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Abstract: Nowadays, academic research, disaster mitigation, industry, and transportation apply the
cooperative multi-agent concept. A cooperative multi-agent system is a multi-agent system that
works together to solve problems or maximise utility. The essential marks of formation control are
how the multiple agents can reach the desired point while maintaining their position in the formation
based on the dynamic conditions and environment. A cooperative multi-agent system closely relates
to the formation change issue. It is necessary to change the arrangement of multiple agents according
to the environmental conditions, such as when avoiding obstacles, applying different sizes and shapes
of tracks, and moving different sizes and shapes of transport objects. Reinforcement learning is a
good method to apply in a formation change environment. On the other hand, the complex formation
control process requires a long learning time. This paper proposed using the Deep Dyna-Q algorithm
to speed up the learning process while improving the formation achievement rate by tuning the
parameters of the Deep Dyna-Q algorithm. Even though the Deep Dyna-Q algorithm has been used
in many applications, it has not been applied in an actual experiment. The contribution of this paper
is the application of the Deep Dyna-Q algorithm in formation control in both simulations and actual
experiments. This study successfully implements the proposed method and investigates formation
control in simulations and actual experiments. In the actual experiments, the Nexus robot with a
robot operating system (ROS) was used. To confirm the communication between the PC and robots,
camera processing, and motor controller, the velocities from the simulation were directly given to the
robots. The simulations could give the same goal points as the actual experiments, so the simulation
results approach the actual experimental results. The discount rate and learning rate values affected
the formation change achievement rate, collision number among agents, and collisions between
agents and transport objects. For learning rate comparison, DDQ (0.01) consistently outperformed
DQN. DQN obtained the maximum −170 reward in about 130,000 episodes, while DDQ (0.01) could
achieve this value in 58,000 episodes and achieved a maximum −160 reward. The application of an
MEC (model error compensator) in the actual experiment successfully reduced the error movement
of the robots so that the robots could produce the formation change appropriately.

Keywords: formation change; cooperative transportation; reinforcement learning; Deep Dyna-Q

1. Introduction

Cooperative multi-agent systems are popular nowadays in several fields due to their
advantages and flexibility. Academic research, disaster mitigation, industry, and transporta-
tion have applied the cooperative multi-agent concept. A cooperative multi-agent system
is a multi-agent system that works together to solve problems or maximise utility. One of
the main advantages of cooperative multi-agent systems is their ability to perform complex
tasks more efficiently than a single agent. While if there is a failure with one or more agents,
it will not disintegrate the whole system because other agents can substitute for other
agents’ roles. Compared to one single high-performance agent, the lower-performance
cooperative multi-agent can be used and modified to perform various functions without
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losing the actual performance. Consequently, this condition reduces the agents’ mainte-
nance cost [1]. Because of its popularity, many strategies in cooperative transportation have
been proposed including leader–follower [2], virtual structure algorithms [3], behaviour-
based [4], and consensus-based control [5]. Some researchers have optimised cooperative
transportation with the potential field method by improving the transfer function and
providing pheromone concentration updates [6].

Many researchers have conducted studies to solve issues in formation control such as
obstacles, collision avoidance, and stability to improve the agents’ performance. One of
the methods proposed used decentralised model predictive control (MPC) and consensus-
based control [1,7–9]. Using a simulation, this method was applied to unmanned aerial
vehicles (UAVs). The method was successfully implemented and could avoid obstacles and
collisions between the UAVs. In some complex applications, cooperative multi-agents were
required to change the formation. The formation change issues in cooperative multi-agent
systems are complex. Each agent should coordinate with another agent when moving and
reaching the target point so that each agent will not have the same target point. Collisions
between dynamic objects, such as obstacles, and static objects, such as other agents, should
be avoided. As a solution for formation change issues, reinforcement learning is used by
many researchers.

Reinforcement learning is known as a good method to apply in a formation change
environment. One of the reinforcement learning algorithms that has been used is Deep
Q-learning, which has been popular in many applications. In [10], the authors proposed the
constrained Deep Q-network (DQN), which renews the parameter conservatively when the
variance between the Q-function and target network is extensive. The constrained DQN
will update the parameter strongly when the difference is tiny. This method was applied
in Atari games and has a couple of control problems. Continuous Deep Q-learning was
applied with a two-stage practical reinforcement learning algorithm using a simulator [11].
Another application of Deep Q-learning was the delivery schedule for same-day service
using vehicles and unmanned aerial vehicles [12]. In games, Deep Q-learning was applied
in 42 games and it had the best demonstration in 14 of the 42 games [13]. Deep Dyna-Q with
duelling DQN was applied in task-dialogue policy learning in a noisy environment [14].
On the other hand, the complex formation control process requires a long learning time.

