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Abstract: Animals are exposed to lithium (Li+) in the natural environment as well as by contact
with industrial sources and therapeutic treatments. Low levels of exposure over time and high
volumes of acute levels can be harmful and even toxic. The following study examines the effect of
high-volume acute levels of Li+ on sensory nerve function and nerve conduction. A proprioceptive
nerve in the limbs of a marine crab (Callinectes sapidus) was used as a model to address the effects
on stretch-activated channels (SACs) and evoked nerve conduction. The substitution of Li+ for Na+

in the bathing saline slowed nerve conduction rapidly; however, several minutes were required
before the SACs in sensory endings were affected. The evoked compound action potential slowed
in conduction and slightly decreased in amplitude, while the frequency of nerve activity with joint
movement and chordotonal organ stretching significantly decreased. Both altered responses could be
partially restored with the return of a Na+-containing saline. Long-term exposure to Li+ may alter
the function of SACs in organisms related to proprioception and nerve conduction, but it remains to
be investigated.
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1. Introduction

It is well known that the lithium ion (Li+) can substitute for the sodium ion (Na+) in
the function of Na+ channels. Many cell types illustrate that cells can conduct electrical
impulses with Li+ and that cells, particularly neurons, can still be electrically excited in
the presence of Li+ or even with the full substitution of extracellular Na+ for Li+ [1]. This
illustrates that Li+ does not impede Na+ channel conductance, potentially providing a
similar electrical response; however, this replacement does not always result in the same
electrophysiological responses as the original cell. Some cells even have regional differences
in electrical response within the presence of Li+ as compared to Na+ [2].

Clinically, Li+ has been used to treat bipolar depression and, in some cases, epilepsy [3,4].
Due to the side effects of Li+ treatments, monitoring of kidney and thyroid function is
necessary [4–6]. Many of lithium’s actions have been attributed to the effects of it altering
cellular physiology. In rodent anterior pituitary cells, Li+ blocked K+ channels [7]. However,
in rodent hippocampal neurons, it was shown that Li+ did not block the K+ channels directly
and instead did so by lowering the Ca2+. This affected the neuronal excitability related to
A-type K+ currents [8]. Additionally, the effects of altered efficacy in ion exchangers and
pumps have been observed in various tissues [9–12]. Lithium nephrotoxicity is a concern for
individuals being treated for bipolar depression via lithium treatments [13]. These lithium
treatments have also been implicated in the dysfunction of the thyroid and parathyroid glands
by yet unknown mechanisms [14]. There are differences in long-term (from hours to days)
exposure to Li+ as compared to the immediate effects (from seconds to minutes), which
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may involve some compensatory or homeostatic regulation in the cells [15,16]. Within intact
organisms, there can be changes in ionic balance, such as an increase in extracellular K+ ions
with increased Li+. Slight changes in the concentration of extracellular K+ can have direct
effects on the membrane potential and electrical excitability of cells [17–19]. It is assumed that
the mechanisms of altered extracellular K+ may be related to the perturbation of the Na+-K+

ATPase pump [20].
There are still mechanisms of actions not understood with clinical Li+ treatments on

many aspects of neuronal function, such as sensory modalities. For example, there are
many types of stretch-activated channels (SACs) that function to monitor a myriad of
physiological functions, including blood pressure, touch, pain, and proprioceptive function
in animals, as well as pressure-sensitive channels (i.e., PIEZO) found in plants [21–23].
Many types of SACs are ionotropic. It has yet to be addressed how the Li+ ion may affect the
flux and electrical responses of the cell. For example, the DEG/ENaCs (degenerin/epithelial
sodium channels) known to be present in invertebrates and vertebrates exhibit Na+ flux as
a major contributor to current [24].

