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Abstract: Green carbon-based materials (GCM), i.e., carbon materials produced using renewable
biomass or recycled waste, ought to be used to make processes sustainable and carbon-neutral.
Carbon nanomaterials, like carbon dots and the nanobichar families, and carbon materials, like
activated carbon and biochar substances, are sustainable materials with great potential to be used in
different technological applications. In this review, the following four applications were selected, and
the works published in the last two years (since 2022) were critically reviewed: agriculture, water
treatment, energy management, and carbon dioxide reduction and sequestration. GCM improved
the performance of the technological applications under revision and played an important role in
the sustainability of the processes, contributing to the mitigation of climate change, by reducing
emissions and increasing the sequestration of CO2eq.

Keywords: green carbon nanomaterials; green carbonaceous materials; biomass; waste; biochar;
nanobiochar; sustainability

1. Introduction

Green nanomaterials/materials are being proposed to mitigate sustainability problems
associated with using natural resources and/or production processes [1–19]. To reduce the
environmental impacts related to natural resources and toxicity, carbon-based nanomate-
rials and/or carbonaceous carbon are being suggested as alternatives, together with the
utilization of renewable biomass as a carbon source, and named green carbon nanomateri-
als (GCN) and/or green carbonous materials (GCM) [7–12]. Moreover, environmentally
friendly synthetic processes are being considered to produce these green products [6].

GCN/GCM appear as sustainable alternatives for several applications: agriculture [12–18],
water treatment [1], sensors [2,7], biomedical applications [4,10,11], and carbon dioxide seques-
tration [12–18]. GCNs are usually synthesized by hydrothermal methods directly from the
powered carbon source or, when a specific functionality requires improved performance, by
mixing with specific reagents (Figure 1). For example, carbon nanomaterials obtained directly
from biomass usually have a low quantum yield (QY). However, mixing with citric acid and
a nitrogen source increases the QY to 61%, which is more suitable for chemical/biochemical
sensor research [19].

GCM can be produced as a by-product of GCN synthesis or by the direct carbonization
or pyrolysis of the biomass. For example, biomass as a raw material for GCN production
originated from an insoluble activated carbon material, besides the soluble nanomaterial,
with a large specific surface area of about 295 m2/g [20]. Biochar is a typical GCM obtained
directly from renewable biomass or waste and is produced by heating at high temperatures
without oxygen (for example, in the presence of nitrogen and/or carbon dioxide), followed
by a final physical–chemical transformation for functionality tuning (Figure 2) [15].
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high temperatures without oxygen (for example, in the presence of nitrogen and/or car-
bon dioxide), followed by a final physical–chemical transformation for functionality 
tuning (Figure 2) [15]. 

 
Figure 1. Typical scheme of carbon-based nanomaterial preparation from eucalyptus leaves. 
Adapted from reference [19]. 

 
Figure 2. Schematic representation of biomass pyrolysis and biochar activation processes [15]. 
Copyright (2023) from the American Chemical Society. 

According to their origin/characteristics and/or synthesis methodology, GCN/GCM 
have different general designations. If GCN have no well-defined structure, they are 
called carbon dots (CD), carbon quantum dots (CQD), or nanobiochar, and if they have a 
well-defined structure, they fall within the classical carbon nanomaterials, like graphene 
oxide (GO) and carbon nanotubes (CNT). CD and CQD usually refer to the same carbon 
nanomaterial, which is synthesized by bottom-up or top-down technologies [21], while 
nanobiochar is obtained from bulk biochar through top-down methodologies, like ball 
milling, centrifugation, and sonication [22]. The most common CGM are biochar and ac-
tivated carbon (AC). 

To promote the sustainability of technological nano/bulk materials, raw materials 
must be obtained from renewable sources or waste recycling. Regarding carbon-based 
nanomaterials/materials, straightforward sources of raw materials are renewable bio-
mass and anthropogenic/technological waste. The use of these sustainable advanced 
products in critical technology processes, replacing high-environmental-impact compo-
nents, is a fundamental approach toward the global sustainability of our society. Four 
typical critical processes are currently under heavy sustainability discussion: 
(i) agricultural food production and the classical industrial strategies to increase yield 

production, usually based on unsustainable agricultural practices; 
(ii) technological strategies to treat water, either fresh or wastewater, which usually 

involve energy and/or the use of nonrenewable natural resources; 
(iii) batteries for electric equipment that require highly unsustainable mineral resources; 
(iv) technologies for carbon dioxide sequestration to mitigate climate change. 

