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Abstract: Mangifera indica (Anacardiaceae family) is renowned for its diverse pharmacological
properties, encompassing antidiabetic, antioxidant, and anti-inflammatory effects. The present
study delves into the insulin-releasing and glucose-lowering potential of the ethanolic extract of
Mangifera indica (EEMI) leaves in streptozotocin-induced type 2 diabetic (STZ-T2D) rats, concurrently
investigating its phytoconstituents. EEMI'’s effects on insulin secretion were measured using BRIN
BD11 p-cells and isolated mouse islets. Its enzymatic inhibitory properties on carbohydrate digestion,
and absorption, and free radicals were investigated using in vitro methods. In vivo parameters
including the lipid profile and liver glycogen content were assessed in STZ-T2D rats. EEMI exhibited
a dose-dependent increase in insulin secretion from clonal pancreatic BRIN BD11 3-cells and isolated
mouse islets. EEMI inhibited starch digestion, glucose diffusion over time, and DPPH activity
in vitro. In acute in vivo studies, EEMI improved food intake and oral glucose tolerance. Moreover,
following 28 days of treatment with EEMI, a remarkable amelioration in body weight, fasting blood
glucose, plasma insulin, liver glycogen content, total cholesterol, triglyceride, LDL, VLDL, and HDL
levels was observed. Further phytochemical analysis with EEMI identified the presence of alkaloids,
tannins, saponins, steroids, and flavonoids. The synergistic effects of EEMI, potentially attributable
to naturally occurring phytoconstituents, hold promise for the development of enriched antidiabetic
therapies, offering a promising avenue for the management of type 2 diabetes.
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1. Introduction

In this contemporary era, the pathogenesis and etiology of diabetes mellitus is com-
prehended as a highly intricate metabolic disorder attributed to the excessive glucose
production in the liver [1]. Diabetes poses a significant global health challenge, with
over half a billion people affected in 2021. Projections indicate a continued rise, reaching
783.2 million people living with diabetes by 2045, contributing to high morbidity and
mortality rates [2]. The vast majority, approximately 90%, of individuals diagnosed with
diabetes are battling type 2 diabetes mellitus (T2DM) which can progressively lead to severe
secondary complications such as retinopathy, cardiovascular disease, cognitive decline,
nephropathy, end-stage renal disease, dementia, and susceptibility to infections [3].

Lifestyle and dietary modifications are common preventative measures employed
during the initial stages of T2DM. However, as the disease progresses, advanced therapeutic
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strategies are often necessary to combat further deterioration. These strategies include
medications such as sulfonylureas, glucosidase inhibitors, amylin analogs, meglitinides,
dipeptidyl peptidase-4 (DPP-IV) enzyme inhibitors, and GLP-1 analogs [4]. Despite the
effectiveness of these pharmaceutical interventions, their widespread use is often limited
by factors such as cost, limited accessibility in some regions, and severe adverse side
effects. These limitations have fueled the search for alternative therapeutic approaches that
are safe, economical, and effective in managing T2DM [5]. In fact, traditional medicine,
accounting for nearly 90% of treatments in developing countries, is predominantly obtained
from medicinal plants, employed in the treatment of gastrointestinal disorders, diarrhea,
diabetes, wound healing, malaria, cholera, pneumonia, tuberculosis, and asthma [5]. On top
of that, the global markets for plant-derived medicines are thriving, generating over USD
100 billion per year with their considerable contributions to public health [6]. At present,
more than 400 species of traditional medicinal plants have been identified, exhibiting
notable antidiabetic and antihyperlipidemic effects, making them potential alternatives for
T2DM treatment [7]. These medicinal plants exhibit the potential to restore pancreatic tissue
function and alleviate hyperglycemia by enhancing insulin secretion and promoting insulin-
dependent metabolic processes, and additionally, inhibiting x-amylase and a-glucosidase
enzymes hinders the breakdown of dietary starches, leading to a reduction in glucose
production [8,9].

Mangifera indica, commonly referred to as mango, is a member of the Anacardiaceae
family and Mangifera genus, which comprises around 69 species of edible fruits. The highest
cultivation of mangos is known to be in India and Bangladesh, where it has been used as
an essential ethnomedicine in Ayurveda and indigenous medicine for over 4000 years [10].
The bark of the plant is a familiar ethnomedicine used traditionally for the remedy of diar-
rhea, cancer, toothache, and urinary tract and dermal infections [11]. The alcoholic extract
of M. indica also exhibited anti-bacterial, antioxidant, anti-ulcerogenic, hepatoprotective,
and hypolipidemic activities [12]. The hydro-alcoholic extract of the plant leaves has been
reported to reduce postprandial glucose within 7 days, prevent a rise in blood glucose,
enhance glucose tolerance, and decrease body weight [13]. Conversely, the aqueous extract
of Mangifera indica also showed a reduction in serum glucose levels, indicating improved in-
sulin release into the bloodstream [14]. Another study highlighted the potential of the seed
extract of this plant in improving glucose tolerance, blood lipid levels, diabetes-induced
liver damage, and f3-cell apoptosis [15]. The isolated compounds from the leaves, bark, and
peel of M. indica included mangiferin, isomangiferin, quercetin 3-O-galactoside, quercetin
3-O-glucoside, quercetin 3-O-xyloside, quercetin 3-O-arabinoside, iriflophenone 3-C-f3-D-
glucoside, quercetin, and kaempferol [13,16]. Mangiferin, a key component of Mangifera
indica, enhances oral glucose tolerance and the lipid profile, while its accompanying phy-
tochemicals, powerful free radical scavengers like quercetin, combat ROS-induced harm
through their scavenging activity [11]. Given the known pharmacological properties of
Mangifera indica, this study aims to investigate its effects on glycemic control and cholesterol
regulation, as well as to unravel the mechanistic pathways underlying its antihyperglycemic
properties in a streptozotocin-induced type 2 diabetic rat model.

