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Abstract: Triazolo[4,3-a]pyrimidine is one of the promising structural fragments for the development
of drugs, including anticancer drugs. This work is devoted to the synthesis of a number of new
2-arylhydrazone derivatives of thiazolo[3,2-a]pyrimidine, which are synthetic precursors for triazolo[4,3-
a]pyrimidines. The crystal structure of 6-acetyl-7-methyl-5-phenyl-2-(2-phenylhydrazineylidene)-5H-
thiazolo[3,2-a]pyrimidin-3(2H)-one was established by SCXRD. In the reduction reaction of the com-
pound, the following system was used: vanadium(V) oxide, and sodium borohydride in ethanol at
room temperature, which led to the formation of only one pair of diastereomers (1R*)-1-((5S*,6R*,7R*)-
(1-(hydroxymethyl)-7-methyl-1,5-diphenyl-1,5,6,7-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol.

Keywords: thiazolo[3,2-a]pyrimidines; hydrazine derivatives; triazolo[4,3-a]pyrimidines; crystal
structure; hydrogen bonding; intramolecular rearrangement; reduction; diastereoselectivity

1. Introduction

Triazolopyrimidines, which are analogues of purines, are the subject of research for
chemists and biologists due to their wide range of pharmacological activities, antimicrobial,
antimalarial, cardiac stimulant, antifungal, anti-HBV, anticancer, analgesic, antipyretic,
anti-inflammatory, namely antihypertensive, leishmanicidal and potential herbicidal ac-
tion [1–8]. Thus, triazolopyrimidines are one of the promising structural fragments for new
methods of new potential drug synthesis.

Several synthetic methods for the preparation of triazolo[4,3-a]pyrimidine derivatives
are described in the literature, consisting of interaction with subsequent cyclization of 3-
ethoxycarbonyl-2-hydrazinylpyrimidines [9] (Scheme 1) or 2-hydrazinylpyrimidines [10,11]
with various reagents (carbon disulfide, ethyl chloroformate, triethylorthoformate, acetic
anhydride) (Scheme 2).

Scheme 1. Cyclization of 3-ethoxycarbonyl-2-hydrazinylpyrimidines.
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In the present work, the synthesis of new 2-arylhydrazone thiazolo[3,2-a]pyrimidine 
derivatives containing an acetyl group at C6, the crystal structure of the 2-phenylhydra-
zone derivative, and unique and diastereoselective reduction of the 2-phenylhydra-
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NaBH4/V2O5 were discussed. 

2. Materials and Methods 
NMR experiments were performed on Bruker Avance 500 (Saarbrucken, Germany). 

Chemical shifts were determined relative to the signals of residual protons of the DMSO-

Scheme 2. Cyclization2-hydrazinylpyrimidines with various reagents (carbon disulfide, ethyl chloro-
formate, triethylorthoformate, acetic anhydride).

Another way to prepare of triazolo[4,3-a]pyrimidines is the dipolar 1,3-addition
of nitrile imide (formed in situ from hydrazonoyl halide and triethylamine) to 1,2,3,4-
tetrahydropyrimidin-2-thione at the C=S bond and Smiles rearrangement with loss of
hydrogen sulfide (Scheme 3) [12,13].
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Scheme 3. Dipolar 1,3-addition of nitrile imide to 1,2,3,4-tetrahydropyrimidin-2-thione at the C=S
bond and Smiles rearrangement with loss of hydrogen sulfide.

Recently, our scientific group has shown that 2-arylhydrazone derivatives of thiazolo[3,2-
a]pyrimidine can be transformed into 1,5-dihydrotriazolo[4,3-a]pyrimidines (Scheme 4)
in the presence of a new reducing system—vanadium(V) oxide and a fourfold excess of
sodium borohydride at room temperature [14,15]. This method includes the hydrogenation
of a hydrozone moiety at the first stage and subsequent rearrangement with hydrogen
sulfide elimination. It is a promising method for triazolo[4,3-a]pyrimidine derivative
synthesis containing a hydroxymethylene substituent.