These themes contribute significantly to the following United Nations Sustainable 
Development Goals (SDG): 2—end hunger, achieve food security and improved nutri-
tion, and promote sustainable agriculture; 6—ensure availability and sustainable man-
agement of water and sanitation for all; 7—ensure access to affordable, reliable, sustain-

Figure 1. Typical scheme of carbon-based nanomaterial preparation from eucalyptus leaves. Adapted
from reference [19].
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According to their origin/characteristics and/or synthesis methodology, GCN/GCM
have different general designations. If GCN have no well-defined structure, they are
called carbon dots (CD), carbon quantum dots (CQD), or nanobiochar, and if they have a
well-defined structure, they fall within the classical carbon nanomaterials, like graphene
oxide (GO) and carbon nanotubes (CNT). CD and CQD usually refer to the same carbon
nanomaterial, which is synthesized by bottom-up or top-down technologies [21], while
nanobiochar is obtained from bulk biochar through top-down methodologies, like ball
milling, centrifugation, and sonication [22]. The most common CGM are biochar and
activated carbon (AC).

To promote the sustainability of technological nano/bulk materials, raw materials
must be obtained from renewable sources or waste recycling. Regarding carbon-based
nanomaterials/materials, straightforward sources of raw materials are renewable biomass
and anthropogenic/technological waste. The use of these sustainable advanced products
in critical technology processes, replacing high-environmental-impact components, is a
fundamental approach toward the global sustainability of our society. Four typical critical
processes are currently under heavy sustainability discussion:

(i) agricultural food production and the classical industrial strategies to increase yield
production, usually based on unsustainable agricultural practices;

(ii) technological strategies to treat water, either fresh or wastewater, which usually
involve energy and/or the use of nonrenewable natural resources;

(iii) batteries for electric equipment that require highly unsustainable mineral resources;
(iv) technologies for carbon dioxide sequestration to mitigate climate change.

These themes contribute significantly to the following United Nations Sustainable
Development Goals (SDG): 2—end hunger, achieve food security and improved nutrition,
and promote sustainable agriculture; 6—ensure availability and sustainable management
of water and sanitation for all; 7—ensure access to affordable, reliable, sustainable, and
modern energy for all; 9—build resilient infrastructure, promote inclusive and sustain-
able industrialization, and foster innovation; 12—ensure sustainable consumption and
production patterns; 13—take urgent action to combat climate change and its impacts; and
15—protect, restore, and promote the sustainable use of terrestrial ecosystems, sustainably
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manage forests, combat desertification, and halt and reverse land degradation and halt
biodiversity loss.

GCN/GCM are being proposed to be incorporated into these critical processes to
replace other unsustainable materials. This review considers carbon nanomaterials syn-
thesized from renewable carbon residuals in the last two years (since 2022), ensuring their
intrinsic sustainability in these processes.

2. Agriculture Applications
2.1. Carbon-Based Nanomaterials

Traditional agricultural NPK inorganic fertilization markedly contributes to the carbon
footprints of products, contributing negatively to the sustainability of agricultural farms.
Carbon nanomaterials are being proposed as potentially more sustainable agents to be
used in agricultural practices [20,23]. Although there is no common effect on all plants
exerted by carbon nanomaterials, an increasing trend in production yields is observed
(Figure 3) [20]. However, most of the research work in this area has been done with well-
characterized carbon nanomaterials like graphene oxide (GO), carbon nanotubes (CNT),
and fullerenes, among others [20,23], which are not synthesized from renewable biomass,
and sustainability is compromised.
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strawberries, and the results were compared with those of strawberries irrigated with 
water and regular nutrients. The N-CD had a marked positive impact on strawberry 
production compared to the two control experiments (Figure 4). The nanoparticles’ water 
solubility and nanometer size allowed their assimilation by the strawberries’ roots and 
increased the chlorophyll, phenol, and carbohydrate content [24]. 
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American Chemical Society.