Although there is likely no clinical reason to fully exchange Na+ for Li+, there remains
theoretical interest in understanding the effects of such a substitution. Experimentation
would allow for a better understanding of the consequences behind experimental applica-
tions of lithium in isolated tissues and cells. Investigating the biophysical responses to the
substitution of Na+ with Li+ in various tissue and organism types allows for comparative
addition to the knowledge of how different cells respond. Historically, invertebrate models
have been used to address how cells respond to ionic perturbations and ionic properties
of cells (especially neurons), with very impactful results. Particularly useful from an en-
vironmental standpoint is the ease by which many invertebrate neuronal types may be
maintained (given the right temperature and minimal saline) for recording the electrical
activity of individual neurons or nerves. Historically, crustaceans have provided experi-
mental invertebrate models for addressing animal behavior, ion flux, transport, function of
sensory neurons, synaptic transmission, and electrical conduction [25–39]. From the earliest
studies of crustaceans, physiological research moved to incorporate insect, amphibian, and
mammalian models.

The muscle receptor organ (MRO) of the crawfish has been a model of proprioceptive
function for years, supporting a better understanding of how muscle spindles function in
vertebrates [40–45]. As early as 1968, the effects of replacing extracellular Na+ with Li+ on
neuronal function were addressed with the MRO preparation [2]. By performing single
neuron recordings in the sensory cell body, it was shown that there was an initial enhanced
excitability of the membrane with the production of spontaneous action potentials, which
was then followed by a decrease in excitability. The neuronal cell bodies of the MRO are
closely associated with the sensory endings. The axons did not show the same phenomena,
resulting in various responses and indicating that regional differences exist along a single
neuron. The reason behind observed mechanistic differences along a single neuron has
yet to be fully described. Other useful invertebrate proprioceptive organ models are
the chordotonal organs in the joints of insects and crustaceans [46,47]. In many readily
accessible animal models like insects, the organs are small and delicate compared to the
robust and larger chordotonal organs of crustacean limbs [48–51]. The crab chordotonal
organs have been used to observe the anatomical structure of sensory endings, address
mechanical–electrical coupling via SACs, and examine differences between subtypes of
dynamic and static displacement-sensitive neurons [52–57]. Large crabs, such as the
common Blue crab (Callinectes sapidus) or Dungeness crab (Cancer magister), feature a
relatively long nerve (10 to 15 cm), which can be taken for observation from the most distal
chordotonal organ of a limb to the base of the thorax. This renders the process of addressing
alterations to electrical conduction in various types of bathing media easier [58].

The SACs in insect and crustacean chordotonal organs have yet to be fully described,
either in terms of pharmacological or mechano-electrical transduction properties. The
subtype present in crab chordotonal organs appears to maintain function without Ca2+
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ions in the bathing environment [58]. The SACs are not altered by traditional agonists
or antagonists like amiloride, ruthenium red, or streptomycin [59,60]; they are also not
altered by selective compounds for PIEZO 1 subtype SACs (i.e., YODA 1, JEDI 2, OB 1, and
DOOKU) [60]. Crab proprioceptive organs are being used as neuronal models for marine
species to address the effects of heavy metal exposure, concepts of neurophysiology, and
pharmacological profiling of SACs [61–65].

The purpose of this investigation was to examine the effects of ion substitution (Li+

for Na+) on a model sensory system and signal transmission along an isolated nerve.

2. Materials and Methods

The general procedures are similar to those previously described in detail [58,62] and
in video format [66].

2.1. Animals

Blue crabs (Callinectes sapidus) were obtained from a local supermarket in Lexington,
KY, USA, which had been delivered from a distribution center in Atlanta, GA, USA. They
were bought and maintained in a seawater aquarium for several days prior to ensure that
the organisms were in good health. Adult crabs of 10–15 cm carapace width (from point to
point) were used, and only if they were active upon autotomizing a leg for experimentation.

