lower secre-
tion of interleukin-6 and tumor necrosis factor from endometrial epithelial and stromal
cells, restricted infiltration, and degranulation of mast cells in eutopic and ectopic en-
dometrium. In 2019, a multicenter, placebo-controlled, double-blind, randomized clinical
trial was conducted to further investigate the effectiveness of mifepristone in treating
ADM. With dysmenorrhea as the primary endpoint, significant clinical improvement was
achieved with acceptable tolerability after a 12-week treatment of mifepristone at a dosage
of 10 mg/day [149].

Ulipristal acetate (UPA), another potent SPRM capable of delaying ovulation and
endometrial maturation, is indicated for emergency contraception; the management of
uterine fibroids; and refractory, severe heavy menstrual bleeding [150,151]. In patients with
ADM and concomitant fibroids, UPA impressively alleviates bleeding symptoms, but pain
exacerbation in over half the patients limits its utility [152]. Worsening pelvic pain, bulk
symptoms, and imaging features following UPA treatment are frequently reported and
warrant discontinuation for ADM. Notably, UPA serves as a diagnostic tool for adenomyosis
when fibroids remain unresponsive to UPA therapy [153].
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Aromatase Inhibitors

In 2007, the efficacy of anti-aromatase therapy was noticed through a case study
involving the concurrent administration of GnRH agonists. This study observed a decrease
in uterine volume following the combined treatment, but it could not demonstrate the
contribution of each drug [154]. A prospective randomized controlled trial (RCT) was thus
granted to compare the efficacy of aromatase inhibitors (letrozole at a dosage of 2.5 mg/day)
to that of GnRH agonists (goserelin at a dosage of 3.6 mg/month). In their report, the
authors established similar results in reducing the volume of adenomyoma and improving
the symptoms [155]. Most recently, Sharma et al. reported in their RCT that a lower
dose of letrozole (2.5 mg, 3 times weekly) resulted in regular menstrual cycles, improved
hemoglobin concentrations, and sonographic feature enhancements, especially in cases
of diffuse ADM and adenomyoma [47]. It appeared to be more cost-effective and had no
noticeable side effects compared to GnRH agonist therapy. Nevertheless, further research
is needed to establish definitive conclusions due to the undecided debate regarding the
contribution of aromatase in ADM.

Sulfatase Inhibitors

Sulfatase inhibitors, exemplified by danazol, are substances that impede the activity of
sulfatase enzymes, thereby preventing the conversion of sulfated steroids into their active,
biologically potent forms. In ADM, these inhibitors are explored for their therapeutic poten-
tial in addressing the hyperestrogenic environment; however, despite their ability to inhibit
sulfatase and potentially alleviate symptoms, the recurrence of ADM after discontinuing
treatment suggests challenges in achieving sustained relief [156].

Danazol is a synthetic androgen and gonadotropin inhibitor that exhibits significant
sulfatase inhibitory activity, reducing the conversion of sulfated steroids into their active
forms. Researchers investigated its potential to mitigate the hyperestrogenic environment
in ADM. Danazol also proved to inhibit aromatase activity in ADM lesions [45]. However,
symptoms tend to reappear within a few menstrual cycles after discontinuing treatment,
suggesting that danazol alone may not be sufficient to provide long-lasting relief from ADM
symptoms [15]. Furthermore, danazol therapy is associated with potential side effects, such
as masculinization, weight gain, acne, and liver abnormalities.

17β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors

Inhibitors of the enzyme 17β-HSD1 involved in converting E1 to E2 have been sug-
gested as a potential therapeutic approach to reduce E2 levels. This strategy is promising
for the treatment of other estrogen-dependent conditions such as endometriosis and
breast cancer. A research group successfully synthesized a series of novel C15-substituted
derivatives. Extensive in vivo tests of one compound showed selective inhibition of
recombinant human 17β-HSD1 (IC50 at 10 nM) with no effect on 17β-HSD2 activity [157].
The efficacy and safety of Organon Finland’s reversible inhibitor is being assessed in a
phase 2 double-blind RCT, the Elena study (NCT05560646), for the treatment of moder-
ate to severe endometriosis [158]. Poirier’s team tested a non-estrogenic and steroidal
covalent irreversible inhibitor of 17β-HSD1 (named PBRM) in endometriosis models
with promising results [159].

Currently, information regarding the side effects, efficacy, and tolerability of 17β-
hydroxysteroid dehydrogenase type 1 (17β-HSD1) inhibitors appears to be limited. The
details shared focus on the synthesis and testing of specific inhibitors, such as those de-
veloped by Organon Finland and Poirier’s team, with an emphasis on their potential in
treating conditions like endometriosis. However, there is no explicit mention of comprehen-
sive studies detailing the side effects or tolerability of these inhibitors [159]. To provide a
thorough comparison, additional data from clinical trials or research studies evaluating the
efficacy, safety profile, and adverse effects of 17β-HSD1 inhibitors would be required. As of
now, the available information underscores the need for further investigations and studies
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to ascertain the overall impact of these inhibitors on patient health and their suitability for
therapeutic applications [160].