Cooperative multi-agent systems are closely related to the formation change issue. It is
necessary to change the arrangement of the multiple agents according to the environmental
conditions, such as when avoiding obstacles, applying different sizes and shapes of tracks,
and moving different sizes and shapes of transport objects. Regarding the importance of the
complex formation control process, which needs a long learning time, in formation control,
a method which can reduce the learning time is required. This paper proposed applying
the Deep Dyna-Q algorithm in a formation change environment that used a model-based
algorithm that could estimate the next approximate model [15]. Since the state and reward
could be predicted by learning using an approximate model, the number of samples was
reduced and the learning time was improved. Two of the essential factors in the Deep Dyna-
Q algorithm are the learning rate and discount rate. The discount rate maximises the value
function of the Markov decision process (MDP). The discount rate values future rewards
by an exponential scheme that guarantees the theoretical convergence of the Bellman
equation [16–18]. This paper investigated the impact of the learning rate and discount rate
in formation control and multi-agent systems. A simulation was performed using OpenAI
Gym, and the best learning rate and discount rate were chosen to be applied in an actual
experiment. The simulation was adapted for the system using OpenAI Gym in formation
path learning for the cooperative transportation of multiple robots using MADDPG (multi-
agent deep deterministic policy gradient) [15]. The actual cooperative transportation used
three robots with two transport objects. In the actual experiment, to reduce the model error,
which affects the robot’s movement, actual cooperative transportation applications used
the model error compensator (MEC) as a controller.
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Even though the Deep Dyna-Q algorithm has been used in many applications, it has
not been applied in an actual experiment. The contribution of this paper is the use of
the Deep Dyna-Q algorithm in formation control in both a simulation and actual experi-
ments. The investigation in the simulation experiment consists of the formation change
achievement rate, collision number among agents, and collision number between agents
and transport objects. In the actual experiment, the investigation considered the application
of an MEC to control the agents’ movement and trajectory analysis between the simulation
and actual experiments.

This paper consists of six sections. Section 2 discusses the cooperative transportation
system used in this research, namely, the simulation using OpenAI Gym. The proposed
method Deep Dyna-Q is described in Section 3. This section explains the Deep Dyna-Q
algorithm applied in the simulation and actual experiment. The parameter tuning of
the Deep Dyna-Q algorithm in the simulation and its application in actual cooperative
transportation are investigated. The simulation results are reviewed in Section 4, while the
experiment for cooperative transportation is described in Section 5. The robot mechanism
and MEC structure for actual cooperative transportation are reviewed in this section. The
MEC performance is evaluated in the actual cooperative transportation application. The
actual cooperative transportation and analyses are reviewed in Section 5. In the end, the
conclusion of the research is presented in Section 6.

2. OpenAI Gym for a Simulated System

A formation change is required when it is necessary to change the arrangement
of multiple agents. The environmental conditions affect the formation change, namely,
avoiding obstacles, applying different sizes and shapes of tracks, and moving different
sizes and shapes of transport objects. The actual experiment type adopted in this research
was cooperative transportation with formation change with transport objects. The details
of the initial formation and the formation change are shown in Figures 1 and 2. The main
theme in the scenario was moving transport objects (boxes) from one place to another place.
After the robots finished moving one transport object by grasping the transport object, the
robots moved to another transport object. The initial position in this scenario was around
the first transport object (box), then the positions around the second transport object were
the target points. This paper focused on the formation change from the initial position
around the first transport object to the second transport object. The robot adopted in this
research is shown in Figure 3, while the two suction cups used to grasp the transport object
are shown in Figure 4. The number of agents was three robots, consisting of yellow, red,
and blue robots. The number of transport objects was two, with small and medium-sized
transport objects with dimensions of 580 mm × 430 mm and 850 mm × 430 mm. At the
same time, the distance between the static obstacles was 900 mm. The size of the cooperative
transportation area was 4 m × 3 m. The scenario of the formation change was as follows:
the robots put down the medium transport object and then changed their formation to
prepare to transport the small transport object. Each robot moved to reach the target point
considering the other robots’ positions. Two cameras were attached to the wall at a height
of 2700 mm. The distance between the cameras was 1000 mm. The agents used in this
research were omnidirectional robots, as shown in Figure 3. Each robot consisted of a
Raspberry Pi, Arduino Mega, Arduino 328, IMU, motor, and encoder.