2.2. Dissection and Physiology

Autotomization of the crab’s first or second walking leg was induced by lightly
pinching the base of the leg with pliers. The propodite–dactylopodite (PD) chordotonal
organ spans the last segment of the leg (Figure 1B) and was exposed by cutting a window of
the cuticle on both sides of the leg (in the propodite segment; Figure 1C). With a window in
the cuticle, the PD nerve can be observed independently of the main leg nerve (Figure 1B).
The chordotonal organ spans the PD joint. After the windows were made and the cuticle
removed, the leg was pinned in a Sylgard-lined dish and bathed in saline. The standard
crab saline used during recordings of the sensory nerves consisted of (in mM) 470 NaCl,
7.9 KCl, 15.0 CaCl2·2H2O, 6.98 MgCl2·6H2O, 11.0 dextrose, 5 HEPES ((4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid) acid, and 5 HEPES base adjusted to pH 7.5. To examine
the effect of Li+, the NaCl was exchanged for LiCl at the same molar concentration.
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extended (i.e., open) position within a one-second time frame, held for at least ten seconds, 
and then moved back to the starting position (Figure 2B). An insect dissecting pin stuck 
into the recording dish was used as a stop mark to ensure consistency in movement range 
among the trials. 

 
Figure 2. Exposing the PD nerve for recording nerve activity. (A) A length of PD nerve can be iso-
lated from the main leg nerve and pulled into a suction electrode. The joint is bent (A) and extended 
(B) while nerve activity is recorded. 

Compound action potentials (CAPs) are initiated by stimulation at the proximal end 
of the PD nerve after isolation from the main leg nerve (Figure 3). The PD nerve was then 

Figure 1. The isolation of the PD nerve for electrophysiological recordings. (A) The leg segments are
shown, and the chordotonal organs are named by the joint they monitor. (B) The PD organ spans the
most distal joint in the limb between the propodite and dactylopodite. (C) The PD nerve branches
away from the main leg nerve near the base of the chordotonal strand.
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The PD nerve was left intact to record activity from dynamic and static position-
sensitive neurons (Figure 2). The dactyl was moved from a bent (i.e., flexed) position to an
extended (i.e., open) position within a one-second time frame, held for at least ten seconds,
and then moved back to the starting position (Figure 2B). An insect dissecting pin stuck
into the recording dish was used as a stop mark to ensure consistency in movement range
among the trials.
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Figure 2. Exposing the PD nerve for recording nerve activity. (A) A length of PD nerve can be isolated
from the main leg nerve and pulled into a suction electrode. The joint is bent (A) and extended
(B) while nerve activity is recorded.

Compound action potentials (CAPs) are initiated by stimulation at the proximal end of
the PD nerve after isolation from the main leg nerve (Figure 3). The PD nerve was then cut
away from the PD organ so that isolated CAPs could be recorded, both in normal bathing
media and upon exposure to experimental solutions.

The numbers of extracellular recorded action potentials (i.e., spikes) recorded over the
first ten seconds after joint displacement began were used as an index of neural activity.
In each bathing condition, the joint was displaced thrice, with at least a ten-second pause
between displacements. The number of spikes in each of the three trials was averaged,
allowing for both graphical representation and for drawing comparisons among bathing
conditions (Figure 4).

2.3. Statistical Analysis

Paired t-tests were used to examine differences in response before and after solution
exchange, while normality was established using the Shapiro–Wilk test. The Wilcoxon rank
sum non-parametric test was used when appropriate. The analysis was performed with
Sigma Stat software. A p-value of <0.05 was considered statistically significant.
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Figure 3. Set-up for recording activity of the PD nerve via compound action potentials (CAPs). The
proximal end of the main leg nerve was used for the actual recording, while the distal end was used
to provide stimulation to induce CAPs. In this arrangement, position-sensitive neurons are not firing
since the sensory endings are removed.
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replaced by Li+. Every preparation had a different activity profile and a slight variation in 
activity for the three trials in each condition (Figure 5A). The general trends are easier to 
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were noted in the overall activity for the ionic substitution (saline to incubation in Li+ after 
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Figure 4. The experimental paradigm behind joint displacement and spike analysis. The joint is
displaced from a flexed position to an extended one across a single second, held in place for at least
ten more, and then moved back to flexed position. This was repeated three times in each bathing
solution. An average of the activity across all three trials was used in conjunction with the raw
data to assess the effects of changing the medium. The duration of exposure for each preparation
depended on the medium in question. The spike count was obtained by counting the number of
spikes from the beginning of the movement (across one second) through the next nine seconds of
static positioning, and it was used as an index of PD organ neural activity. The arrow marks the
beginning of the movement.
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3. Results