Organics 2023, 4, FOR PEER REVIEW 2 
 

 

 
Scheme 2. Cyclization2-hydrazinylpyrimidines with various reagents (carbon disulfide, ethyl 
chloroformate, triethylorthoformate, acetic anhydride). 

Another way to prepare of triazolo[4,3-a]pyrimidines is the dipolar 1,3-addition of 
nitrile imide (formed in situ from hydrazonoyl halide and triethylamine) to 1,2,3,4-tetra-
hydropyrimidin-2-thione at the C=S bond and Smiles rearrangement with loss of hydro-
gen sulfide (Scheme 3) [12,13]. 

 
Scheme 3. Dipolar 1,3-addition of nitrile imide to 1,2,3,4-tetrahydropyrimidin-2-thione at the C=S 
bond and Smiles rearrangement with loss of hydrogen sulfide. 

Recently, our scientific group has shown that 2-arylhydrazone derivatives of thia-
zolo[3,2-a]pyrimidine can be transformed into 1,5-dihydrotriazolo[4,3-a]pyrimidines 
(Scheme 4) in the presence of a new reducing system—vanadium(V) oxide and a fourfold 
excess of sodium borohydride at room temperature [14,15]. This method includes the hy-
drogenation of a hydrozone moiety at the first stage and subsequent rearrangement with 
hydrogen sulfide elimination. It is a promising method for triazolo[4,3-a]pyrimidine de-
rivative synthesis containing a hydroxymethylene substituent. 

 
Scheme 4. Method for triazolo[4,3-a]pyrimidine derivatives synthesis containing a hydroxy meth-
ylene substituent from 2-arylhydrazone derivatives of thiazolo[3,2-a]pyrimidine. 

In the present work, the synthesis of new 2-arylhydrazone thiazolo[3,2-a]pyrimidine 
derivatives containing an acetyl group at C6, the crystal structure of the 2-phenylhydra-
zone derivative, and unique and diastereoselective reduction of the 2-phenylhydra-
zonethiazolo[3,2-a]pyrimidine molecule under the action of the reducing system—
NaBH4/V2O5 were discussed. 

2. Materials and Methods 
NMR experiments were performed on Bruker Avance 500 (Saarbrucken, Germany). 

Chemical shifts were determined relative to the signals of residual protons of the DMSO-

Scheme 4. Method for triazolo[4,3-a]pyrimidine derivatives synthesis containing a hydroxy methy-
lene substituent from 2-arylhydrazone derivatives of thiazolo[3,2-a]pyrimidine.

In the present work, the synthesis of new 2-arylhydrazone thiazolo[3,2-a]pyrimidine deriva-
tives containing an acetyl group at C6, the crystal structure of the 2-phenylhydrazone deriva-
tive, and unique and diastereoselective reduction of the 2-phenylhydrazonethiazolo[3,2-
a]pyrimidine molecule under the action of the reducing system—NaBH4/V2O5 were discussed.
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2. Materials and Methods

NMR experiments were performed on Bruker Avance 500 (Saarbrucken, Germany).
Chemical shifts were determined relative to the signals of residual protons of the DMSO-d6.
Electrospray ionization (ESI) mass spectra were obtained using a Bruker AmaZon X ion
trap mass spectrometer. IR spectra in KBr tablets were recorded on a Bruker Vector-22.

The method of halogens determination is based on the combustion at 1200 ◦C of or-
ganic compound in oxygen in the presence of a platinum catalyst; the combustion products
are adsorbed by the alkali and the halides formed were determined by mercurimetric
titration with diphenylcarbazone as an indicator.

CHNS elemental analysis was carried out using a high-temperature one-/two-reactor
analyzer (oxidation tube and reduction tube) EuroEA3028-HT-OM “Eurovector SpA. Syn-
thesis of 6-acetyl-5-(4-bromophenyl)-7-methyl-5H-thiazolo[3,2-a]pyrimidin-3(2H)-one hy-
drochloride 2b.