The objective of the simulation experiment was to examine all of the components in
the actual experiment so that the simulation experiment result will be as close to the actual
cooperative transportation experiment. The simulation was applied in this research using
OpenAI Gym, which is a Python library [19–21]. OpenAI Gym is a toolkit especially built
for reinforcement learning research. OpenAI Gym has powerful features, such as providing
the environment composition. The final performance and the amount of learning time can
be examined in the reinforcement learning algorithm. The simulation was performed to in-
vestigate the performance of the algorithms before it was applied in the actual experiments.
The OpenAI Gym was chosen for the simulation toolkit in this research. The Deep Dyna-Q
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algorithm was constructed in Python 3 and the simulation result was displayed in OpenAI
Gym. The environment in the OpenAI Gym was set up according to the actual experiment
system. The number of robots was three and the number of transport objects was two, with
three sizes of transport objects.

Figure 1. Initial formation: The arrows represent the length and width of the cooperative transporta-
tion area, which is 4 m × 3 m.

Figure 2. Formation change.

Figure 3. Robot design.

OpenAI Gym with a random environment is shown in Figures 5 and 6. The coordinate
positions were extracted from the results of the web camera capture. The size of each robot
point was 80 mm and the diameter of the target point was 60 mm. The initial positions of
the robots represent the start positions of the robots, shown by the yellow, red, and blue
circles, while the target positions are the target set points shown by the black circles. In the
learning process, the size and positions of the transport objects were random, while the
actual sizes of the transport objects were 580 mm × 430 mm (small), 850 mm × 430 mm
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(medium), and 870 mm × 575 mm (big). All of the coordinate readings were based on the
web camera measurement.

Figure 4. Grasping using two suction cups.

Figure 5. OpenAI Gym random layout 1: The initial positions of the robots represent the start
positions of the robots, shown by the yellow, red, and blue circles, while the target positions are the
target set points shown by the black circles.

Figure 6. OpenAI Gym random layout 2: The initial positions of the robots represent the start
positions of the robots, shown by the yellow, red, and blue circles, while the target positions are the
target set points shown by the black circles.
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3. Configuration of Deep Dyna-Q for Formation Change

The proposed method challenged the issue of reinforcement learning in formation
changes which has a long learning time. In recent research, the MADDPG algorithm
showed effectiveness in a formation change system [15,20] compared to other methods
such as DDPG (deep deterministic policy gradient) and actor–critic. Nevertheless, the
MADDPG algorithm is a model-free learning method, in contrast, formation control is a
complex system which needs long learning times. Training of neural networks is required
for model-based approaches to improve the learning time. The Deep Dyna-Q is popularly
used for model-based learning in formation change systems. A recent study [22] with Deep
Dyna-Q in a formation change application had low accuracy for the formation achievement
rate with an 80% success rate without an obstacle layout and 74% with an obstacle layout.
Regarding the low accuracy, tuning the algorithm is needed. This research designed a
system with the neural network (NN) applied to the formation change using Deep Dyna-Q.

3.1. Deep Dyna-Q

In model-free learning, such as MADDPG, the agent uses actual environmental sam-
ples and never uses the generated prediction of the next state and the next reward. In
contrast, model-based learning uses the model’s predictions of the next state and the next
reward in order to calculate the optimal actions. An approximation model estimates the
transition probability and reward from the state and the reward obtained by the agent.
Since the state and reward can be predicted, the number of samples is reduced and the
learning time is improved.

Deep Dyna-Q is a model-based algorithm and the neural network construction of
Deep Dyna-Q is shown in Figure 7 adapted from [22]. The Q-network denotes the neu-
ral networks in DQN, the transition probabilities neural network denotes the transition
probability function in the approximate model, and the reward neural network denotes the
neural network of the reward function in the approximate model.

Figure 7. Construction of Deep Dyna-Q.

In a Q-network, the input is the states, which are the coordinates, velocity, and distance
value, while the output from a Q-network is an action, namely, the acceleration vector of
the agents. In a Q-network, the value is updated by the Q-table, using (1) [23].

Q(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)), (1)

where α, r, and γ, are the learning rate, the reward, and the discount rate, respectively.
Q(s, a) is the Q value stored in the table, and Q(s′, a′) is the maximum Q value in the
destination state. The robot acts to select the best value in the destination state and learns



Automation 2023, 4 216

to reduce the error in the updated equation. In this study, the tuning of the Deep Dyna-Q
algorithm varied the parameter of the discount rate and the learning rate.