2. Materials and Methods
2.1. Plant Collection and Extract Preparation

Cultivated mango (Mangifera indica) leaves were sourced from Jahangirnagar Univer-
sity in Savar, Dhaka, Bangladesh. The botanical identification was subsequently verified as
herbarium specimen number 123 by an herbal taxonomist at the National Herbarium in
Mirpur, Dhaka, Bangladesh. The collected leaves were thoroughly washed before being
air-dried at 40 °C in an oven. The dried leaves were then ground into a fine powder using
a grinding machine. About 200 g of the dried powder of the plant leaves was added to 1 L
of 80% ethanol and placed in an orbital shaker at 550 rpm for 48-72 h. Then, the mixture
was filtered using Whatman No. 1 filter paper to remove insoluble granular particles. The
residual product was evaporated using a rotary evaporator machine (BibbyRE-200, Sterilin
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Ltd., Newport, UK) to remove any moisture, followed by the collection of a solid crude
extract of Mangifera indica leaves, which was then stored at 4 °C for experimental studies.

2.2. In Vitro Insulin-Releasing Studies Using BRIN-BD11 Cells

BRIN-BD11 cells, a clonal pancreatic (3-cell line, were created by the electrofusion of
primary 3 cells from New England Deaconess Hospital rat pancreatic islets with RINm5F
cells [17]. BRIN-BD11 cells were cultured in an RPMI 1640 medium supplemented with
10% FCS, 1% penicillin/streptomycin (100 U/mL penicillin, 0.1 mg/mL streptomycin),
and 11.1 mmol/L D-glucose at 37 °C in a humidified atmosphere of 5% CO; and 95%
air. Cells at passage 27 were used for subsequent experiments. They were seeded in
24-well plates followed by cells being incubated overnight at 37 °C in an RPMI medium.
The insulin-releasing effect was measured by incubating clonal pancreatic BRIN-BD-11
-cells at 5.6 mM glucose plus/minus EEMI (1.6-5000 pg/mL) or insulin secretagogues
10 mM alanine for 20 min at 37 °C [18-20]. Alanine, an amino acid, prompts calcium ions’
influx [21].

2.3. In Vitro Insulin-Releasing Studies Using Isolated Mouse Islets

The isolated mouse islets of Langerhans were used to assess the EEMI leaves’ in vitro
insulin-releasing effect. The pancreases from mice were isolated using Clostridium his-
tolyticum-derived collagenase P and cultured at 37 °C for 48 h [22]. The islets were then
incubated in a CO; incubator with 1.4 and 16.7 mM glucose in the presence or absence of
EEM], alanine, and GLP-1 at 37 °C for 1 h. Following centrifugation, the supernatants were
collected and stored at 20 °C for insulin radioimmunoassay. An acid—ethanol extraction
method was employed to assess the total insulin content in the islet cells [23].

2.4. In Vitro Starch Digestion Using EEMI

An in vitro starch digestion study was conducted to investigate the influence of EEMI
on glucose release. The experiment involved preparing a starch solution (2 mg/mL) using
starch from Sigma-Aldrich (St. Louis, MO, USA). This solution was divided into aliquots
and supplemented with varying concentrations of EEMI (8-25,000 pg/mL) or acarbose
(0.32-1000 ng/mL), a known a-glucosidase inhibitor. And 40 pL of heat-stable x-amylase
(0.01%) derived from Bacillus licheniformis (Sigma-Aldrich, St. Louis, MO, USA) was added
to each aliquot. The mixtures were then incubated at 80 °C for 20 min. Following the
a-amylase incubation, 30 uL of amyloglucosidase (0.1%) sourced from Rhizopus mold
(Sigma-Aldrich, St. Louis, MO, USA) was added to each 1 mL of the pre-incubated solution.
To maintain optimal enzyme activity, 2 mL of 0.1 M sodium acetate buffer (pH 4.75) was
also incorporated. The mixture was then subjected to a further incubation period of
30 min at 80 °C to ensure complete starch digestion. Samples were then collected and
stored at 4 °C for subsequent analysis using the GOD-PAP (liquid glucose oxidase-phenol
aminophenazone) (Randox GL 2623) method [24].

2.5. In Vitro Glucose Diffusion Using EEMI

The in vitro glucose diffusion assay was conducted using cellulose ester dialysis tubes
(20 cm x 7.5 mm, Spectra/Por® CE layer, MWCO: 2000, Spectrum). Two milliliters of NaCl
(0.9%) and 220 mM of glucose were added to each dialysis tube, with or without EEMI
(200-25,000 nug/mL) [25]. The ends of each tube were securely sealed and placed in a 50 mL
Falcone tube (Orange Scientific, Northern Orange County, CA, USA) containing 45 mL of
0.9% NaCl. The tubes were incubated in an orbital shaker at 37 °C for 24 h, and glucose
levels were measured at 0, 3, 6, 12, and 24 h, respectively.