1,2,3,4-Tetrahydripyrimidine-2-thion 1b (0.3 g, 1 mmol) was mixed with ethyl chloroac-
etate (5.4 mL, 5 mmol) without solvent. The mixture was stirred at a temperature of 120 ◦C
for 1 h, then cooled to room temperature; ethyl acetate (20 mL) was added and precipitate
was filtered out followed by washing with ethyl acetate and recrystallization from ethyl
alcohol. Yield 87%, yellow powder, mp 238–240 ◦C. 1H NMR (400 MHz, DMSO-d6, 25 ◦C)
δH ppm: 2.23 (s, 3H, CH3), 2.35 (s, 3H, CH3), 4.12–4.13 (m, 2H, SCH2), 5.99 (s, 1H, CH-Ar),
7.20–7.22(m, 2H, CH (Ar)), 7.53–7.55 (m, 2H, CH (Ar)). 13C NMR (100 MHz, DMSO-d6, 25
◦C) δC ppm: 23.93, 31.36, 33.11, 54.24, 116.63, 122.16, 130.29, 132.10, 139.96, 171.52, 196.71.
IR (KBr, cm−1): 2965 (CH2); 1744 (C=O); 1650 (C=O). Anal. Calcd. for C15H13BrN2O2S, %:
C 49.33, H 3.59, Br 21.88; N 7.67; O 8.76, S 8.78. Found C 49.31; H 3.54; Br 21.91; N 7.69;
S 8.80.

General Method for the Preparation of Compounds 3a–c.
Sodium nitrite cold solution (1 mmol) in water (3 mL) was added drop by drop to an

aromatic amine hydrochloride (1 mmol) suspension in water (5 mL) with stirring at 0–5 ◦C
for 1 h. The resultant solution of aryldiazonium chloride (1 mmol) was added drop by drop
with stirring at 0–5 ◦C to a cold solution of the corresponding thiazolo[3,2-a]pyrimidine
2a,b (1 mmol) and sodium acetate (1.1 mmol) in ethyl alcohol (10 mL). The mixture was
stirred at room temperature for 2 h. Next, the reaction mixture was diluted with water, and
the crude precipitate was collected by filtration, washed with water, and crystallized from
ethyl alcohol.

6-Acetyl-7-methyl-5-phenyl-2-(2-phenylhydrazineylidene)-5H-thiazolo[3,2-a]pyrimidin-
3(2H)-one 3a. Yield 76%, orange powder, mp 245–247 ◦C. 1H NMR (400 MHz, DMSO-d6,
25 ◦C) δH ppm: 2.26 (s, 3H, CH3), 2.38 (s, 3H, CH3), 6.17 (s, 1H, CH-Ph), 6.98–7.00 (m, 1H,
CH (Ph)), 7.22–7.23 (m, 2H, CH (Ph)), 7.30–7.37 (m, 7H, CH (Ph)), 10.92 (s, 1H, NH). 13C
NMR (100 MHz, DMSO-d6, 25 ◦C) δC ppm: 23.73, 31.26, 54.75, 114.69, 118.52, 120.71, 123.04,
128.08, 129.06, 129.27, 129.83, 140.39, 143.46, 149.76, 153.73, 160.89, 197.31. IR (KBr, cm−1):
3222, 3189 (NH); 1731 (C=O); 1621 (C=O); 1514 (C-C(Ph)). MS (ESI), m/z, [M+H]+: calcd.
for C16H16BrN2O3S+: 391,47; found: 391,23. Anal. Calcd. for C21H19N4O2S, %: C 64.43; H
4.89; N 14.31; O 8.17, S 8.19. Found C 64.45; H 4.86; N 14.34; S 8.19.