The number of spikes recorded from the PD nerve across the three trials from each
condition was initially obtained after five minutes of incubation in saline, where Na+ was
replaced by Li+. Every preparation had a different activity profile and a slight variation in
activity for the three trials in each condition (Figure 5A). The general trends are easier to
view after the three trials’ spike counts are averaged (Figure 5B). No significant differences
were noted in the overall activity for the ionic substitution (saline to incubation in Li+ after
5 min; n = 6; paired t-test; p > 0.05).
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Figure 5. The effects of acute Na+ replacement by Li+ on PD nerve activity during joint displacement
and extension. (A) The number of spikes within three ten-second displacements in saline, after
five minutes of exposure of LiCl (470 mM- replacement of NaCl), and during a saline wash-out.
Individual preparations are indicated. (B) The averaged activity for the three trials in each condition.
(Saline to incubation in Li+ after 5 min; n = 6; paired t-test; p > 0.05).

Since five minutes of incubation did not reveal significant changes in the activity
profiles of the PD nerve during joint displacement, a longer incubation period was utilized.
The activity was assessed at both 15 and 30 min, with three trials. The activity under each
condition is illustrated for one of the three trials in Figure 6.

The number of spikes observed during each of the three displacements per condition
reveals how prolonged incubation in the Li+-environment depresses activity in each of
the six preparations (Figure 7A; n = 6, p < 0.05; paired t-test; initial saline to 15 min or to
30 min). The average activity across each set of three trials, on the other hand, reveals the
overall trends and general variation among preparations (Figure 7B). One of the six showed
an average increase after 15 min, as one of its three trials saw heightened activity despite
the other two substantially decreasing.
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Figure 6. Representative activity of the PD nerve during joint displacement and extension for up
to 30 min of Li+ substitution. (A) In saline with Na+. (B) After 15 min of incubation in saline with
Na+ replaced by Li+. (C) After 30 min of incubation in saline with Na+ replaced by Li+. (D) After
two wash-outs, flushes back to normal saline (containing Na+ and no Li+). Each trace is shown over
a period of twelve seconds, illustrating the ten seconds from which analysis was conducted, one
second of joint movement to an extended position, and nine more seconds of being held static before
being moved back to the starting position. The arrows mark the beginning of each movement. Note
that the activity prior to the joint movements also decreased with Li+ exposure.
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Figure 7. The effects of acute Li+ replacement of Na+ on PD nerve activity during joint displacement
and extension for up to 30 min. (A) The number of spikes observed during the three ten-second
displacement trials in saline, after 15 and 30 min of exposure to Li+ (470 mM), and during a saline
wash-out. Individual preparations are indicated. (B) The average activity across all three trials in
each condition for each preparation. (There is a significant decrease in neuronal activity after 15 or
30 min of exposure to Li+; n = 6; paired t-test; * p > 0.05).

To examine the possibility of rundown over time, control experiments with only saline
over the same time period and stimulation paradigm were performed. No significant
effects on neuronal activity were observed, whether from the initial saline to the 30 min
of incubation or to any of the other time points examined (Figure 8; n = 6; paired t-test;
p > 0.05).

The effects of Li+ on basal activity and the observed number of spikes during joint
displacement are good indicators of how sensory transduction of the mechanical movement
and SAC channel displacement in the sensory endings of PD neurons might function.
However, to address any effects on electrical nerve conduction, the sensory transduction
process was removed, and the nerve was electrically stimulated directly to monitor the
effects of Li+ on CAP amplitude and conduction velocity. Since PD nerve activity was
altered after 15 and 30 min, the same time periods were used to assess the effects on
said CAPs. A representative preparation over time is illustrated with individual traces
from various time points. Immediately upon bath exchange, the characteristic CAP shape
changes, indicating a rapid alternation over the course of the incubation period (Figure 8).