2.6. In Vitro DPPH Assay Using EEMI

To evaluate the free radical scavenging activity of EEMI, the 2,2-Diphenyl-1-picrylhydrazyl
(DPPH) assay was employed [26,27]. Various concentrations (1.6-5000 pg/mL) of EEMI
(treatment) and L-ascorbic acid (standard) were prepared. A volume of 2 mL of 0.2 mmol/L
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DPPH solution, dissolved in methanol, was added to each concentration of treatment and
standard solutions. A solution containing 2 mL of 0.2 mmol/L DPPH in 1 mL of distilled
water was considered as the control. The samples were incubated in a dark room for
30 min, and the absorbance at 517 nm was measured using a UV /VIS spectrophotometer
(Mettler-Toledo, Columbus, OH, USA).

2.7. Animals

Male, 6-8-weeks-old Long-Evans rats were used for the in vivo experimentations.
They were kept at a constant room temperature of 22 + 5 °C and humidity of 50-70%
with a 12 h day—night cycle. The animals were given a nutrient-rich diet consisting of
carbohydrates (36.2%), protein (20.9%), fat (4.4%), and fiber (38.5%), with 11.8 M]/kg
of metabolizable energy content. The rats were kept in translucent plastic cages with
a bedding of wood shavings. Streptozotocin (STZ) was injected intraperitoneally into
12 h fasted rats at a dose of 90 mg/kg body weight in a 0.5 M citrate buffer solution
(pH 4.5). After three months of streptozotocin administration, oral glucose tolerance tests
(OGTTs) at a dosage of 2.5 g/kg body weight were conducted to ensure the diabetic model.
At the end of the 28-day study, the rats were anesthetized with ketamine (0.15 mL/kg)
before euthanasia by cervical dislocation. Blood was then collected from the heart, and
the liver was extracted [28]. To ensure the ethical guidelines were followed, the animal
experiments were approved by the Animal Welfare and Ethical Review Board (AWERB) of
Ulster University in May 2018 and conformed to U.K. regulations (Animal project/personal
licenses PIL1822 and PPL 2804, UK Act 1986, EU Directive 2010/63EU). No animal harm
occurred during the study.

2.8. Acute Effects of EEMI on Feeding Test

The impact of EEMI (250-500 mg/kg) on acute food intake in streptozotocin-induced
diabetic rats following a 12 h fasting period was analyzed. Food intake levels were assessed
at 0, 30, 60, 90, 120, 150, and 180 min subsequent to the oral administration of saline
(5 mL/kg), EEMI (250-500 mg/kg), or glibenclamide (0.5 mg/kg), respectively [22].

2.9. Acute Effects of EEMI Leaves on Oral Glucose Tolerance Test

The acute effects of EEMI on oral glucose tolerance were measured prior and after the
oral administration of glucose (2.5 g/5 mL/kg body weight) plus/minus EEMI (250 and
500 mg/kg) or glibenclamide (0.5 mg/kg) in 12 h fasted STZ-induced T2DM rats. Control
groups were given glucose solutions only, while the standard group received glibenclamide
(0.5 mg/kg). Blood samples were obtained from the tail vein at 0, 30, 60, 90, 120, and
180 min to measure the blood glucose concentration (mmol/L) with respect to time [21].

2.10. Effect of EEMI on Body Weight, Fasting Blood Glucose, and Plasma Insulin

To evaluate the chronic effects of the twice-daily oral gavage of EEMI (250 and
500 mg/kg) or glibenclamide (0.5 mg/kg) on body weight and fasting blood glucose,
STZ-induced T2DM rats were starved overnight, followed by the collection of blood from
the lateral tail vein and body weight measurements at 0, 7, 14, 21, and 28 days using the
Ascensia Contour glucose meter (Bayer, Newbury, UK) [29] and a digital weighing scale
(Kent Scientific Corporations, Torrington, CT, USA), respectively. A Rat Insulin ELISA Kit
(Crystal ChemTM, Elk Grove Village, IL, USA) was used to assess the plasma insulin level
at the end of the studies [23].

2.11. Effects of EEMI Leaves on Liver Glycogen Content

On day 28 of the chronic study, the rats were sacrificed, and their livers were extracted
and analyzed for glycogen content using the method described by [30,31]. The liver was
weighed and homogenized with 20 mL of 5% trichloroacetic acid (TCA). The protein
precipitate was filtered, and the clear filtrate was used for the analysis. A total of 1 mL of
the filtrate was mixed with 2 mL of 10 N KOH and boiled at 100 °C for 1 h. Upon cooling,
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1 mL of glacial acid was added to the cooled mixture, followed by deionized water to make
up a final volume of 10 mL. Then, 1 mL of this diluted solution was mixed with 2 mL of
anthrone solution (100 mg in 50 mL of concentrated H,SOj) on ice. After an additional
10 min of boiling at 100 °C, the mixture was allowed to cool, and the absorbance of samples
was measured at 490 nm using a microplate reader (Biochrom Ltd., Cambridge, UK).

2.12. Effects of EEMI on Lipid Profile

During 28 days of twice-daily oral treatment with EEMI (250 and 500 mg/5 mL/kg)
or glibenclamide (0.5 mg/kg) in STZ-induced T2DM rats, a lipid profile test was conducted
as previously described [23]. Blood samples were obtained from the tip of the tail in
heparin microcentrifuge tubes (Sarstedt, Numbrecht, Germany) to prevent clotting and
centrifuged at 12,000 rpm for 5 min. Plasma serum was then separated and HDL, LDL, TG,
and TC levels were analyzed using COD-PAP, GPO-PAP (Elabscience Biotechnology Co.,
Ltd., TX, USA), and CHOD-PAP (Biolabo SAS, Maizy, France) reagents in an automated
analyzer [30].