Nitrogen-doped carbon dots (N-CD) were synthesized from fresh betle leaves (Piper
betle) [24]. Namely, 5 g of betle leaves, finely cut into pieces, were mixed with 60 mL
of water and kept at 180 ◦C for 10 h, and an N-CD solution was obtained after the cen-
trifugation and filtration of the solution through a 0.22 µm filter. The average size of the
carbon nanoparticles was 3.2 nm. The filtrated solution (1.9 mg/L) was used to irrigate
strawberries, and the results were compared with those of strawberries irrigated with water
and regular nutrients. The N-CD had a marked positive impact on strawberry production
compared to the two control experiments (Figure 4). The nanoparticles’ water solubility
and nanometer size allowed their assimilation by the strawberries’ roots and increased the
chlorophyll, phenol, and carbohydrate content [24].
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good seed germination by facilitating water absorption, improving plants’ resistance to 
abiotic stress, and inactivating toxic pollutants [27]. 
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American Chemical Society.

Carbon dots produced from sugar beet molasses (a byproduct of sugar factories)
(M-CD) were assayed to alleviate the effects of drought and salt stress on tobacco plant
growth [25]. M-CD were obtained directly from the supernatant of the centrifugation of
a mixture of 5 g of molasses and 10 mL of water [25]. The effect of the increasing M-CD
concentration solutions on the tobacco plant was observed by replacing the irrigation water
with the M-CD solution. When the carbon nanomaterials were present, the tobacco plant
was more resilient under salt and drought stresses [25].

Carbon-based nanomaterials can also be applied to the materials used in green-
house coverings. Carbon quantum dots (CQD) from agave fiber bagasse (obtained from a
tequila distillery) were synthesized by burning them in an open-air powder (sieved with a
200 mesh) at 500 ◦C for between 0.5 and 2 h [26]. The CQD were obtained by the filtration
(through a 0.22 µm filter) of the suspension resulting from the mixture of the treated powder
with water and after sonication and centrifugation. The CQDs’ quantum yield (QY) varied
from 9.17 to 15.74 depending on the combustion time—the longer the combustion time,
the higher the QY. The average size of the carbon nanoparticles in the 0.5 h combustion
time sample was 5.6 nm ± 1.2 nm [26]. Because the purification procedure of the CQD
sample under analysis in this work was only based on filtration through a 0.22 µm filter,
the nanoparticles’ preparation was expected to be contaminated with molecular substances
resulting from the combustion process. These CQD were applied on acrylic sheets, re-
sulting in a coating used in a greenhouse experiment [26]. The CQD coating filtered the
sunlight with a two-fold benefit on plants: (i) they absorbed harmful solar photons and
(ii) they converted higher-energy photons into lower-energy blue radiation that matched
the absorption of chlorophyll a. The plants (ipomoea) under this CQD coating had faster
germination rates and better plant growth rates [26].

Due to the nanometric size of carbon dots (CD), they enter plants by root and leaf
absorption and may interfere with the plant’s physiology (Figure 5) [27]. CD will increase
the crop yield by enhancing plant photosynthesis, acting as nanofertilizers, promoting
good seed germination by facilitating water absorption, improving plants’ resistance to
abiotic stress, and inactivating toxic pollutants [27].
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Carbon nanomaterials have another important role in agricultural practices, namely
as nanocarriers for pesticides and fertilizers, allowing the controlled release of active
molecules [20]. Nevertheless, carbon nanomaterials must have intrinsic sustainability, i.e.,
being synthesized from renewable raw materials (GCN), and, in the agriculture business,
the incorporation of agricultural residuals into the productive cycle is highly encouraged
within the ongoing transition to the circular economy.

GCN interfere with the different phenological stages of plants, with potential increases
in crop yields. However, these studies are still in the preliminary stages and further
information is required about the long-term effects of nanomaterials in general and GCN
in particular. Moreover, sustainable production processes of GCN must be designed so as
not to negatively affect the carbon footprint of agricultural crop production.