6-Acetyl-5-(4-bromophenyl)-7-methyl-2-(2-phenylhydrazineylidene)-5H-thiazolo[3,2-
a]pyrimidin-3(2H)-one 3b. Yield 69%, orange powder, mp 236–238 ◦C. 1H NMR (400 MHz,
DMSO-d6, 25 ◦C) δH ppm: 2.27 (s, 3H, CH3), 2.38 (s, 3H, CH3), 6.13 (s, 1H, CH-Ar), 6.98–7.01
(m, 1H, CH (Ar)), 7.19–7.33 (m, 6H, CH (Ar)), 7.49–7.51 (m, 1H, CH (Ar)), 7.55–7.56 (m, 1H,
CH (Ar)), 10.24, 10.29, 10.53, 10.61, 10.96 (five s, 1H, NH). 13C NMR (100 MHz, DMSO-d6,
25 ◦C) δC ppm: 23.86, 31.39, 54.19, 114.71, 118.16, 120.57, 122.29, 123.07, 129.83, 130.38,
132.17, 139.70, 143.44, 150.24, 160.89, 197.14. IR (KBr, cm−1): 3235 (NH); 1706 (C=O); 1642
(C=O); 1544 (C-C(Ph)). MS (ESI), m/z, [M+H]+: calcd. for C21H18BrN4O2S+: 470,36; found:
471,16. Anal. Calcd. for C11H17BrN4O2S, %: C 53.74; H 3.65; Br 17.02; N 11.94; O 6.82; S
6.83. Found C 53.71; H 3.62; Br 17.06; N 11.95; S 6.81.

6-Acetyl-2-(2-(2-methoxyphenyl)hydrazineylidene)-7-methyl-5-phenyl-5H-thiazolo[3,2-
a]pyrimidin-3(2H)-one 3c. Yield 75%, orange powder, mp 210–212 ◦C. 1H NMR (400 MHz,
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DMSO-d6, 25 ◦C) δH ppm: 2.25 (s, 3H, CH3), 2.36, 2.37 (two s, 3H, CH3), 3.86, 3.88 (two s,
3H, CH3), 6.16 (s, 1H, CH-Ph), 6.91–6.95 (m, 1H, CH (Ar)), 6.99–7.08 (m, 2H, CH (Ar)),
7.27–7.40 (m, 6H, CH (Ar)), 10.24, 12.18 (two s, 1H, NH). 13C NMR (100 MHz, DMSO-d6,
25 ◦C) δC ppm: 24.26, 31.74, 55.23, 56.75, 112.46, 112.75, 113.17, 116.71, 118.98, 122.12, 124.33,
124.61, 128.60, 129.58, 129.66, 129.80, 129.90, 132.95, 140.97, 148.63, 150.34, 154.78, 161.63,
197.80. IR (KBr, cm−1): 3269 (NH); 1729 (C=O); 1633 (C=O); 1525 (C-C(Ph)). MS (ESI), m/z,
[M+H]+: calcd. for C22H21N4O3S+: 421,50; found: 421,26. Anal. Calcd. for C22H20N4O3S,
%: C 62.84; H 4.79; N 13.32; O 11.41; S 7.62. Found C 62.86; H 4.77; N 13.35; S 7.56.

Synthesis of (1R*)-1-((5S*,6R*,7R*)-1-(Hydroxymethyl)-7-methyl-1,5-diphenyl-1,5,6,7-
tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol 4a. Vanadium(V) oxide (0.2 g,
1 mmol) and sodium borohydride (0.3 g, 7 mmol) were added to thiazolo[3,2-a]pyrimidine
2-phenylhydrazone derivative 3a (0.4 g, 1 mmol) dissolved in ethanol (5 mL). Next, the
reaction mixture was stirred at room temperature for 72 h. The mixture was filtered,
and the filtrate was diluted with water. The precipitate that formed was filtered off and
recrystallized from ethanol. Yield 44%, white powder, mp 165–166 ◦C. 1H NMR (400 MHz,
CDCl3, 25 ◦C) δH ppm: 0.75 (d, J = 6.9 Hz, 3H, CH(OH)CH3), 1.17 (d, J = 6.0 Hz, 3H, CH3),
1.99–2.05 (m, 1H, CH-6), 3.60–3.65 (m, 1H, CH-N), 4.31–4.36 (m, 1H, CH-OH), 4.39 (d,
J = 5.9 Hz, 2H, CH2OH), 5.15 (d, J = 4.6 Hz, 1H, CHOH), 5.63 (t, J = 6.0 Hz, 1H, CH2OH),
7.01–7.07 (m, 1H, CH (Ph)), 7.12–7.16 (m, 1H, CH (Ph)), 7.21–7.25 (m, 2H, CH (Ph)), 7.43–7.45
(m, 2H, CH (Ph)), 8.17–8.19 (m, 2H, CH (Ph)). 13C NMR (100 MHz, CDCl3, 25 ◦C) δC ppm:
16.0, 22.7, 47.1, 48.6, 54.7, 55.7, 64.3, 117.7, 123.5, 126.7, 128.1, 129.0, 129.2, 139.9, 143.0,
147.6, 148.2. IR (KBr, cm−1): 3348 (OH); 1631 (C=N); 1593 (C-C(Ph)). Anal. Calcd. for
C21H24N4O2, %: C 69.21; H 6.64; N 15.37; O 8.78. Found C 69.27; H 6.53; N 15.23.