2.13. Phytochemical Screening of EEMI

To evaluate the presence or absence of phytoconstituents (such as flavonoids, alka-
loids, saponins, glycosides, tannins, reducing sugars, anthraquinone, and steroids), the
phytochemical screening of EEMI was carried out as previously described [22,23]. To
determine the presence or absence of alkaloids, 2 mL of EEMI was combined with 1 mL
of hydrochloric acid (HCl), followed by the addition of 1 mL of Dragendorff’s reagent to
observe the emergence of a red color, suggesting the presence of alkaloids. Later, for the
investigation of tannins’ presence, a few drops of 10% lead acetate were mixed with 2 mL
of EEMI to observe the formation of a white sediment, suggesting the presence of tannins.
Flavonoids were examined by heating 4 mL of EEMI mixed with 1.5 mL of methanol,
followed by the addition of metal magnesium and a few drops of HCL to identify the
formation of a pink color, indicating the existence of flavonoids. To validate the presence of
saponins, 1 mL of EEMI was mixed with 9 mL of distilled water. The resulting mixture was
allowed to stand for about 10-15 min, where the formation of a stable foam confirmed their
presence. To detect the presence of steroids, 2 mL of EEMI was combined with 10 mL of
chloroform, 1 mL of acetic anhydride, and 2 mL of sulfuric acid, yielding a bluish-green
color indicative of the presence of steroids. The presence of glycosides was determined
by combining 1 mL of EEMI with a few droplets of glacial acetic acid, ferric chloride,
and concentrated sulfuric acid to detect the bluish-green color and identify the presence
of glycosides. The identification of reducing sugars was detected by heating a solution
containing 1 mL of EEMI, 1 mL of water, and a few drops of Fehling’s reagent that yielded
a red-brick color, confirming the presence of reducing sugars. Lastly, anthraquinone was
examined by placing 0.5 g of EEMI in a test tube with 5 mL of chloroform and shaking
the mixture rapidly for 5 min, followed by filtration. The presence of anthraquinone was
verified by adding 5 mL of a 10% ammonia solution to the filtered mixture and observing
for the development of a pink-violet or red color in the bottom layer [22,23,32].

2.14. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 5. Student’s f-test and
a one/two-way ANOVA with Bonferroni adjustment were conducted to analyze the
data which were collected over various time intervals. The results are represented as
means + SEM using a statistical limit at a p-value of <0.05.

3. Results
3.1. Insulin Release from BRIN-BD11 Cells Using EEMI

The insulin-releasing activity of EEMI (1.6-5000 pg/mL) using BRIN-BD11 cells is de-
picted in Figure 1A. The insulin secretory basal rate in BRIN-BD11 cells was 0.58 & 0.08 ng/
10° cells/20 min, and insulin secretagogues, alanine (10 mM), increased (p < 0.001) the
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insulin secretory rate to 6.37 4- 1.12 ng/10° cells /20 min in the presence of 5.6 mM glucose
(Figure 1A). EEMI at 5.6 mM glucose significantly (p < 0.05-0.001) improved the insulin
releasing rate from 2.73 + 0.72 to 4.95 & 0.70 ng/10° cells/20 min in a dose-dependent
(200-5000 pg/mL) manner (Figure 1A).

5.6 mM Glucose /1 16.7 MM Glucose
== 5.6 mM Glucose + 10 mM Alanine 1 16.7 MM Glucose + 10 mM Alanine
5.6 mM Glucose + EEMI (ug/ml) 25— W 16.7 MM Glucose +GLP-1(10°M)
8 Jeeke ==  16.7 mM Glucose + EEMI (ug/mi)
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Figure 1. Insulin releasing effects of ethanol extract of M. indica (EEMI) on (A) clonal BRIN-BD11
pancreatic p-cells, as well as (B) islets of Langerhans of pancreas, (C) acarbose, and (D) starch
digestion, expressed as bar graphs. Effect of insulin secretion from clonal pancreatic BRIN-BD11 cells
and isolated mouse islets of Langerhans were measured with or without insulin secretagogues and
EEMI (1.6-5000 pg/mL and 8-200 pg/mL) in presence of 5.6 mM or 16.7 mM glucose. Additionally,
glucose release reduction from starch was observed with or without EEMI (8-25,000 ug/mL) and
acarbose (0.32-1000 pug/mL). Values are shown as mean &= SEM for insulin release and starch digestion;
n=4-8. % *, **p<0.05-0.001 as compared to control.