2.2. Carbon-Based Materials—Biochar

Biochar is one of the biomass-based carbon materials that has been highly investigated.
Biochar is a product of the valorization of feedstocks, like municipal organic waste and
agri-industrial residues, through slow pyrolysis [28–37]. Thermal processes, like pyrol-
ysis and carbonization, convert biomass into a carbon-rich microporous material with
a well-developed porous structure, a highly specific surface area, and a high degree of
aromatization (Figure 6) [28–31]. These features can be tuned using different raw materials
and the technical characteristics of pyrolysis. Biochar is added to soil to modify its physical
and chemical composition, microbial activity, soil fertility, and pollution load [28–37].
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questration [30]. A low-temperature biochar from manure is increases the nutrients 
and improves the crop yields in low-fertility soils [30]. 
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Biochar contains inorganic elements that are macronutrients, particularly N, P, and
K, and micronutrients to plants; when added to soils, they will improve their fertility,
resulting in high crop yields [28,29]. The bioavailability of the nutrients may not necessarily
result from the nutrient load of biochar but from the modifications of the soil’s physical
properties, like the bulk density, porosity, water retention, and hydraulic conductivity,
which result in an increase in the plant’s nutrient use efficiency [28,29]. Improvements in soil
organic matter (SOM) and the corresponding soil structure (macro- and microaggregates)
are observed upon biochar soil incorporation [31]. Biochar can also stimulate the soil’s
microbial population and its activity, particularly mycorrhizal fungi [28,29]. Another
essential property of biochar is its specific surface area (SSA) and the adsorption of organic
compounds and metal ions, which can improve the soil quality by immobilizing toxic
pollutants [28]. Moreover, biochar can correct the pH in acidic soils and/or improve the
cation exchange capacity (CEC) [28,29]. Figure 7 highlights the effects of adding biochar to
the soil on its physicochemical properties [29].

However, biochar is not a well-defined chemical substance with constant properties.
Indeed, the biochar’s characteristics and functional properties depend on the raw materials
and on the technical features of the pyrolysis [29]. Some examples demonstrate this
variability and the potential to tune the method according to the desirable application [29].

(i) The pyrolysis of hardwood biomass results in a biochar with higher organic carbon.
If biochar is produced from animal manure, it results in a higher NPK nutrient
load and a higher CEC [28]. Different raw materials produce a nutrient-enriched
biochar [32]: seaweed, potassium; manure, phosphorous; rice straw, silicon; bone,
calcium; keratin, nitrogen.

(ii) Higher pyrolysis temperatures produce a biochar that raises the nutrient concen-
trations, soil porosity, SSA, and carbon content and increases the pH [29]. Biochar
produced at lower temperatures improves the soil CEC [28].

(iii) A high-temperature biochar produced from lignin-rich feedstocks may decrease the
methane and nitrous oxide emissions in acidic soils and contribute to carbon seques-
tration [30]. A low-temperature biochar from manure is increases the nutrients and
improves the crop yields in low-fertility soils [30].
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Biochar has been used as a growing medium in hydroponic cultures [31] and to amend
composting processes to reduce greenhouse gas emissions and nitrogen losses [31].

Slow-release fertilizers (SRFs) are a solution to nutrient loss from the soil through
leaching, volatilization, denitrification, and surface runoff. Biochar SRFs (BSRFs), derived
from agricultural waste, are being proposed as a more sustainable alternative [32–34].
BSRFs are obtained by the co-pyrolysis of biomass with a chemical substance containing
the nutrient, such as phosphate rock or urea [32].

In recent years, nanobiochar has been proposed to combine the material’s favorable
properties with a nanomaterial [38,39]. A study on the foliar spraying of nanobiochar
in cauliflower production showed beneficial effects on the crop yields and quality of
cauliflower [38]. In a study on corn nutrient uptake from farmyard manure, low concen-
trations of nanobiochar significantly improved the microbial biomass and increased the
macronutrient uptake, indicating a positive impact on the soil microorganisms and their
activity [39]. However, when higher concentrations of nanobiochar were used, toxicity was
observed [39].

3. Water Treatment

Due to the ubiquitous environmental contamination and the increase in public and
regulatory environmental agencies’ awareness of water quality, water treatment is becoming
more challenging. Carbon nanomaterials are being proposed to incorporate advanced
water treatment technologies [40–42]. During the synthesis of GCN, a solid residual is
also produced, because GCN are soluble in water and separated from the carbonaceous
material, a GCM, by centrifugation [19]. Both GCN and GCM have the potential to be used
in environmental remediation technologies.