The discount rate has a role as a regulariser in reinforcement learning. Using the
discount factor, rewards are gradually scaled down after each step so that the total sum
remains bounded. This study investigated the impact of the discount rate on formation
control and multi-agent systems. The standard treatment of the reinforcement learning
problem is the Markov decision process, which uses a discount factor between 0 and
1, which reduces the present value of future rewards exponentially. The discount rate
varied between about 0.85 and 0.95 in this paper. The discount rate in Deep Dyna-Q
is fundamental, so studies have focused on the discount rate calculations [16–18]. The
discount rate in Deep Dyna-Q maximises the value function of the Markov decision process
(MDP). The discount rate values future rewards by an exponential scheme that leads to
guaranteed theoretical convergence of the Bellman equation [16–18].

The model’s learning rate determined by how quickly it picks up new information.
The learning rate is set between 0 and 1. Setting it to 0 means that the Q-value is never
updated; therefore, there is no learning. The learning is rapid when a high value is set,
such as 0.9. Extremely high learning rates will provide weight updates that are too large,
which will cause the model’s performance to fluctuate over training epochs. It is typically
impossible to determine the ideal learning rate in advance [24]. Trial and error are required
to determine the optimal parameters for formation achievement improvement. The learning
rate was varied between 0.01 and 0.08 in this study, following reference [23], and the impact
on formation control was investigated.

The probability function was based on a Markov decision process (MDP), which is
shown in (2). From the transition probability function, a transition probability distribution
is obtained from the current state to the state several steps ahead, where st is the current
state, st+1 is the next state, at is the action taken from st, p is the transition probability, and
T is the transition probability function.

T = p(st+1|st, at) (2)

In the transition probabilities neural network, the NN consisted of 16 neurons in the
input layer, 16 neurons in the hidden layer, and five states to be observed in two output
layers (5 × 2 neurons). The two output layers were average and deviation. In the reward
neural network, the NNs had three layers: the input layer was 16 neurons, the hidden layer
was 16 neurons, and the output layer was 1 neuron. The input vector of the NNs was the
same as the Q-network neural network, while the output was the reward. The reward was
calculated based on the reward function. In the reward function, a value proportional to
the distance was calculated as a negative value which measured the distance between a
robot and the target point. If there was a collision between agents, the negative reward of
−1 was added, while if there was a collision between the agent and the transport object,
the negative reward of −1 was added. The total reward of each agent was the sum of the
rewards of value distance, collisions between agents, and collisions between agents and
target points. The more positive the reward was the better the performance of the agent.

3.2. Learning Method and Neural Network Construction

The comprehensive investigation in the simulation experiment consisted of the for-
mation change achievement rate, collision number among agents, and collision number
between agents and transport objects. In order to act appropriately in any formation
changes, versatile NNs were needed. The neural networks were trained in random environ-
ments to learn any conditions of the robots and transport objects. In the robot environments,
each robot’s initial and goal positions were changed randomly. Each robot did not have
one definite target point, but each could reach all target points based on the conditions of
the robot, transport objects, and other robots. The parameters that varied in the transport
objects were the size, ratio, and position of each transport object.
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The Q-network neural network design is shown in Figure 8. This explains the NN
algorithm used to determine the acceleration vector of the robots. The NN had three layers:
the input layer had 30 neurons, the hidden layer had 64 neurons, and the output layer had
two neurons. The input vector of the NN was P(x,y), V(x,y), G1–3(x,y), R1–2(x,y), L1–16. P(x,y)
and V(x,y) denote the position and velocity of the robots, respectively.

Figure 8. Design of Q-network neural network.

There were three goals available that the robot could reach based on the relative
position to the target point and the positions of the other two robots. Figure 9 represents
the definition of them. G1–3(x,y) and R1–2(x,y) denote the relative coordinates of the target
points and other robots.

Figure 9. Relative positions of target points (G1–3(x,y)) and other robots (R1–2(x,y)).

L1–16 was the input of the virtual lidar sensors line used to measure the distances
between the robots and transport objects, as shown in Figure 10. Every single lidar sensor
line was calculated as one lidar (Li). As Figure 10 shows, three lidar lines detect the
transport object.