3.2. Insulin Release from Isolated Mouse Islets Using EEMI

The dose-dependent (8-200 png/mL) insulin-releasing effects of EEMI from isolated
mouse islets are shown in Figure 1B. In the presence of 16.7 mM glucose, the basal level
of insulin release from isolated mouse islets was 3.73 + 0.30 ng/10° cells /20 min, and the
positive controls’ alanine (10 mM) and GLP-1 (10~ and 10-8 M) significantly (p < 0.001)
increased insulin secretion to 11.92 + 1.40 and 19.00 + 1.21 ng/10° cells/20 min, respectively
(Figure 1B). EEMI (100-200 pg/mL) at 16.7 mM glucose enhanced (p < 0.05-0.01) insulin
release, ranging from 6.79 + 1.14 to 11.16 4 2.41 ng/10° cells /20 min (Figure 1B). At high
concentration, EEMI demonstrated insulin-releasing properties nearly comparable to the
alanine-stimulated insulin secretagogue (Figure 1B).
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3.3. Starch Digestion Using EEMI

Figure 1C,D illustrate the concentration-dependent effects of acarbose (0.32-1000 pg/mL)
and EEMI (8-25,000 p.g/mL) on starch digestion, respectively. Acarbose, as a positive control,
displayed a dramatic dose-dependent inhibition of glucose liberation (21.76% to 81.59%)
at increasing concentrations (0.32-1000 ng/mL) (p < 0.001; Figure 1C). EEMI exhibited a
significant (p < 0.05-0.001) reduction in enzymatic glucose liberation ranging from 5.04% to
36.44% in a concentration-dependent manner (1000-25,000 ng/mL), as shown in Figure 1D.

3.4. DPPH Assay Using EEMI

EEMI significantly (p < 0.01-0.001) scavenged DPPH activity by 9.95 £ 1.15% to
80.99 £+ 1.35% in a dose-dependent manner (1.6-5000 pg/mL) (Table 1). Similarly, L-
ascorbic acid strongly (p < 0.01-0.001) suppressed DPPH activity by 10.82 + 1.32% to
97.24 + 1.10% in a concentration-dependent manner (1.6-5000 pg/mL) (Table 1).

Table 1. Dose-dependent effects of DPPH scavenging activity of L-ascorbic acid and EEMI.

Concentration (ug/mL) Ascorbic Acid (% Inhibition) EEMI (% Inhibition)
1.6 10.82 £1.32** 9.95 4+ 1.15**
8 3291 £ 1.15** 30.42 £ 1.17 ***
40 70.47 £ 1.85*** 47.25 £ 2.07 ***
200 87.11 £ 1.61 *** 62.14 £ 2.15***
1000 95.04 & 1.55 *** 73.32 £2.25**
5000 97.24 £1.10 *** 80.99 £ 1.35 ***

Experiment was carried out in presence or absence of different concentrations (1.6-5000 ug/mL) of EEMI, followed
by 30 min incubation with DPPH at room temperature in dark; percentage of DPPH inhibition was determined.
Values 1 = 3 are expressed in mean & SEM. **, *** p < 0.01-0.001 compared to control.

3.5. Glucose Diffusion Using EEMI

No significant inhibition of glucose absorption was observed at 0 h with EEMI
(Figure 1A). At 3, 6, and 12 h, however, a significant (p < 0.05-0.01) decrease was ob-
served in a dose-dependent manner (10.62 =+ 2.56% to 33.00 & 1.25% at concentrations from
5000 to 25,000 ng/mL) (Figure 2B-D). Finally, at 24 h, the most significant (p < 0.01-0.001)
reduction in glucose absorption was observed, with a range of 5.53 & 1.2% to 38.85 & 2.62%
at 1000-25,000 pg/Ml (Figure 2E).

3.6. Feeding Test Using EEMI

The oral administration of EEMI or glibenclamide significantly (p < 0.05-0.01; Figure 3A)
improved food intake in STZ-induced T2DM rats compared to untreated rats. EEMI at
250 mg/kg showed a significant (p < 0.05) reduction in food intake at 30 and 90 min. EEMI
at 500 mg/kg showed a remarkable (p < 0.05-0.01) decrease in food intake at 30, 90, and
150 min. Glibenclamide (0.5 mg/kg) consistently (p < 0.05-0.01) decreased food intake
throughout the test.

3.7. Oral Glucose Tolerance Test Using EEMI

Following the oral gavage of EEMI or glibenclamide with glucose, oral glucose tol-
erance significantly improved in STZ-induced T2DM rats compared to untreated rats
(p <0.05-0.001; Figure 3B). EEMI at 250 mg/kg with glucose (2.5 g/kg) significantly
(p < 0.05) improved glucose tolerance at 30 min. EEMI at 500 mg/kg with glucose (2.5 g/kg)
remarkably (p < 0.05-0.01) improved glucose tolerance at 30 and 60 min. The glucose toler-
ance improvement (p < 0.05-0.001) with glibenclamide (0.5 mg/kg) and glucose (2.5 g/kg)
remained consistent over the 180 min experiment.
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Figure 2. The effects of the ethanol extract of M. indica (EEMI) on in vitro glucose diffusion at different
time points of (A) 0, (B) 3, (C) 6, (D) 12, and (E) 24 h are depicted as bar graphs. The experiment
was performed with or without EEMI using a dialysis tube, and parameters were recorded in a
time-dependent (0, 3, 6, 12, 24 h) manner for 24 h at 37 °C while being shaken in an orbital shaker.
Values are shown as mean + SEM for the diffusion of glucose; n = 4. *, **, *** p < 0.05-0.001 as
compared to the control.
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Figure 3. In vivo effects of ethanol extract of M. indica (EEMI) on (A) feeding test, (B) oral glucose
tolerance, (C) fasting blood glucose, (D) plasma insulin, and (E) liver glycogen using STZ-induced
T2DM rats are represented in graphs. Test was conducted following 28 days of twice-daily adminis-
tration of EEMI (250 and 500 mg/kg). Food intake was noted down on 12 h fasted rats at 0, 30, 60, 90,
120, 150, and 180 min, whereas oral glucose tolerance test was carried out on 12 h fasted rats at 0, 30,
60, 90, 120, and 180 min after oral administration of glucose alone (18 mmol/kg, control) with EEMI
(250 and 500 mg/kg) or glibenclamide (0.5 mg/kg). Fasting blood glucose was measured from rat
tail tip following a 7-day interval on Oth, 7th, 14th, 21st, and 28th day of twice-daily treatment. After
28 days of treatment, plasma insulin and liver glycogen content was measured from obtained plasma
serum and extracted livers. Values are shown as mean £ SEM for each parameter; n = 6. *, **, *** p <
0.05-0.001 as compared to STZ-induced diabetic rats.
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3.8. Fasting Blood Glucose, Plasma Insulin, and Liver Glycogen Using EEMI

