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Abstract: The worldwide prevalence of obesity and associated metabolic syndrome (MetS) has
increased threefold over the last five decades. Among children, this trend is alarming due to the
premature onset of MetS. The data regarding how the structure and composition of gastrointestinal
(GIT) microbiota either promote or attenuate obesity and MetS are limited. Objectives: We carried out
this study to investigate the relationship between microbial profiles and diagnosis of MetS among
children with obesity. Fifty subjects with a diagnosis of obesity or Mets were enrolled. We collected
clinical information, demographic data, dietary records, and stool specimens. Overall, there was
no significant difference in the diversity of GIT microbiota between the two subgroups of children
with obesity or MetS. We also found no differences in the diversity of GIT microbiota between the
sexes and blood pressure categories. However, we observed a significant difference between the
structure, composition, and diversity of the gut microbiome when the subjects were stratified using a
BMI cut-off of 30. Subjects with a BMI ≥ 30 had a lower abundance of Bacteroidetes and a greater
abundance of Actinobacteria and Firmicutes compared to those with a BMI value of less than 30.
This gut microbiota signature is more like the GIT microbiome profile of adults with obesity and may
represent accelerated changes among children. Additional studies are needed to investigate the role
of obesity in the maturation of gut microbiota in children with morbid obesity.
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1. Introduction

Obesity is a major cause of morbidity in the United States of America [1]. Although it
can be prevented through lifestyle modification, the rate of obesity has increased threefold
compared to its prevalence in 1975 [2]. In 2016, it was estimated that 2.1 billion people in the
world were categorized as overweight or obese [3]. Furthermore, it is estimated that rates of
obesity will continue to rise to peak levels within 25 to 50 years in the United States and the
United Kingdom (UK) [4]. Obesity is a major risk factor for several comorbidities including
hypertension, heart disease, cancer, and metabolic syndrome (MetS). MetS refers to central
obesity coupled with a constellation of high blood pressure, insulin resistance, increased
triglycerides, and a low level of high-density lipoprotein cholesterol (HDL-cholesterol) [5].
In parallel with rising rates of obesity among adults, the prevalence of childhood obesity
has risen to alarming levels globally and is now categorized as a chronic disease [6]. There
is an urgent need to modify future trends because of the concurrent increase of comorbid
conditions among children. The most recent estimates indicate that 6–39% of children with
obesity meet the criteria for MetS [7,8].
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Recently, the gut microbiome has emerged as a potential confounder of obesity and the
associated metabolic disorders. Several studies proposed that there is an interplay between
microbial species residing in the human gastrointestinal tract (GIT), including bacteria,
fungi, viruses, archaea, and protozoa, and the maintenance of systemic homeostasis in the
human body [9,10]. The gut microbiome is established in infancy and continues to evolve.
However, its composition is affected by genetic, epigenetic, and environmental factors [11].
The diversity and composition of microbiomes in the GIT may have a significant influence
on gut health. In a healthy adult, more than a hundred bacterial species within eight
different phyla colonize the GIT. Most of the bacteria belong to the phyla Firmicutes,
Actinobacteria, and Bacteroidetes. The most abundant class of bacteria in the human gut is
Clostridia, whereas the most abundant species is Bifidobacterium longum [12]. The genes
of these bacteria are thought to play a major role in digestion and metabolism. Any negative
change in the composition and diversity of the gut microbiome can lead to dysbiosis, and
this is linked to health consequences such as obesity and MetS, although the underlying
mechanisms are still unknown [13,14].

The composition of the gut microbiome varies among individuals based on lifestyle,
culture, exercise routine, diet, and body mass index (BMI) [15]. Some studies have shown
that a diet with low fiber and high-fat content may lead to increased Firmicutes and reduced
Bacteroidetes in the GIT. Individuals who are overweight or obese have lower bacterial
diversity, which may be associated with abnormalities in glucose homeostasis. This may
result in increased adiposity, low-grade inflammation, and dyslipidemia [16]. Research
studies, including experimental mouse models and observational human studies, report
a reduction in the richness of microbial species and an imbalance in the Firmicutes to
Bacteroidetes ratio in subjects who are overweight or obese. However, data regarding the
signatures of microbiome profiles of persons with obesity and the corresponding association
with dietary interventions are inconsistent [17,18]. Researchers have proposed that genomic
functions or metagenomes and metabolic profiles of the gut microbiome interact with
the host gut–brain axis. These complex interactions between signaling molecules of the
nervous system, immune system, endocrine system, and digestive system are termed
the microbiota–gut–brain axis [2]. Dietary interventions based on the administration of
prebiotics and probiotics have been found to improve overall metabolic health and may
treat obesity [18,19].