5.2. Unconventional Treatments and Ongoing Research

The scarce and disappointing outcomes of clinical trials in adenomyosis highlight
the shortcomings of past research methodologies. Considering recent advancements in
understanding the natural history of ectopic endometrium, a reassessment of previous
research and novel treatment strategies is warranted [146]. Multiple treatment options
have been reported for endometriosis and ADM, such as anti-platelet, anti-inflammatory,
and anti-Let7-miRNA therapies and minimally invasive interventions like uterine artery
embolization, high-intensity focused ultrasounds, and radiofrequency ablation [161]. The
present review will solely focus on endocrine and dietary innovations.

5.2.1. Bromocriptine

We already discussed the role of bromocriptine as a new potential studied treatment in
Section 3.1.2. for PRL. The pilot study in 2018 of Andersson et al. lasting 6 months showed
a significant reduction in the symptoms, as well as the JZ thickness, in a small number
of patients reflected in radiological appearance [162]. Despite preclinical observations
proposing an association between high uterine concentration of PRL and ADM, limited evi-
dence prevents the establishment of a causal relationship. Additional research investigating
aberrant PRL signaling is necessary to evaluate the therapeutic potential of bromocrip-
tine for treating ADM [66,163]. A recent publication found that bromocriptine effectively
suppresses the proliferation and migration of endometrial cells amongst individuals with
ADM uteri. The proposed mechanism of action involves the suppression of specific gene
expression through the activation of several miRNAs, namely members of the miRNA-200
family and Let-7, as well as the enrichment of signaling pathways associated with cell
proliferation and apoptosis. Moreover, bromocriptine demonstrated the highest sensitivity
towards these specific microRNAs already identified in the context of ADM, underlying key
regulatory roles for PRL in the disease [164]. Further research and validation are necessary
to confirm and expand upon these initial findings.

5.2.2. Oxytocin Antagonists

As stressed above, OT is suspected to contribute to ADM via overexpression of the
OTR in uteri suffering from ADM [68]. Non-peptide oxytocin antagonists, distinct from
peptide-based counterparts, offer a potential avenue for addressing ADM. By targeting
oxytocin receptors through alternative chemical structures, these antagonists hold promise
in mitigating pain, dysperistalsis, and inflammation associated with ADM, providing a
diverse range of therapeutic options for this condition. Several compounds were developed
such as Barusiban, Nolasiban, Retosiban, and Epelsiban. A phase I trial on Epelsiban,
initially tested for embryo transfer, proved it to be well tolerated and with no significant
safety concerns [165]. Its efficacy was investigated in phase II (NCT02794467), but results
were inconclusive as the trial was halted by the sponsor for priority reasons, rather than
safety concerns or regulatory interactions [166]. Nevertheless, further trials are needed to
evaluate its efficacy [167].

5.2.3. Metformin

Metformin is a biguanide drug widely used in type 2 diabetes and, in some cases,
polycystic ovary syndrome, where it is used as an ovulation induction agent. In muscle,
adipose tissue, and liver, metformin suppresses gluconeogenesis and reduces blood sugar
by activating adenosine monophosphate-activated protein kinase (AMPK) and may protect
from liver fibrosis by suppressing the TGF-β pathway. The first comparative in vitro study
investigating the potential therapeutic effect of metformin in ADM biopsies revealed the
involvement of AMPK and PI3K/AKT signaling pathways. This founding study showed
higher AMPK expression levels in endometrial cells from ADM patients than in disease-
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free patients. The authors demonstrated that metformin inhibits the proliferation of ADM
endometrial cells via activation of AMPK and inhibition of PI3K/AKT pathways, hence
identifying a potential therapeutic target in ADM [168]. Further investigations are needed
to establish whether metformin is a viable treatment option for ADM.

5.2.4. Linsitinib

Linsitinib is a specific inhibitor of the IGF1 receptor with modest activity against the
insulin receptor, primarily designed for cancer applications. It demonstrates the ability to
reverse pain behavior in an animal model of endometriosis at 40 mg/kg [169].

5.2.5. Nutritional Supplements

While dietary supplements have already been studied in the context of endometriosis,
research on their use specifically for ADM is limited. Given the potential relationship
between these two conditions, particularly in cases of deep nodular endometriosis and
ADM, exploring the efficacy of the same nutritional additives in ADM is worthwhile.
Dietary supplements offer an interesting natural alternative because of their antioxidant,
anti-inflammatory, anti-proliferative, and immune-modulatory properties.