Figure 3C shows fasting blood glucose (FBG) levels over 28 days at 7-day intervals.
Initially, on day 0, no significant differences were observed between the groups. How-
ever, after 7 days of treatment, EEMI at 500 mg/kg and glibenclamide at 0.5 mg/kg
significantly (p < 0.05) improved blood glucose levels, dropping to 7.82 and 7.42 mmol/L,
respectively. This improvement continued throughout the 28-day study period, with
EEMI (250-500 mg/kg) and glibenclamide (0.5 mg/kg) exhibiting significant reductions
in FBG at 14 and 21 days (p < 0.05-0.001), respectively. Notably, the most significant
(p < 0.001) reduction was observed on day 28, reaching 6.71, 5.73, and 4.46 mmol/L for
EEMI (250-500 mg/kg) and glibenclamide (0.5 mg/kg), respectively.

Additionally, plasma insulin levels were significantly (p < 0.05-0.001) improved after
28 days of treatment with EEMI at both doses and glibenclamide (Figure 3D). Similarly, a
significant (p < 0.01-0.001) increase in liver glycogen was observed following 28 days of
treatment with EEMI at 500 mg/kg and glibenclamide (Figure 3E).

3.9. Chronic Effects of Using EEMI

Treatment with EEMI (250 and 500 mg/kg) or glibenclamide (0.5 mg/kg) for 28 days
did not significantly affect body weight in STZ-induced T2DM rats during the first two
weeks (Table 2). However, significant (p < 0.01-0.001) improvements were observed on
days 21 and 28. Both EEMI and glibenclamide notably increased serum HDL cholesterol
throughout the study period (p < 0.05-0.01 for EEMI on day 21 and 28; p < 0.01-0.001 for
glibenclamide on day 7, 14, 21, and 28) (Table 2). EEMI also gradually (p < 0.05-0.001)
reduced LDL (day 21 and 28; Table 2), triglyceride (day 21 and 28; Table 2), and total
cholesterol (day 14, 21, and 28; Table 2) levels. Similarly, glibenclamide significantly
(p < 0.01-0.001) decreased all three lipid levels over the 28-day study period (Table 2).
These findings suggest that both EEMI and glibenclamide possess promising potential in
improving lipid profiles of STZ-induced T2DM rats.

3.10. Phytochemical Screening Using EEMI

A preliminary phytochemical screening was conducted to determine the presence or
absence of effective antidiabetic phytoconstituents. The study indicated the presence of
alkaloids, tannins, saponins, steroids, glycosides, flavonoids, and reducing sugar and the
absence of anthraquinone in EEMI (Table 3).

Table 2. Chronic effects of EEMI on body weight, and lipid profile in STZ-induced T2DM rats after
28 days of treatment.

Days Treatment Group Body wt. HDL LDL TG Total Cholesterol
(gm) (mg/dL) (mg/dL) (mg/dL) (mg/dL)
Diabetic control 170.0 £ 0.8 3592 +£2.8 5726 £3.1 9322 +£21 92.00 £1.2
0 days EEMI (250 mg/kg) 1693 £ 2.1 31.68 £2.7 46.83 £ 6.1 8717 £ 6.1 89.10 £ 2.7
EEMI (500 mg/kg) 1649 £23 3317 £ 1.7 52.78 4.5 79.57 £5.7 85.97 £ 3.0
Glibenclamide (0.5 mg/kg) 158.8 £5.2 34.05+21 55.54 £ 3.0 85.00 £2.9 9477 £2.4
Diabetic control 176.1 £ 3.1 2992 +£2.8 77.55 £6.9 118.0 £ 6.9 83.67 £3.9
7 days EEMI (250 mg/kg) 166.2 £ 2.7 34.39 +2.9 66.69 6.1 107.0 £ 6.1 7931+£15
EEMI (500 mg/kg) 1672+ 1.0 4210+ 1.7 7632 £23 1051 £ 4.5 7229 £28
Glibenclamide (0.5 mg/kg) 166.9 + 2.0 62.81 £2.6** 3699 £3.1* 4755+ 3.1* 76.51 £29
Diabetic control 171.6 £ 0.9 3391 +£27 57.57 4.1 98.00 = 4.1 88.14 2.2
14 days EEMI (250 mg/kg) 1672 +19 33.61 +£1.7 7594 £ 6.1 116.3 £ 6.1 7218 £1.0**
EEMI (500 mg/kg) 164.5 £ 3.5 36.05 £ 2.9 58.61 £ 4.5 84.05 £45 63.43 £ 4.2 **
Glibenclamide (0.5 mg/kg) 1678 £ 1.1 70.79 £29**  39.09 = 3.8*  49.65 - 3.8 *** 53.72 & 1.7 ***
Diabetic control 1914 +15 3729 £3.2 82.05 £ 3.4 1225+ 34 100.6 £ 2.5
21 days EEMI (250 mg/kg) 160.8 £ 4.4 ** 26.78 = 1.7 7291 £6.1 1132 £ 6.1 57.45 £ 5.2 **
EEMI (500 mg/kg) 154.1 £ 2.3 *** 41.05+20% 61.454+45* 86.89 £ 4.5** 63.12 £ 2.0 ***
Glibenclamide (0.5 mg/kg)  155.4 £ 2.7 *** 8528 £2.5*  39.64 £ 0.1 ** 46.87 £ 3.4 *** 48.10 £ 1.8 ***
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Table 2. Cont.
Davs Treatment Grou Body wt. HDL LDL TG Total Cholesterol
4 P (gm) (mg/dL) (mg/dL) (mg/dL) (mg/dL)
Diabetic control 196.4 + 2.1 2319 £2.5 95.88 £ 3.3 136.3 +3.3 105.6 + 2.7
28 davs EEMI (250 mg/kg) 154.9 2.3 *** 31.62£1.7 59.69 £6.1*  100.0 + 6.1 ** 60.96 + 3.8 ***
Y EEMI (500 mg/kg) 150.0 £3.1** 42,67 £1.9* 5727 £45* 8271 £4.5** 57.44 + 3.6 ***