Figure 11 shows the description of the transition probabilities neural network. The
input was the state and the action was the output from the Q-network neural network. The
outputs of the transition probabilities neural network were the average and deviation. The
output from the probabilities neural network was used as input for the Q-network neural
network. The description of the reward neural network is shown in Figure 12. The inputs
were the state and the output was the action from the Q-network neural network. The
output from the reward neural network was the reward.
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Figure 10. Virtual lidar (L1–16).

Figure 11. Design of transition probabilities neural network.

Figure 12. Design of reward neural network.

4. Simulation Results
4.1. Transition of Rewards

The rewards were calculated based on the reward function. The comparison of transi-
tion rewards during learning in DQN and various learning rates of Deep Dyna-Q is shown
in Figure 13. The various learning rates are presented to evaluate the transition reward for
each value [14,23,25,26]. The horizontal axis represents the scenarios in thousands (×1000),
while the vertical axis shows the reward values. The reward value presented is the total
reward of the three agents. As seen in Figure 13, the reward transition comparisons are
for DQN and DDQ with learning rate values of 0.001, 0.01, 0.04, and 0.08, as detailed in
Section 4.3. A more positive reward indicates a better performance of the agent. A more
positive reward shows that the distance between the goal and the agents was closer, and
fewer collisions occurred. These rewards correlated to the formation change achievement
rate, collision number among agents, and collision number between agents and transport
objects. The agents’ performance in the initial few episodes was similar, after that the
performance improved. The DQN obtained a maximum of about −170 rewards in around
130,000 episodes. While other variations in DDQ could achieve the −170 reward in 58,000
and 98,000 episodes for DDQ (0.01) and DDQ (0.001), respectively. On the other hand,
DDQ (0.04) and DDQ (0.08) could only reach maximum reward values of −197 and −207
instead of the value of −170 achieved by DQN. DDQ (0.01) obtained the highest reward
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value, about −160 in 100,000 episodes. For a summary comparison, the DQN obtained the
maximum −170 reward in about 130,000 episodes while the DDQ (0.01) could achieve this
value in 58,000 episodes and achieved a maximum −160 reward.

Figure 13. Transition reward comparison of DQN and Deep Dyna-Q.

4.2. Discount Rate Tuning

The discount rate is one of the hyperparameters used to update the Q-table in Deep
Dyna-Q. The discount rate will affect the Q-value in order to obtain the best value to
determine each robot’s action. The discount rates compared in this research were 0.85, 0.9,
and 0.95, according to recent research about the algorithm’s application [14,23,25,26].

Table 1 displays an evaluation of the learning for values of 0.85, 0.9, and 0.95. The
formation change achievement rate meant all the robots could reach the target points. The
collision number among agents shows the average number of collisions among the agents
per episode. At the same time, the collision number between agents and transport objects
indicates the average collision number among agents and transport objects. In Table 1, the
three discount rates of 0.85, 0.9, and 0.95 have a 100% formation change achievement rate.
This means that with all three discount rate values, the robots could successfully reach all
the target points. In the collision number among agents, the percentage 0% was reached by
all three values. On the other hand, the collision numbers between agents and transport
objects for discount rate values of 0.85, 0.9, and 0.95 were 1.35, 1.01, and 1.23, respectively.
Regarding this result, the value of 0.9 had the best result because it had the lowest point
among the three values. Every episode consisted of 35 steps and in every episode, there
were about 0–4 collisions. This value was the average collisions per episode in 100 episodes.

Table 1. Evaluation of learning with different discount rates.

Evaluation 0.85 0.9 0.95

Formation change achievement rate 100% 100% 100%

Collision number among agents 0 0 0

Collision number between agents and trans-
port objects 1.35 1.01 1.23

Figures 14–16 show the trajectories of Deep Dyna-Q with discount rates of 0.85, 0.9,
and 0.95, respectively. Square shapes mark the initial point of each robot, while the circle
shapes mark the target points. The target points did not specifically define a particular robot,
the robots could coordinate and reach the most efficient target point. Figures 14 and 15
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indicate smoother trajectories than the trajectory in Figure 16. The yellow robot generally
could reach the target point almost in the same way for all various discount rate values.
Different trajectories were taken by the blue and red robots.

Figure 14. Trajectories of Deep Dyna-Q with discount rate of 0.85: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.

Figure 15. Trajectories of Deep Dyna-Q with discount rate of 0.9: The robots’ initial points are marked
by the rectangle markers, while the target points are marked by the circle markers numbered 1–3.