Epigallactocatechin-3-Gallate

Epigallactocatechin-3-gallate (EGCG) is a bioactive plant-based compound specif-
ically found in green tea. It possesses inhibitory effects on estrogen-related activation,
proliferation, and vascular endothelial growth factor (VEGF) expression in endometrial
cell cultures. Animal studies provide further evidence that green tea can downregulate
the VEGF signaling pathway, leading to a reduction in the formation of endometriotic
implants [170]. Another study examined the potential of EGCG in relieving dysmenorrhea
in mice with tamoxifen-induced ADM. The researchers observed that the induction of the
disease led to an elevation in plasma corticosterone levels, which could be attributed to
the stress and hyperalgesia caused by the lesions. In this model, the administration of
EGCG demonstrated positive effects in reducing plasma corticosterone levels, alleviating
uterine contractility, and suppressing the infiltration of myometrial cells, suggesting its
clinical potential for symptom management [171]. In a subsequent study conducted by
the same group, there was a significant reduction in inhibitory gamma-aminobutyric acid
(GABA)ergic neurons in the raphe magnus nucleus following the induction of ADM, in-
dicative of hyperalgesia. Administration of EGCG restores the number of these neurons,
suggesting a potential attenuation of the ADM-associated hyperalgesia [172]. Collectively,
these findings provide insights into the potential beneficial effects of green tea, specifi-
cally EGCG, for ADM. Continued investigation is warranted to explore and validate the
therapeutic potential of green tea in managing ADM-related symptoms.

Vitamin D

Vitamin D (VitD), a lipophilic vitamin found in fatty fish, liver, egg yolk, and cheese,
plays a crucial role in various reproductive processes. It presents a role in both the de-
velopment and suppression of proliferative processes in reproductive organs with its
antiproliferative effects and ability to stimulate differentiation. Its active form, calcitriol
(VitD3), improves the hypothalamic–pituitary system, immune system, steroidogenesis, fol-
liculogenesis, and endometrial function. Association studies proposed hypovitaminosis D
in the pathogenesis of endometriosis, while a higher dietary intake of VitD has been found
to lower the risk [170]. As a biological explanation, endometriosis epithelial and stromal
cells exhibit elevated VitD metabolism activity, approximately 10-fold greater than that of
control cells, which plays a crucial role in regulating cellular motility and invasion [169].
In a recent publication of over 150 patients, a daily dose of at least 2000 IU of VitD for
3 months is recommended for management of ADM. The authors stressed the potential to
correct the metabolic process in ADM via a repeated course of treatment [173].
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Curcumin

Evidence demonstrates that curcumin exhibits hormonal regulatory properties in ad-
dition to its anti-inflammatory, anti-angiogenic, and antioxidant effects. In vitro, curcumin
potentially enhances folliculogenesis in cases of endometriosis. Additionally, curcumin
reduces estrogen production, and high doses are used to inhibit cell proliferation and
counteract the stimulatory effect of exogenous estrogen seen in estrogen-dependent breast
cancers. Animal studies further demonstrate that curcumin treatment results in a regression
of endometriotic lesions. These findings highlight the potential therapeutic implications
of curcumin, although further research is needed to validate and elucidate the underlying
mechanisms [170]. Evidence supports that a dietary curcumin supplement, alongside
standard therapies for patients with endometrial disorders, leads to optimal outcomes
and a significant reduction in pain-related symptoms without any indications of systemic
toxicity [174]. That being said, curcumin’s clinical application is hindered by its instability
and low bioavailability. Loading curcumin into exosomes enhances its solubility, stability,
and activity. While not yet studied for endometriosis or ADM, exosome-loaded curcumin
shows promise for future research [175].

Quercetin

Quercetin, a prominent dietary compound found in vegetables and fruits, possesses
anti-inflammatory, antioxidant, and hormonal modulation properties. Regarding en-
dometriosis, quercetin shows various beneficial effects by inhibiting the proliferation
of endometriotic cells and inducing cell cycle arrest. Additionally, it promotes apoptosis by
stimulating the production of reactive oxygen species. Animal studies reveal that quercetin
exhibits both anti-estrogenic and anti-progestogenic effects. When administered at a dose of
10 mg/kg in conjunction with steroids, it exerts an anti-estrogenic effect on uterine weight.
However, at a higher dose of 100 mg/kg, quercetin demonstrates a potent estrogenic ef-
fect [176]. These findings suggest that incorporating quercetin into the natural therapeutic
arsenal may offer an alternative treatment option for individuals with endometriosis and
ADM, complementing existing approaches [170].

6. Conclusions and Perspectives

The etiology of ADM remains partially unresolved, with numerous factors likely
contributing to its development. However, the role of the endocrine system has been
established, particularly estrogen and progesterone dysfunction, immune response,
inflammation, and altered effects of OT and PRL on uterine hyperperistalsis. Estrogen-
mimetic EDCs are suspected to play a role in initiating these changes. Various hormonal
and non-hormonal therapies have been proposed to alleviate symptoms and preserve
fertility. Targeting sex steroid hormones and exploring other pathogenetic endocrine
pathways are potential means of action. The growing demand for personalized and natu-
ral therapies warrants the investigation of novel approaches and dietary supplements for
ADM. Clinical trials are essential for determining effective treatment strategies. Specific
attention should be directed towards understanding the consequences of environmental
EDC exposure and establishing preventive measures. In conclusion, continued investiga-
tion into the molecular, genetic, and hormonal mechanisms underlying the development
and progression of ADM is necessary to deepen our understanding of the disease and to
discover novel therapeutic options.
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