Glibenclamide (0.5 mg/kg)  153.1 £3.0*** 9234 £1.9** 4437 +1.0** 41.59 £2.8*** 41.66 £ 2.3 ***

Chronic effect of ethanol extract of Mangifera indica (EEMI) at 250 and 500 mg/kg or glibenclamide at 0.5 mg/kg
or saline (control) in STZ-induced T2DM rats administered for 28 days twice-daily. Body weight was measured on
Oth, 7th, 14th, 21st, and 28th day of treatment. After 28-day treatment, lipid profiles of rats were measured from
separated plasma serum from centrifuged blood using COD-PAP, GPO-PAP, and CHOD-PAP reagents. Values are
mean 3 SEM for body wt., HDL, LDL, TG, and cholesterol; n = 8. * p < 0.05, ** p < 0.01, and *** p < 0.001 compared
with STZ-induced T2DM control rats.

Table 3. Preliminary phytochemical screening of EEMI.

Group Results

Alkaloids +
Tannins
Saponins
Steroids
Glycosides
Flavonoids
Reducing sugar
Anthraquinone

o+ o+ o+ o+ +

(+) = Presence, (—) = absence.

4. Discussion

In developed countries, people with diabetes have a 2- to 4-fold higher risk of cardio-
vascular disease compared to the general population [33]. While oral antihyperglycemic
agents can manage T2DM, they often require the addition of synthesized insulin, which
increases the risk of undesirable side effects [34,35]. This has led to a growing interest
in plant-based organic antidiabetic drugs, which offer a promising avenue for managing
diabetes with fewer side effects by potentially improving 3-cell function and addressing
diabetes-related disorders [34].

Mangifera indica (MI) is an evergreen fruit tree that has played a significant role in
both ancient and indigenous medical practices for more than 4000 years [10]. Among the
many bio-macromolecules found in mango leaves (MLs), protein is the most prevalent.
Other nutrients that are frequently found in MLs include nitrogen, potassium, phosphorus,
iron, sodium chloride, calcium, magnesium, and vitamins A and B complex, as well as
E and C [36]. Previous studies have reported that ML extracts are effective for treating
a wide range of illnesses, including diabetes, bronchitis, diarrhea, asthma, renal disease,
scabies, respiratory issues, syphilis, and urinary disorders [10,37]. However, the exact
molecular mechanism underlying these effects remains unclear. The current study aimed
at discovering the underlying mechanism of action of the ethanolic extract of Mangifera
indica (EEMI) leaves.

The regulation of insulin secretion in the pancreatic (3-cell is intricately associated
with glucose metabolism in peripheral tissue [38]. Impaired insulin secretion is consid-
ered the initial culprit in the progression towards T2DM [39]. Our in vitro study reveals
EEMI’s stimulatory effect on insulin release in a concentration-dependent manner. Both
clonal BRIN-BD11 cells and isolated mouse islets exhibited increased insulin secretion at
5.6 mM and 16.7 mM glucose, respectively, signifying EEMI’s role in (3-cell function. To
validate EEMI's insulinotropic effect, we employed alanine and GLP-1 as positive controls.
These well-known insulin-modulating agents trigger insulin secretion by depolarizing
ATP-sensitive K* channels in response to glucose, leading to membrane depolarization
and elevated intracellular calcium levels [22]. Furthermore, the presence of specific phyto-
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chemicals like alkaloids, tannins, saponins, and flavonoids in EEMI suggests its potential
to increase insulin secretion through multiple mechanisms and pathways [40—43].

A carbohydrate digestion study investigated the potential of EEMI to inhibit starch
breakdown. EEMI showed a concentration-dependent reduction in glucose liberation,
suggesting it may act on x-amylase and x-glucosidase enzymes crucial for breaking down
carbohydrates into glucose and potentially leading to elevated blood sugar after meals [20].
Additionally, the dietary fiber content of M. indica may deter hunger by impeding stomach
emptying and delaying energy and nutrient absorption. This could contribute to reduced
postprandial glucose levels [44], consistent with previous findings that the M. indica leaf
acts as a promising antidiabetic agent by inhibiting digestive enzymes, enhancing glucose
uptake, and suppressing free radicals [45].