Carbon dots (CD) synthesized by an eco-friendly hydrothermal approach from brew-
ing waste, spent grains, and spent yeasts were used as photocatalysts for wastewater
treatment [43]. Nitrogen-doped CD, with an average size of about 100 nm, were produced
by the hydrothermal carbonization (24 h at 200 ◦C) of the brewing waste, mixed with water
or residual beer, and purified by dialysis after centrifugation and isolated as a solid after
being freeze-dried. In this work, the carbon nanomaterials presented in the solution were
isolated, and the insoluble material was discarded. CD were immobilized in polyvinyl
alcohol and assayed for methylene blue (MB) degradation under ultraviolet irradiation
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(Figure 8). Promising results were observed for the photodegradation of the dye MB in
water samples [43].
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Figure 8. (a) PVA-CD hydrogel under visible light and UV light, (b) PVA-CD hydrogel fluorescence
before and after washing treatment, (c) MB absorption test on PVA4 hydrogel, and (d) PVA4 hydrogel
before and after MB absorption and after 24 h of UV irradiation [43]. Copyright (2022) from the
American Chemical Society.

CD synthesized from fresh guava leaves (Psidium guajava) were used to clean up oil
spills [44]. CD, with a size of 2.42 ± 1.1 nm, were produced using the following process:
50 mL of ethanol was mixed with 10 g of powder leaves and heated at 70 ◦C for 2 h;
after filtration, the solution was carbonized using a 600 W microwave for 5 min; the
obtained solid sample was washed with water and dried at 60 ◦C for future use. An ethanol
suspension of the CD (1.5 mL of 33.32 mg/mL) was added to a 200 mg cotton piece and
left to dry at room temperature. The CD-coated cotton was used for the cleanup of oil
spills [44] (Figure 9).
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better visualization, Nile red dye was added to the silicon oil, refined oil, and carbon tetrachloride [44].
Copyright (2022) Elsevier Ltd.
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Green carbon quantum dots (G-CQD) were prepared from extracts of fresh guava
leaves (Psidium guajava) by a hydrothermal process at 200 ◦C for 5 h [45]. Purified powdered
G-CQD were obtained by lyophilization after centrifugation and filtration using a 0.22 mm
filter. The G-CQD had a normal size of 1.27 nm and a quantum yield of 32%. The effect
of the G-CQD in the catalysis of the degradation of two dyes, bromophenol blue and
Congo red, in the presence of NaBH4, was analyzed, and the color of the solutions was
removed after 30 min [45]. A carbon nanomaterial (with a size in the range of 63 to 137 nm)
was synthesized from a Spirulina platensis aqueous solution (a 100 mg/mL solution was
centrifuged and diluted 1:5 with water) by the following method:

(i) the solution was processed by microwave-assisted technology (800 W for 60 min);
(ii) centrifugation was performed to remove the precipitated material, followed by 1:1

dilution with water and by secondary processing with a microwave oven for 30 min
at 800 W;

(iii) centrifugation was performed to obtain the nanomaterial solution.

The effect of the obtained solution on the photocatalytic discoloration of aqueous
solutions of Reactive Red M8B dye was studied by keeping them under sunlight (~40,000 lx
and without any agitation. Dye degradation of 95.5% was achieved after 6 h, following
first-order kinetics. The degradation of the dye into smaller, easily degraded molecules
was confirmed by GC-MS [46]. In another study with this carbon nanomaterial produced
from Spirulina platensis, 90–97% of textile effluents were successfully photodegraded using
a 1 mg/mL concentration [47].

Activated carbon (AC) is a standard, well-known material commonly used in wa-
ter/wastewater treatment stations. AC can be produced from biomass (Figure 10) [48]. AC
is used in the adsorption of organic pollutants (dyes, pesticides, phenols, pharmaceuticals,
etc.) and toxic heavy metals present in raw water to be distributed for human consumption
or in the treatment of industrial effluents [48].
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Another emerging area of research is the use of renewable biomass to produce GCN
to be used in water disinfection as an alternative to chlorine and to minimize disinfec-
tion byproduct generation. Carbon dots (CD) were prepared from coconut waste by
hydrothermal carbonization and pyrolysis, followed by sonication, and doped with urea,
polyethyleneimine (PEI), and hexamethylenetetramine (HMTA), which resulted in en-
hanced antibacterial properties [49]. These CD were infused in chitosan beads and assayed
in the disinfection of water contaminated with Escherichia coli, reducing the colonies from
5.41 × 102 CFU/mL (control group) to 2.16 × 102 CFU/mL [49].
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GCN synthesized by microwaves are being proposed in water treatment applica-
tions [50]. The use of microwave reactors adds more sustainability to the carbon-based
materials because fast reactions, and consequently smaller energy requirements, are needed
in their synthesis. Coupling biomass raw materials with microwave technology results in
top-dawn synthesis methodologies involving the breakdown of carbonaceous materials
and does not emit carbon dioxide or methane, as observed when simple synthetic chemi-
cal substances are used as raw materials [50]. The synthesized GCN are mainly used in
environmental treatment as adsorbents for chemical pollutants [50].