NeuroSci 2023, 4 288NeuroSci 2023, 4, FOR PEER REVIEW 10 
 

 
Figure 8. The effects of 30-minute incubation time for the PD organ while exposed to saline only. 
(A) The number of spikes within the three, ten-second displacement trials in saline, after 15 and 30 
min of exposure to saline only and during a saline wash-out. Individual preparations are indicated. 
(B) The average activity across the three trials in each condition for each preparation. There are no 
significant effects of saline exposure over time (i.e., 30 min) on neuronal activity from PD displace-
ment (n = 6; paired t-test; p > 0.05). 

The effects of Li+ on basal activity and the observed number of spikes during joint 
displacement are good indicators of how sensory transduction of the mechanical move-
ment and SAC channel displacement in the sensory endings of PD neurons might func-
tion. However, to address any effects on electrical nerve conduction, the sensory trans-
duction process was removed, and the nerve was electrically stimulated directly to moni-
tor the effects of Li+ on CAP amplitude and conduction velocity. Since PD nerve activity 
was altered after 15 and 30 min, the same time periods were used to assess the effects on 
said CAPs. A representative preparation over time is illustrated with individual traces 
from various time points. Immediately upon bath exchange, the characteristic CAP shape 
changes, indicating a rapid alternation over the course of the incubation period (Figure 8). 
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Figure 8. The effects of 30-min incubation time for the PD organ while exposed to saline only. (A) The
number of spikes within the three, ten-second displacement trials in saline, after 15 and 30 min of
exposure to saline only and during a saline wash-out. Individual preparations are indicated. (B) The
average activity across the three trials in each condition for each preparation. There are no significant
effects of saline exposure over time (i.e., 30 min) on neuronal activity from PD displacement (n = 6;
paired t-test; p > 0.05).

To illustrate the effects of a Li+ environment on CAP amplitude and conduction
velocity, the traces were superimposed with the stimulus artifact for reference (Figure 9A,B).
Immediately after the exchange of the bathing environment, the CAPs’ amplitude and
conduction speed decreased. Upon returning to the normal saline (i.e., without Li+), CAP
amplitude and conduction speed tended to return to those observed under the original
conditions. Perhaps further rinsing of the preparation with fresh saline and a longer period
of wash-out exposure could obtain a full recovery; however, this was not assessed over the
course of this experiment.

To summarize the effects of Li+ on CAP amplitude and conduction velocity (as
shown in the representative preparation), the overall trends are shown in Table 1. In
all six preparations, the amplitude decreased, and the conduction velocity slowed (n = 6;
rank sum Wilcoxon test; p < 0.05; Initial saline to 15 min or to 30 min of exposure to Li+).



NeuroSci 2023, 4 289NeuroSci 2023, 4, FOR PEER REVIEW 11 
 

 
Figure 9. A representative preparation depicting the effects of Li+ replacement of Na+ on the leg 
nerve compound action potential (CAP) during evoked stimulation as superimposed traces. (A) 
Samples of CAPs before and during Li+ exposure at various times as well as during the return to 
normal saline with Na+, superimposed. (B) Enlarged images of superimposed traces are shown in 
A. Note: the conduction velocity slowed upon exposure to Li+ as well as the amplitude of the CAP 
peak. 

To summarize the effects of Li+ on CAP amplitude and conduction velocity (as shown 
in the representative preparation), the overall trends are shown in Table 1. In all six prep-
arations, the amplitude decreased, and the conduction velocity slowed (n = 6; rank sum 
Wilcoxon test; p < 0.05; Initial saline to 15 min or to 30 min of exposure to Li+). 

Table 1. The effect of Li+ on compound action potential (CAP) and conduction velocity. 

 Preparation Amplitude of CAP Conduction  
Velocity 

Trend to Recover 
in Saline Rinse 

1  ↓ ↓ + 
2  ↓ ↓ + 
3  ↓ ↓ + 
4  ↓ ↓ + 
5  ↓ ↓ + 
6  ↓ ↓ + 

In order to examine reproducibility in these observations, as well as to avoid potential 
bias by a given investigator, seven groups of two students each investigated the same 

Figure 9. A representative preparation depicting the effects of Li+ replacement of Na+ on the leg nerve
compound action potential (CAP) during evoked stimulation as superimposed traces. (A) Samples of
CAPs before and during Li+ exposure at various times as well as during the return to normal saline
with Na+, superimposed. (B) Enlarged images of superimposed traces are shown in A. Note: the
conduction velocity slowed upon exposure to Li+ as well as the amplitude of the CAP peak.