A subsequent in vitro diffusion assay revealed that EEMI significantly reduced glucose
absorption and diffusion over a 24 h period. These findings align with previous research
suggesting that M. indica may hinder intestinal glucose absorption due to its enriched
polyphenol content [46]. Additionally, dietary fibers are known to reduce postprandial
blood sugar via a variety of mechanisms, including increasing the viscosity of small intestine
fluid, decreasing glucose diffusion, and delaying digestion via «-amylase inhibition [47].

Recent evidence highlights the key role of oxidative stress in diabetes, where it con-
tributes to non-enzymatic protein glycation, heightened lipid peroxidation, and glucose
oxidation, all of which lead to free radical generation. This, in turn, damages cellular ma-
chinery and enzymes, ultimately contributing to insulin resistance [48]. Interestingly, our
DPPH study revealed the significant radical scavenging ability of EEMI. This suggests that
M. indica might help prevent cellular damage and improve insulin sensitivity in diabetes by
reducing oxidative stress and its associated complications, such as endothelial dysfunction
and inflammation [49,50]. Furthermore, the identified phytochemicals in this current study
may be responsible for these potential effects.

Excessive food intake is a major risk factor for obesity, insulin resistance, and T2DM.
Our feeding test revealed that EEMI significantly reduces food intake in rats, indicating
the effects of EEMI on appetite suppression. Previous studies suggest that Mangiferin,
a compound found in M. indica, may be responsible for this effect [51]. An acute oral
glucose tolerance test (OGTT) showed that EEMI treatment significantly improves blood
sugar control in T2DM rats. This aligns with previous findings suggesting that M. indica’s
phytochemicals, including Mangiferin, quercetin, kaempferol, catechin, and epicatechin,
may enhance insulin sensitivity and directly impact blood sugar levels [16]. Over 28 days of
treatment, EEMI led to a decrease in fasting blood glucose levels and an increase in plasma
insulin levels; this is consistent with previous studies of M. indica and suggests potential
insulin-secretory properties [52]. Furthermore, the liver glycogen content also increased,
which indicates pancreatic beta-cell regeneration and decreased fat deposition [30]. Notably,
EEMI also led to a substantial reduction in body weight, suggesting a potential shift in
energy expenditure that warrants further investigation [30].

Non-esterified fatty acids (NEFAs) released from adipose tissue contribute to insulin
resistance and [3-cell dysfunction, ultimately leading to T2DM. EEMI significantly improved
the lipid profile, suggesting that it may reduce NEFA levels through various mechanisms,
including blocking HMG-CoA reductase activity and hepatic glucose production while
enhancing glucose uptake. This aligns with previous findings on M. indica’s multifaceted
approach to metabolic regulation [16,53-55].

Our analysis of EEMI revealed a diverse range of active pharmacological components,
including alkaloids, tannins, saponins, flavonoids, and reducing sugars. Interestingly,
several of these compounds have been linked to improved glucose management in T2DM
through various mechanisms [2,56-58]. For example, tannins and certain alkaloids have
been shown to stimulate glucose absorption and regulate glucose homeostasis through
different pathways such as the phosphatidylinositol (PI3) and AMPK pathway [59-61].
Additionally, the combination of triterpenoid and saponins has exhibited promising results
in inhibiting intestinal glucose absorption [62]. Furthermore, the presence of antioxidant



Endocrines 2024, 5

149

flavonoids aligns with existing research demonstrating their ability to enhance insulin
secretion, protect pancreatic 3-cells, and improve overall glucose tolerance in HFF- and
STZ-induced diabetic rats [63,64]. The limitation of these studies is the lack of identification
of the exact biomolecules and the specific mechanisms by which they lower blood glucose
and stimulate insulin secretion. Therefore, further investigation is crucial to pinpoint
the precise role of M. indica leaves in diabetes management; this preliminary analysis
suggests EEMI possesses a fascinating combination of potentially beneficial phytochemicals
warranting a further exploration of their antidiabetic potential.

5. Conclusions

Our research unveils the potential of Mangifera indica as a natural approach to manag-
ing T2DM. In vitro studies showed that EEMI efficiently increases insulin secretion from
BRIN-BD11 cells and isolated mouse islets and inhibits carbohydrate digestion, DPPH
activity, and glucose diffusion. This suggests its ability to directly influence key factors in
blood sugar control. Further, in vivo experiments with diabetic rats demonstrated EEMI’s
effectiveness in reducing food intake, improving body weight, enhancing oral glucose
tolerance, and regulating blood sugar, insulin levels, and the lipid profile. These findings
align with the traditional use of Mangifera indica for diabetes and suggest the presence of
potent bioactive compounds. The identified phytoconstituents in EEM], including alkaloids,
tannins, and flavonoids, offer promising leads for future research. Further exploration,
including isolating and characterizing these active compounds, could pave the way for
developing innovative pharmacological strategies to address the complications associated
with T2DM. Subsequent human clinical trials would be crucial to confirm the antihyper-
glycemic effects observed in this study and potentially establish Mangifera indica as a viable
alternative to synthetic drugs. This exciting prospect underscores the immense potential of
natural resources like Mangifera indica in shaping a healthier future for those living with
this chronic condition.
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