Figure 16. Trajectories of Deep Dyna-Q with discount rate of 0.95: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.
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4.3. Learning Rate Tuning

In addition to the discount rate, the learning rate has an important role in the Deep
Dyna-Q calculation. Table 2 shows the evaluation of the learning with different learning
rates. The compared learning rates were chosen by a review of the literature [14,23,25,26].
The learning value variations chosen were 0.001, 0.01, 0.04, and 0.08 for Deep Dyna-Q, and
as a comparison the DQN analysis was added.

Table 2. Evaluation of learning with different learning rates.

Evaluation DDQ (0.001) DDQ (0.01) DDQ (0.04) DDQ (0.08) DQN

Formation change achievement rate 94% 100% 72% 10% 91%

Collision number among agents 0 0 0.76 0.92 0.06

Collision number between agents and
transport objects 2.15 1.01 1.75 3.01 3.69

Based on Table 2, in the formation change achievement rate percentage evaluation,
the learning rate value of 0.001 achieved a result of 94%, the 0.01 value achieved a 100%
result, and the 0.04 value achieved a lower value of 72%. On the contrary, the 0.08 learning
rate achieved only 10% for the formation achievement rate. In comparison, the DQN had a
formation achievement rate of about 91%. These conditions specified the best performance
order as DDQ (0.01), DDQ (0.001), DQN, DDQ (0.04), and DDQ (0.08). Furthermore, for
the collision number among agents and collision number among agents and transport
objects, the learning rate of 0.01 gave the best performance. The 0.01 learning rate had a 0
collision number among agents and a 1.01 collision number among agents and transport
objects. For the last comparison, the collision number among agents and between the
agents and transport objects were 0 and 2.15 for a 0.001 learning rate, 0.76 and 1.75 for a
0.04 learning rate, and 0.92 and 3.01 for a 0.08 learning rate. While DQN had values for the
collision number among agents and collision number between agents and transport objects
of 0.06 and 3.69, respectively. These values were the lowest performance among all of the
algorithms. Figures 17–20 indicate the trajectory of Deep Dyna-Q with 0.001, 0.01, 0.04, and
0.08 learning rate values.

According to Figures 17–20, it can be seen that the yellow robot has almost the same
trajectory. The yellow robot’s target point can be reached appropriately only with the
learning rate 0.01 in Figure 18, while the target point is shifted with other learning rate
values. Figures 19 and 20 have almost the same trajectories.

Figure 17. Trajectories of Deep Dyna-Q with learning rate of 0.001: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.
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Figure 18. Trajectories of Deep Dyna-Q with learning rate of 0.01: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.

Figure 19. Trajectories of Deep Dyna-Q with learning rate of 0.04: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.

Figure 20. Trajectories of Deep Dyna-Q with learning rate of 0.08: The robots’ initial points are
marked by the rectangle markers, while the target points are marked by the circle markers numbered
1–3.
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5. Experiment for Cooperative Transportation
5.1. Robot Mechanism

The body coordinate system of the Nexus robot is shown in Figure 21. This body
coordinate system was the basis of the robots’ movements. The movements of the robots
were omnidirectional or holonomic movements. Each robot consisted of three omni wheels,
which were freewheel rollers on perpendicular planes to their rotation axis. As a result
of sliding in the parallel direction to the rotation axis, omnidirectional movement was
attainable [27]. Where v1i, v2i, and v3i are the velocities of each wheel on the ith robot.
The parallel velocities of each robot in the x-axis and y-axis are denoted by viX and viY,
respectively, and wi is the angular velocity. The relationship between each robot’s velocity
and the parallel velocity is denoted as follows:v1i

v2i
v3i

 =

 0 −1 d
−
√

3
2

1
2 d√

3
2

1
2 d


viX

viY
wi


The block diagram system of the robots is shown in Figure 22. The images captured by

the web camera were processed on a personal computer (PC). The image result was used to
present the position of each robot and transport objects. This position was fundamental to
determining the robot’s direction and speed. A Wi-Fi router connected to the PC was used
to communicate with the Raspberry Pi which works as the main processor in each robot.
The Raspberry Pi connected to the Arduino Mega controlled the strain gauges, relays for
the vacuum motor and solenoid, distance sensors, and inertial measurement unit (IMU).
The number of strain gauges was two, with the function to measure how strongly the robots
could hold the object. The vacuum motor and solenoid had roles in controlling the suction
cups when holding the object. Moreover, the Arduino Mega was connected to Arduino 328.
Arduino 328 was responsible for managing the motor movements by controlling the three
motor encoders.

Figure 21. Body coordinate system.