Table 1. The effect of Li+ on compound action potential (CAP) and conduction velocity.

Preparation Amplitude of CAP Conduction Velocity Trend to Recover in
Saline Rinse

1 ↓ ↓ +

2 ↓ ↓ +

3 ↓ ↓ +

4 ↓ ↓ +

5 ↓ ↓ +

6 ↓ ↓ +

In order to examine reproducibility in these observations, as well as to avoid potential
bias by a given investigator, seven groups of two students each investigated the same
procedures (i.e., incubation in saline where Na+ had been replaced by Li+, the same general
joint movements, etc.). Seven different recording stations were run simultaneously on the
same days and with the same solutions. As shown (Figure 10), the overall trends over time
proved consistent with a decrease in activity during exposure to the Li+-containing saline
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(n = 7; p < 0.05; paired t-test). The experiments performed with these course participants
may not have been as consistent, particularly in terms of the movement rate, as having only
one individual compile all data sets as presented in the results above; thus, this dataset
is provided separately. In each preparation, overall activity decreased after 30 min of
Li+ exposure. However, one preparation had very little activity initially, so only a few
differences in the number of spikes are not a fair representation. Thus, six preparations of
the seven were better representations to consider (n = 6; p < 0.05; paired t-test; initial saline
to 15 min or to 30 min).
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Figure 10. The effects of acute Li+ replacement of Na+ on PD nerve activity during joint displacement
and extension, taking place over a period of time up to 30 min and in seven different recording
set-ups by seven different groups of researchers. (n = 6; * p < 0.05; paired t-test; initial saline to 15 min
or to 30 min).

In addition, four different recording set-ups, performed by ten different researchers,
confirmed that the conduction velocity was reduced for the CAPs of isolated nerves in crab
legs, for which the Na+ was replaced with Li+ in the bathing saline.

4. Discussion

This study demonstrated that Li+ could acutely (i.e., for up to 30 min) replace Na+ for
electrical conduction along the sensory nerves of a marine crab, with a slight decrease in
CAP amplitude and a slower electrical conduction velocity. However, the firing frequency
of dynamic and static proprioceptive neurons within chordotonal organs of an intact limb
joint was decreased for the ion substitution after 15 min. The proprioceptive activity was
not significantly altered within only five minutes of ion substitution.

The decrease in nerve activity during joint movement and static stretching of the
chordotonal organ indicates that sensory transduction within the sensory endings was
compromised. The elastin and collagen within the chordotonal organ pull on the scolopen-
drium, housing the sensory endings [51,67,68]. The SACs within sensory ending bilipid
membranes, which open and allow for ion flux sensory transduction, have yet to be phar-
macologically identified, and nor has the molecular identity of the SAC protein structure
been described [59,60]. Since neurons still responded to joint movement, given the absence
of Ca2+ in the bathing medium, it would appear as though the SACs do not use Ca2+. Li+

may be close in function, as the DEG/ENaCs subtype is permeable to Na+ [24]. Since
Li+ can pass through Na+ channels, it was surprising that nerve activity decreased dur-
ing ion substitution in the bath. This finding potentially helps classify SACs by another
phenomenon in addition to pharmacological profiling.
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Depression of conduction velocity was induced by evoking electrical activity of the
isolated nerve without sensory endings, and it is of interest to know the mechanism
associated with the slowing. Since Li+ would be able to pass through the voltage-gated Na+

channels, the ion-induced current would readily be turned into current by the movement
of electrons along the neurons. It is interesting that conduction velocity is slowed in this
case. If Na+ substitution with Li+ altered membrane capacitance, it is possible that there
would be an effect on conduction velocity. However, it is not understood why capacitance
would be affected. Li+ has some potential effect on the K2P potassium channels responsible
for the resting membrane potential and membrane leakage. If axonal input resistance was
reduced, so would the amplitude of the CAPs be reduced. However, this still would not
explain why the conduction velocity would be slowed.