Crystals of 3a suitable for X-ray diffraction study were obtained by slow evaporation
of ethanol solution (20 mL) containing 0.02 mol of the dissolved compound after 5 days.

X-ray diffraction analysis of 3a was performed on a Bruker D8 QUEST automatic three-
circle diffractometer with a PHOTON III two-dimensional detector and an IµS DIAMOND
microfocus X-ray tube (λ[Mo Kα] = 0.71073 Å) at 100 (2) K. Data collection and processing
of diffraction data were performed using the APEX3 software package.

Structure 3a was solved by the direct method using the SHELXT program [16] and
refined by the full-matrix least-squares method over F2 using the SHELXL program [17].
All calculations were performed in the WinGX software package [18]. The calculation of the
geometry of molecules and intermolecular interactions in crystals was carried out using the
PLATON program [19], and the drawings of molecules were done using the ORTEP-3 [18]
and MERCURY [20] programs.

Non-hydrogen atoms were refined in the anisotropic approximation. The positions
of the hydrogen atoms H(O) were determined using difference Fourier maps, and these
at-oms were refined isotropically. The remaining hydrogen atoms were placed in geomet-
rically calculated positions and included in the refinement in the “riding” model. The
crystallographic data of structure 7 were deposited at the Cambridge Crystallographic Data
Center, and the registration numbers and the most important characteristics are given in
Table 1.

Table 1. Crystallographic data for compound 3a.

Compound 3a (from Ethanol)

Molecular formula C21H18N4O2S
Formula C21H18N4O2S

Formula Weight 286.35
Crystal System monoclinic

Space group P21/n

Cell parameters a = 9.5262(8) Å, b = 12.1416(12) Å, c = 16.0525(16) Å;
α = 90◦, β = 90.248(4)◦, γ = 90◦ .
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Table 1. Cont.

Compound 3a (from Ethanol)

V [Å3] 1856.67 Å3

Z and Z′ 4 and 0
D(calc) [g/cm3] 1.397

λ (Å) (MoKα) 0.71073
µ [/mm] 0.200

F(000) 816
Theta Min-Max [Deg] 2.103–29.998◦

Reflections measured 58800
Independent reflections 5398

Observed reflections [I > 2σ(I)] 3596
Goodness of fit 1.035

R [I > 2σ(I)] R1 = 0.0492,
wR2 = 0.1118

R (all reflections) R1 = 0.0936,
wR2 = 0.1255

Max. and Min. Resd. Dens. [e/Å−3] 0.339 and −0.376 e Å−3

Depositor number in CCDC 2252794

3. Results and Discussion

2-Arylhydrazinylidenethiazolo[3,2-a]pyrimidin-3-one 3a–c were synthesized accord-
ing to Scheme 5. The first step was a three-component Biginelli condensation between
acetylacetone, thiourea and an aromatic aldehyde (benzaldehyde or 4-bromobenzaldehyde)
carried out in boiling acetonitrile in the presence of catalytic amounts of molecular io-
dine [21]. The obtained 1,2,3,4-tetrahydropyrimidine-2-thiones 1a,b were involved in the
reaction of sulfur atom alkylation by ethyl chloroacetate followed by cyclization with
the formation of thiazolo[3,2-a]pyrimidine-3-one 2a,b [22,23]. Finally, the interaction of
CH-active derivatives 2a,b with aryldiazonium salts upon cooling to 0–5 ◦C gave the target
derivatives 3a–c in good yields (69–76%).
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Scheme 5. Synthesis of 2-arylhydrazone derivatives of thiazolo[3,2-a]pyrimidine 3a–c. Reagents and
conditions: (a) I2, CH3CN, reflux, 8 h; (b) ClCH2CO2Et, 120 ◦C, no solvent; (c) R’C6H4N2

+Cl− (R’=H
or 2-OMe), AcONa, EtOH, 2 h, 0–5 ◦C. *—asymmetric carbon atom.