Biochar-type materials were prepared from the pyrolysis (700 ◦C, retention time of
2.5 h, and heating rate of 5 ◦C/min under nitrogen) of corn stover [51]. This carbon-based
material was used to remove cadmium (II) ions from water, with a maximum adsorption
capacity of 13.4 mg/g [51]. Biochar has been used to remove heavy metals from aqueous
solutions due to its large SSA and the precipitation of metal hydroxides due to the high pH
and surface O/C ratio and polarity [52].

Although biochar research in agriculture is a well-established area, its nanosized
fraction, nanobiochar, is in the early stage of scientific research. Nanobiochar is being
proposed for environmental remediation, although the mechanism of action is poorly
understood [53–56]. Nanobiochar has superior physicochemical properties to biochar, such
as high catalytic activity, a large SSA, and high environmental mobility [53]. The main
applications of nanobiochar in environmental treatment technologies are in pollutant re-
moval, like heavy metals, toxic organic substances, and emerging pollutants, via adsorption
mechanisms like ion exchange, complexation, precipitation, electrostatic interaction, and
physical adsorption [53–55]. As discussed above, the biochar’s structure and properties
depend on the raw materials and technological characteristics of the pyrolysis process,
and the same is naturally observed for nanobiochar [54,55]. Temperature is a critical factor
for nanobiochar’s functionality; for example, the SSA, ash content, and carbon content
increase with the pyrolysis temperature, although this effect depends on the raw mate-
rial [56]. Nanobiochar produced with a lower pyrolysis temperature resulted in abundant
surface functional groups, high absolute zeta potential, and strong suspension stability [56].
Nevertheless, the properties of nanobiochar, like those of biochar, are dependent on the
raw material, and each product must be assayed and its properties tuned for the specific
type of application.

Nanobiochar enhanced with magnetic properties has been proposed for technological
applications [54]. It is prepared by ball milling biochar produced from biomass mixed with
an inorganic magnetic precursor. In water treatment, it is being assessed for the adsorption
of toxic heavy metals and pharmaceutical water pollutants [54].

GCM/GCN can contribute to the treatment of water under three basic mechanisms: the
adsorption of pollutants, the disinfection of pathogenic microorganisms, and the degrada-
tion of chemical pollutants. The treatments based on the adsorption of chemical pollutants
are questionable from the point of view of sustainability because the pollution is being
transferred to another location, where it should be eliminated or safely deposited.

4. Energy Management

In the context of the present energy transition towards renewable energy resources,
the challenges of electrical energy management, i.e., sustainable generation and high-
performance energy storage systems, are enormous. Sustainable electronic devices and
accessories, such as supercapacitors, are necessary to manage the expected renewable
electric energy production [48]. Electrodes, usually made from carbon-based materials,
are critical components of these electronic devices. Besides activated carbon (AC), carbon
nanomaterials (CNTs and graphene) have an important role in energy conversion and
storage [48].

Corn leaf waste was carbonized in a temperature range between 400 and 600 ◦C (heating
period of 5 ◦C/min with a dwell period of 2 h) to obtain biocarbon [57] (Figure 11). The
600 ◦C biocarbon was ball-milled for 2 h at 250 rpm, followed by treatment with hydrochloric
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acid for 30 min at 50 ◦C (sample C600B). The ball-milling and washing treatments generated
particles smaller than 20 µm and with fewer impurities. This biocarbon sample was used to
assemble electrodes as an anode material for Na-ion batteries, using carboxymethyl cellulose
as a binder [57]. The electrochemical performance of the C600B sample was represented
by a capacity of 171 mAh g−1 after 10 cycles at 100 mA g−1; the Na-ion storage capacity
was 134 mAh g−1 after 100 cycles; and the charge-transfer resistance and Na-ion diffusion
coefficient were, respectively, 49 Ω and 4.8 × 10−19 cm2 s−1 [57].
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Research in carbon nanoparticles to be used in high-performance rechargeable bat-
teries is increasing due to their supreme conductivity values and excellent mechanical
stability [58]. Indeed, increasing their storage capacity, particularly the gravimetric capaci-
tance, cyclic stability, and densities (energy and power), is necessary for the next generation
of sustainable supercapacitors [58].