Figure 22. Block diagram of actual implemented system.
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An ROS (robot operating system) was used for the actual experiments. The actual
experiments used ROS1 and ROS2 to construct the system. The PC connection to the
Raspberry Pi used the ROS2 connection through the wifi router. The Raspberry Pi used
ROS2, while the Arduino Mega used ROS1. Some packages were not available in ROS2, so
the Arduino Mega used ROS1. The Arduino Mega was connected to the Raspberry Pi using
an ROS bridge for connecting between ROS2 and ROS1. The PC gave the commands to
the robots in the form of the velocity of each robot. The robots’ positions and the transport
objects’ were sent to the PC using ceiling camera detection so that the central processor
could calculate the distance and position of the target positions and give the velocity to each
robot in real-time. Thereafter, the velocity of each wheel was calculated in the Arduino.

The robot hardware had a limitation in its velocity from the neural network so that the
robot’s movement should be restricted. When the robot’s movement was not restricted, the
robot could not move according to the neural network’s velocity command. On the other
hand, the restriction could not be given immediately to avoid the saturation in the velocity.
As the solution, a low pass filter was given to restrict the velocity of the robots so that the
velocity of the robots could be restricted without any saturation. The low pass filter was
applied both in the simulation and actual experiment.

5.2. Model Error Compensator (MEC)

In the actual experiment, the investigation contained the application of an MEC to
control the agents’ movement and trajectory analysis between the simulation and actual
experiments. Normally transfer learning or fine-tuning is required to fit environmental
change. On the other hand, robust control was applied to suppress the disturbance. It
was useful to design a robust controller MEC to reduce the burden of retraining. In the
actual experiment, the controller of the robots’ movement used a model error compensator
(MEC) [28]. The controller was used to minimise the model error in the system. Each robot
had its own controller with an MEC. The block diagram of the control system is shown in
Figure 23. The controller was implemented in Arduino 328, which controlled each robot’s
movement using a motor encoder.

Figure 23. Block diagram of control system.

P(s) is the actual plant, Pn(s) is the nominal model, and C(s) is the compensator. The
robot inputs are wiref and viref. Where wiref is the angular velocity of the ith robot. The
velocity in the x-axis and y-axis for each robot is denoted by (3).

vire f = [vire f X , vire f Y]
T . (3)

vin and win are the output from Pn(s). The MEC was designed to compensate for the
model error between the actual plant P(s) and nominal model Pn(s) as follows (4):

4P = P(s)− Pn(s). (4)

The Pn(s) with a time constant of 0.2 is represented as follows:
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The compensator C(s) of the MEC was designed with parameters Kp, Ki, and Kd as

1.3, 5.5, and 0, respectively. The compensated outputs are wi and vi. The effectiveness of the
MEC in the robots was evaluated by comparing the application of the MEC in the robots to
not applying the MEC.

5.3. Virtual Lidar and Actual Experiment

In the actual experiment, the virtual lidar sensors were used to measure the distances
between the robots and transport objects. Visualisation of the virtual lidar sensors from the
ceiling camera is shown by Figure 24. As can be seen in Figure 24, the virtual lidar could
detect the transport objects. The virtual lidar of the red robot could detect the transport
object on the upper side of the robot while the virtual lidar of the blue robot could detect
the transport object on the lower side of the robot. The virtual lidar of the yellow robot
could detect the transport objects on the left side and right side of the robot.

Figure 24. Visualisation of virtual lidar sensors from ceiling camera.

To confirm the communication between the PC and the robots, the camera processing,
and the motor controller, the velocities from the simulation were directly given to the
robots. The actual experiment was implemented using the Deep Dyna-Q algorithm and the
controller used was a model error compensator (MEC). In order to evaluate the performance
of the MEC application in the experiment, an experiment without the MEC application was
also conducted.

Figure 25 indicates the trajectory comparison of the simulation and actual experiment
with the MEC, and Figure 26 shows the trajectory comparison of the simulation and
actual experiment without the MEC. The velocity of each robot was derived based on
the simulation result. The velocity from the simulation was implemented in the actual
experiment using the MEC and without the MEC. In the actual experiment without the
MEC, a PID controller was used. The values of the PID controller were set to the initial
recommendation values from the robot factory. The PID values were 0.26, 0.02, and 0 for
the proportional, integral, and differential values, respectively.