The structure of compounds 2a and 3a–c was established by 1H and 13C NMR IR-,
and mass-spectra (see Figures S1–S15). The structure of derivative 3a was additionally con-
firmed by SCXRD (Table 1). According to SCXRD data, the bicyclic tiazolo[3,2-a]pyrimidine
fragment was almost flat (Figure 1a). The six-membered cycle assumed a sofa conformation.
The sp3-hybridized C5 carbon atom deviates slightly from the plane formed by the other
five atoms of the pyrimidine ring. The acetyl group was located in the plane of the bicyclic
thiazolopyrimidine fragment. The formation of hydrogen bonds between the oxygen of the
acetyl group and the N-H hydrazone fragment (dO. . . N = 2.953(1) Å, ϕ = 172.07(4)◦) was
observed in the crystal (Figure 1b). It is interesting to note that the established hydrogen
interaction leads to the formation of zigzag heterochiral chains in the crystalline phase
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(Figure 1c). Heterochiral chains consisting of alternating R- and S-isomers were arranged
parallel to each other due to π-stacking (Figure 1c). Thus, it was found that hydrogen
bonding determines the crystal packing of 3a. It should be noted that, as was shown in our
previous work [24], the formation of the Z-isomer was observed both in solution and in the
crystalline phase.
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The obtained 2-arylhidrazone derivatives 3a–c were involved in the reaction with
reducing system—vanadium(V) oxide and a fourfold excess of sodium borohydride at
room temperature [14]. However, the complicated mixture of hard-to-separate substances
which we obtained instead yielded 1,5-dihydrotriazolo[4,3-a]pyrimidines (Scheme 4). The
temperature decrease up to 0–5 ◦C did not affect the reaction. The individual product
was isolated in the case of the increase in sodium borohydride in excess of seven equiv-
alents. In these experimental conditions, compound 4—1-(1-(hydroxymethyl)-7-methyl-
1,5-diphenyl- 1,5,6,7-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol was isolated
in 44% yield (Scheme 6). Thus, it was found that the hydroxymethylene derivative of
triazolo[4,3-a]pyrimidine was formed in agreement with [14]. However, the reaction was
complicated by the hydrogenation of the conjugated C=C-C=O system due to a large excess
of sodium borohydride.

The signals of the C6 and C7 atoms of triazolo[4,3-a]pyrimidine 4 in the 13C NMR
spectrum shift were upfield and appeared at 47.1 and 48.6 ppm, respectively. In the 1H
NMR spectrum, the signals of hydrogen atoms at C6 and C7 resonated at 1.99–2.05 ppm
and 3.60–3.65 ppm as multiplets. Additionally, in the carbon spectrum, there was no signal
of the carbonyl group carbon in the region of 197.3 ppm, but a signal of the methine carbon
atom was found in the region of 64.3 ppm, which in the proton spectrum corresponds to a
proton signal in the form of a multiplet in the region of 4.31–4.36 ppm (see Figures S16–S18).
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Four carbon atoms are asymmetric in compound 4; therefore, the formation of a
mixture of diastereomers is possible. The only set of signals in the 1H and 13C NMR spectra
indicated the formation of one diastereomer. Obviously, 2D NMRs and SCXRD are the
best ways to establish the compound configuration. Unfortunately, our attempts to prepare
a single crystal of compound 4 failed. The low solubility of 4 in most organic solvents
did not allow recording the 2D NOESY spectrum. For this reason, molecular mechanics
calculations using the MMFF94s force field were performed to estimate the thermodynamic
stability of all possible stereoisomers. The calculated data are presented in Table 2.

Table 2. Relative energies of diastereomer 4.