5. CO2 Reduction and Sequestration

The ongoing climate changes due to the increased atmospheric concentrations of
greenhouse gases (GHG) have justified the current carbon neutrality objectives defined in
the COP’s regular meetings and by regional or country-specific regulations. By the middle
of the current century, the emissions of carbon dioxide equivalents must be neutralized
by the same amount that is sequestered. The current situation is observed because the
economy is heavily based on the carbon cycle, stimulated by the use of fossil fuels, and the
contribution of carbon-based materials to the mitigation of this problem requires increased
GHG sequestration.

Carbon quantum dots (CQD) were obtained from macaúba (Acrocomia aculeate) fibers
by mixing 1 g with 20 mL of 1 M sodium hydroxide and heating the mixture to 200 ◦C for
18 h [59]. CQD were purified by centrifugation followed by dialysis (MWCO of 3500) for
a week and lyophilized to obtain a powder with a 28% yield. The CQD had an average
size of 1.9 ± 0.8 nm. These CQD catalyzed the reduction of CO2 into CH4 in water with an
evolution rate of 99.8 nmol/g at 436 nm [59].

One of the technologies used for CO2 capture is its sequestration in a solvent; the
most well known is monoethanolamine (MEA). Activated carbon (AC) has shown strong
potential to replace MEA as an adsorbent for CO2 [48]. With a production temperature of
1073 ◦C and KOH as the activation agent, AC from Paulownia sawdust exhibited a CO2
adsorption capacity of 7.14 mmol/g at 273 K [48]. The production of AC with surface amino
functional groups and a large surface area improves the CO2 sequestration potential [48].
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Biochar, a persistent form of solid carbon produced from biomass at high temperatures
under reduced oxygen conditions, is considered a carbon dioxide removal technology
that can be deployed at scale [13–18,59–61]. Indeed, a net emission reduction in the
range of 0.4–1.2 Mg CO2 equivalents per Mg of dry feedstock, through carbon persistence,
avoided non-CO2 emissions and decreased native soil organic carbon mineralization [13,18].
Considering the current carbon neutrality objectives, within the climate change objectives
and/or regulations, biochar production from crop residues may constitute significant net
CO2 avoidable emissions with the potential for carbon sequestration (Figure 12) [13].
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Biochar, like AC, as discussed previously, can also be directly involved in technological
CO2 capture processes [14–16]. However, biochar’s intrinsic CO2 sequestration potential
is low, and, like AC, it needs to be activated in order to become an alternative to current
capture technologies. CO2 capture by biochar, mainly by a physical adsorption mechanism,
is mainly determined by the existence of micropores that must be activated [15]. Physical
activation can be achieved by mixing the reacting biomass with CO2 and/or H2O during
the biochar’s production, and chemical activation is achieved by reaction with strong
bases, acids, and molten salts [14–16]. Moreover, considering the acid properties of CO2,
surface functionalization with alkaline amine groups would optimize the CO2 capture
potential [15].

The concept of climate-smart agriculture originated from the carbon neutrality objec-
tives to be accomplished by the middle of the current century [29]. Biochar’s impact on the
percentage of soil organic carbon (SOC), methane and nitrous oxide emissions, and crop
yields is being assessed regarding agricultural practices [29,60,61]. For example, biochar
application in China’s farmlands increased the SOC by 1.9 Pg C and reduced the CH4 and
N2O emissions by 25 and 20 Mt CO2 eq./year, respectively [29].