Comparing Figures 25 and 26, the error between the simulation and the actual ex-
periment with the MEC was smaller than without the MEC. In Figure 25, the robot path
basically follows the trajectory shape of the simulation. All three of the robots have a similar
trajectory to the simulation. While in the trajectory without the MEC in Figure 26, one robot
follows the path of the simulation, while the other robots have a more significant gap to the
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simulation paths. By comparing the results of Figures 25 and 26, it could be concluded that
the MEC could reduce the error in the robot movement so that it has a more stable path.

Figure 25. Trajectories of simulation and actual experiment with the MEC.

Based on the results in Figure 25, the performances of the communication between
the PC and the robots, the camera processing, and the MEC controller were confirmed.
The next actual experiment used the random learning of Deep Dyna-Q. According to the
discount rate and learning rate tuning, the best performance was chosen and applied in the
actual experiment. The discount rate and learning rate used in the actual experiment were
0.9 and 0.01.

Figure 26. Trajectories of simulation and actual experiment without the MEC.

Figures 27–29 show the comparison between the simulation, actual experiment with
the MEC, and actual experiment without the MEC. As can be seen, all of the results in the
simulation, actual experiment with the MEC, and without the MEC, could reach the target
points. In Figure 28, the MEC trajectory and simulation were the same. The yellow robot
(top robot) reaches target point 1, the red robot (right robot) reaches target point 2, and the
blue robot (bottom robot) reaches target point 3. On the other hand, in Figure 29, even if
the robots could reach the targets, there were huge errors between the actual experiment
without the MEC and the simulation experiments, especially for the yellow robot (top
robot) and red robot (right robot).



Automation 2023, 4 227

Figure 27. Trajectories of simulation experiment: The robots’ initial points are marked by the rectangle
markers, while the target points are marked by the circle markers numbered 1–3.

Figure 28. Trajectories of actual experiment with the MEC: The robots’ initial points are marked by
the rectangle markers, while the target points are marked by the circle markers numbered 1–3.

Figure 29. Trajectories of actual experiment without the MEC: The robots’ initial points are marked
by the rectangle markers, while the target points are marked by the circle markers numbered 1–3.

In summary, the simulation could predict the path by which the robots reached the
target points. The MEC could control the system well in the actual experiment, which was
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closer to the simulated experiment path. While in an experiment without the MEC, all of
the robots could achieve the target points but with a bigger error compared to the trajectory
of the actual experiment with the MEC.

For testing the performance of a neural network, different layouts were presented.
Figures 30 and 31 show the actual experiment with the MEC on layout 1 and layout 2.
The robots’ initial points are marked by the rectangle markers, while the target points are
marked by the circle markers numbered 1–3. All of the robots could reach the target points
properly. As shown in Figures 30 and 31, all of the robots also reached the target points as
well. Even in the different layouts, all robots could coordinate and achieve the target points
to make the new formation in these layouts.

Figure 32 presents the cooperative transportation in an actual experiment. The for-
mation change takes a time of about 24 s. The trajectory of this experiment can be seen in
Figure 31. According to Figure 32a, the 0th second shows the initial position of the robots.
Then, the movements of the robots are shown in Figure 32b,c for the 8th and 16th seconds.
Finally, the robot reaches the final position at the 24th second.

Figure 30. Trajectories of actual experiment with the MEC on layout 1: The robots’ initial points
are marked by the rectangle markers, while the target points are marked by the circle markers
numbered 1–3.

Figure 31. Trajectories of actual experiment with the MEC on layout 2: The robots’ initial points
are marked by the rectangle markers, while the target points are marked by the circle markers
numbered 1–3.
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The neural network learned with various random layouts, positions, and obstacle
sizes to achieve the new formation form. The response in the actual experiments to the
obstacles and other robots’ positions was strict in shape. In future research, the simulation
and actual experiment should be reconstructed to make a digital twin system with the
intention of achieving a closer result between the simulation and the actual experiment.

Figure 32. The cooperative transportation actual experiment.

6. Conclusions

This study has successfully implemented the proposed method and investigated the
formation control in a simulation and actual experiments. The discount rate and learning
rate values affected the formation change achievement rate, collision number among agents,
and collision between agents and the transport objects. For a learning rate comparison,
DDQ (0.01) consistently outperformed DQN. DQN obtained the maximum −170 reward in
about 130,000 episodes, while DDQ (0.01) could achieve this value in 58,000 episodes and
achieve a maximum −160 reward. The application of an MEC (model error compensator)
in the actual experiment successfully reduced the error in the movement of the robots so
that the robots could produce the formation change appropriately.
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