C1 C5 C6 C7 Ph (at C5) CH3-CH(OH)- (at C1) CH3- (at C7) E (kJ/mol)

RRRR/SSSS e e e 115.05

RRRS/SSSR e e a 103.53

RRSR/SSRS a e a 112.76

RRSS/SSRR a e e 113.23

RSRR/SRSS a e e 99.50

RSRS/SRSR a e a 118.68

RSSR/SRRS e e a 111.95

RSSS/SRRR e e e 113.43
e—pseudo-equatorial, a—pseudo-axial.

According to these data, (1R*)-1-((5S*, 6R*,7R*)-(1-(hydroxymethyl)-7-methyl-1,5-
diphenyl-1,5,6,7-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol (Figure 2) was
relatively more stable other diastereomers. So, at the thermodynamic reaction control, the
formation of this stereoisomer is preferable. On the other hand, the phenyl substituent
located in a pseudo-axial position (Figure 1a) blocks the approach of the reagent from
one side of the pyrimidine ring and leads to cis-orientation of substituents at C5 and C6
carbon atoms. The orientation of substituents at C7 and C6 carbon atoms can be assigned
to the hydrogen trans-addition to carbon–carbon double bonds in the case of reduction by
sodium borohydride. So, the formation of (1R*)-1-((5S*, 6R*,7R*)-(1-(hydroxymethyl)-7-
methyl-1,5-diphenyl-1,5,6,7-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol can
be explained from a kinetic reaction control point of view as well.
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4. Conclusions

In this study, new 6-acetyl-2-arylhydrazone derivatives of thiazolo[3,2-a]pyrimidine
were obtained. The structure of 6-acetyl-7-methyl-5-phenyl-2-(2-phenylhydrazineylidene)-
5H-thiazolo[3,2-a]pyrimidine-3(2H)-one was confirmed by X-ray diffraction. It was shown
that a zigzag heterochiral chain of hydrogen-bonded molecules was formed in the crys-
talline phase. The reaction of the 6-acetyl-2-phenylhydrazone derivative of thiazolo[3,2-
a]pyrimidine with a seven-fold excess of sodium borohydride in the presence of vana-
dium(V) oxide led to the diastereoselective formation of 1-(hydroxymethyl)-7-methyl-1,5-
diphenyl-1,5,6,7-tetrahydro[1,2,4]triazolo[4,3-a]pyrimidin-6-yl)ethan-1-ol.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/org4030031/s1, Figure S1: 1H NMR spectrum of compound 2b
(DMSO-d6, 400 MHz, 25 ◦C); Figure S2: 13C NMR spectrum of compound 2b (DMSO-d6, 100 MHz,
25 ◦C); Figure S3: IR spectrum of compound 2b (KBr tablet); Figure S4: 1H NMR spectrum of
compound 3a (DMSO-d6, 400 MHz, 25 ◦C); Figure S5: 13C NMR spectrum of compound 3a (DMSO-
d6, 100 MHz, 25 ◦C); Figure S6: IR spectrum of compound 3a (KBr tablet); Figure S7: ESI MS spectrum
of compound 3a (Ion Polarity: Positive); Figure S8: 1H NMR spectrum of compound 3b (DMSO-d6,
400 MHz, 25 ◦C); Figure S9: 13C NMR spectrum of compound 3b (DMSO-d6, 100 MHz, 25 ◦C);
Figure S10: IR spectrum of compound 3b (KBr tablet); Figure S11: ESI MS spectrum of compound 3b
(Ion Polarity: Positive); Figure S12: 1H NMR spectrum of compound 3c (DMSO-d6, 400 MHz, 25 ◦C);
Figure S13: 13C NMR spectrum of compound 3c (DMSO-d6, 100 MHz, 25 ◦C); Figure S14: IR spectrum
of compound 3c (KBr tablet); Figure S15: ESI MS spectrum of compound 3c (Ion Polarity: Positive);
Figure S16: 1H NMR spectrum of compound 4a (DMSO-d6, 400 MHz, 25 ◦C); Figure S18: 13C NMR
spectrum of compound 4a (DMSO-d6, 100 MHz, 25 ◦C); Figure S18: DEPT spectrum of compound 4a
(DMSO-d6, 100 MHz, 25 ◦C).
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