Biochar is produced under an inert atmosphere to inhibit the oxygen oxidation of
the organic matter—for example, nitrogen—by thermal treatment at high temperatures.
However, if carbon dioxide is used instead of an inert gas and the biochar is produced
by slow pyrolysis, further positive features can be obtained [17]. Indeed, the use of CO2
corresponds to its capture, and the lifecycle assessment of the produced biochar indicates
an improved carbon footprint, contributing to the mitigation of global warming. Moreover,
the properties of this biochar become different from the properties of those produced under
an inert atmosphere, and the differences depend on the temperature used in the synthesis
process, as is indicated in Figure 13 [17]. Briefly, the biochar produced under CO2 has
improved characteristics, such as SSA, porosity, elemental composition, and surface-active
chemical functional groups [17].



Sustain. Chem. 2024, 5 93
Sustain. Chem. 2024, 5, FOR PEER REVIEW 14 
 

 

 
Figure 13. Possible effects of CO2 on slow pyrolysis at (A) lower temperature range (300–600 °C) 
and (B) higher temperature range (600–800 °C). Adapted from reference [17]. 

6. Future Perspectives 
The next step for GCM/GCN is industrial valorization. Indeed, the sustainable per-

spective concept of biorefineries has long been foreseen [62]. However, improving the 
economics of conversion technologies is a key step towards the sustainability of the val-
orization steps that are being proposed [63]. One of the applications that has undergone 
significant technological development in the last few years is the green chemistry around 
biomass conversion into liquid fuels and bio-asphalt through bio-oil production [64–66]. 
This example should be generalized for the valorization of GCM/GCN. Moreover, the 
future of sustainable technological applications of green carbon materials requires the 
large-scale, low-cost, scalable, and environmentally friendly production of the 
nanostructuring and functionalization precursors of carbon materials [67]. Green syn-
thesis methods for carbon nanomaterials, such as wool-based precursors, are being ex-
plored [68]. 

Nanocarbon materials, including fullerene, graphene, and carbon nanotubes, are 
crucial in developing sustainable energy technologies like the next generation of solar 
devices and energy storage solutions, resource recovery in electronics, and environmen-
tal remediation [69–71]. Pribat (2011) emphasizes the combination of graphene and car-

Figure 13. Possible effects of CO2 on slow pyrolysis at (A) lower temperature range (300–600 ◦C) and
(B) higher temperature range (600–800 ◦C). Adapted from reference [17].

6. Future Perspectives

The next step for GCM/GCN is industrial valorization. Indeed, the sustainable
perspective concept of biorefineries has long been foreseen [62]. However, improving
the economics of conversion technologies is a key step towards the sustainability of the
valorization steps that are being proposed [63]. One of the applications that has undergone
significant technological development in the last few years is the green chemistry around
biomass conversion into liquid fuels and bio-asphalt through bio-oil production [64–66].
This example should be generalized for the valorization of GCM/GCN. Moreover, the
future of sustainable technological applications of green carbon materials requires the large-
scale, low-cost, scalable, and environmentally friendly production of the nanostructuring
and functionalization precursors of carbon materials [67]. Green synthesis methods for
carbon nanomaterials, such as wool-based precursors, are being explored [68].

Nanocarbon materials, including fullerene, graphene, and carbon nanotubes, are
crucial in developing sustainable energy technologies like the next generation of solar
devices and energy storage solutions, resource recovery in electronics, and environmental
remediation [69–71]. Pribat (2011) emphasizes the combination of graphene and carbon
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nanotubes and discusses their use in molecular electronics [72]. Yusof (2019) explores their
potential in sensor technology and a range of electronic and optoelectronic devices [73].

These materials possess unique properties, such as excellent electrical, thermal, and
optical characteristics, making them suitable for drug delivery, bioimaging, biosensing,
and tissue engineering [74]. The surface functionalization of these materials can enhance
their properties, such as their drug loading/release capacity and biocompatibility [75].
Graphene-based nanomaterials have also shown promise in disease detection, diagnosis,
and treatment [76].

The potential of advanced technologies utilizing carbon-based nanomaterials can be
used to offer solutions to contemporary environmental challenges like air, soil, and water
degradation. Electrically conductive membrane processes, incorporating separation with
a functional surface, are emphasized, focusing on laser-induced graphene and carbon
nanotubes as electrically conductive carbon nanomaterials. This material can be used
in various environmental applications, including the development of fouling-resistant
systems for desalination, water treatment, improved separation methods, and innovative
pollutant sensing and electrocatalytic platforms [77].
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