The number of available sodium channels appears to be a factor responsible for
the alteration of conduction velocity in unmyelinated axons [69]. The sodium channel
inactivation following each impulse was considered to be responsible for conduction
delay [69]. This would then suggest that Li+ influenced conduction velocity through
channel inactivation and removal of inactivation. Considering that the isolated nerve was
stimulated only once every five seconds and that conduction velocity slowed with Li+, this
would imply that removal of Na+ channel inactivation took longer than five seconds or that
Li+ altered the protein structure, so the rate of the conformational changes was prolonged.
If the efficacy of the Na+-K+ pump is altered by Li+, then the membrane potential may
change. Since the conduction velocity of the isolated nerve changed as soon as the medium
was exchanged, the pump may be necessary to rapidly reset the potential. Future studies
could address this by poisoning the pump with a blocker such as ouabain; the effect of this
compound would need to be examined in this marine preparation with the intracellular
recording of the axons. PD nerve axons are very small, but the neuronal cell body may
offer a feasible approach. It was shown that ouabain rapidly inhibited impulse activity
along the neuron associated with the MRO preparation in the freshwater crawfish [70].
Perhaps alteration of the Na+- (and associated K+-) dynamics during Li+ substitution is an
explanation for the conduction velocity delay.

Such acute changes in neural activity through the complete replacement of Na+ by
Li+ may aid understanding of lithium’s more subtle effects in health care. There does not
appear to be focused research on proprioceptive function during therapeutic Li+ treatments.
Such a focus is needed, as an alteration in sensory function, particularly of SACs in muscle
spindle proprioceptors, may increase patient fall risk.

The therapeutic actions of Li+ treatment are not yet specifically understood [15,71].
There are various reports which state that excitatory synaptic input from glutamatergic
and dopaminergic neurons is reduced and GABAergic are enhanced as a result of action
on second messenger cascades [72], but it appears (in this study herein) that Li+ can result
in reduced CAP conduction velocity and amplitude, which would result in alteration in
synaptic integration timing within the CNS (central nervous system). Additionally, the
reduction in recorded spike count during joint movements indicates that SAC function in
sensory endings is compromised, leading to the recruitment of fewer neurons. SACs are
key for mechanosensory function in mammalian proprioception, any mechanical sensory
stimulus, osmolarity regulation, blood pressure control (see reviews by [23,73]), and even
cell resting membrane potential, as K2P channel subtypes sense stretch and allow Na+

ions to pass [74–76]. Despite examining a high concentration of Li+ in these experiments,
the acute results suggest that, in other organisms, it may potentially have subtle effects
on SACs, neuronal excitability, and electrical conduction, given longer periods of lower-
concentration exposure.

The data presented within this paper were reliably reproduced in the physiological
recordings and data analysis of participants within a neurophysiology course. Eighteen
students, working in groups of two, conducted the same set of experiments with the
same protocols, altering the concentration of LiCl. While the classroom lacked some of
the features of a controlled lab, such as vibration-free tables, and while the students may
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have mobilized the joint at different rates, the same general trends in data were found;
specifically, the number of spikes decreased in the observed preparations. This model
of classroom-based testing followed the ACURE (authentic course-based undergraduate
research experiences) method, building off of the CURE (course-based undergraduate
research experiences) concept. Using this ACURE model, students were immersed in an
authentic research experience that not only aided in learning the concepts being presented
but also exposed them to the communication, trial-and-error, and teamwork components
of research.

Future research is needed to address the molecular, pharmacological, and physiological
SAC subtypes in insect and crustacean chordotonal organs. Additionally, the description of
Li+ as an ion for flux through SACs would be of use for understanding the mechanism of
action behind altered proprioceptive activity. With patch clamp recordings, it would be
possible to identify the effect of Li+ on voltage-gated Na+ channel inactivation and removal
of inactivation. Intracellular recordings would also assist in determining the effects on
membrane potential, as well as addressing the mechanism behind slowed condition velocity
in neurons.
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