The aim of our study was to compare the intestinal microbiome among a group of
pediatric subjects with a diagnosis of obesity, with or without metabolic syndrome. Fifty
subjects within the age range of 10–18 years were recruited for the study, including the
collection of clinical and biochemical data. We obtained fecal samples and diet logs span-
ning one week. Here, we report the findings of microbial profiles of children with obesity
and/or metabolic syndrome and their similarity to adult GIT microbiota signatures [20].

2. Methods
2.1. Ethics Statement

This clinical trial was approved by the ethics committee of the Stony Brook University
Office of Research Compliance (No. 677872). Pediatric patients (age ≥ 7 years) with a
diagnosis of obesity or metabolic syndrome were identified. Written consent was obtained
from the guardians of all the participants in a consecutive fashion. Participants who were
18 years old were of the age to provide their own written consent. The enrollment period
was from October 2014 to October 2016.

2.2. Inclusion Criteria

Eligible subjects were 10–18 years old and were established patients at the Stony Brook
University Divisions of Pediatric Gastroenterology, Nephrology, Endocrinology, or the
Weight Management Program. Obesity was defined as weight greater than 95 percentile
for age. Metabolic syndrome was defined as weight greater than 95 percentile for age and
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factors, including elevated systolic blood pressure, elevated triglycerides, impaired fasting
glucose, or hyperinsuliniemia [21].

2.3. Exclusion Criteria

Subjects were ineligible if they had type I diabetes, declined to consent, inflammatory
bowel disease, or celiac disease. Subjects were ineligible if they had been treated with
antibiotics within 2 weeks from the time of the clinic visit or had acute diarrhea. Subjects
were subsequently eligible if they presented for a follow-up visit once the diarrhea resolved
and if they had not consumed antibiotics within 2 weeks.

2.4. Dietary Intake and Data Analysis

Subjects were required to complete a dietary intake log for 7 days. They were given
instructions on how to complete the log. The dietician analyzed the dietary information
using Nutritionist Pro Software (Axxya Systems, Redmond, WA, USA, 2016). Comprehen-
sive nutrition analysis was subsequently performed using the Client Diet Record Nutrient
Analysis tool.

2.5. Microbiome Analysis

Subjects were instructed to collect a fecal sample and store it at a cool temperature.
The sample was delivered within 24 h and stored at −80 ◦C until processing. Collection
vials were prefilled with 2 mL of RNAlater (Life Technologies, Carlsbad, CA, USA). DNA
was extracted from fecal samples using the QIAamp Powerfecal DNA isolation kit (Qi-
agen INC, Hilden, Germany). Bacterial profiles were determined via broad-range PCR
amplification and sequence analysis of 16S rRNA genes following our previously described
methods [22–24]. In brief, amplicons were generated using barcoded primers targeting
the V3V4 variable region of the 16S rRNA gene: primers 338F (5′ ACTCCTACGGGAG-
GCAGCAG) and 806R (5′ GGACTACHVGGGTWTCTAAT). PCR products were normal-
ized using a SequalPrepTM kit (Invitrogen, Carlsbad, CA, USA), pooled, lyophilized, pu-
rified, and concentrated using a DNA Clean and Concentrator Kit (Zymo, Irvine, CA,
USA). The pooled amplicons were quantified using Qubit Fluorometer 2.0 (Invitrogen,
Carlsbad, CA, USA). The pool was diluted to 4 nM and denatured with 0.2 N NaOH at
room temperature. The denatured DNA was diluted to 15 pM and spiked with 25% of the
Illumina PhiX control DNA prior to loading the sequencer. Illumina paired-end sequencing
was performed on the MiSeq using a 600-cycle version 3 reagent kit.

Paired-end reads were aligned to the human reference genome hg19 using bowtie2,
and the matching sequences were discarded [25,26]. Demultiplexed paired reads were
assembled using phrap [27], and pairs that did not assemble were discarded. The assem-
bled sequences were trimmed over a moving window of 5 nucleotides until the average
quality was met or exceeded 20. Trimmed sequences with more than one ambiguity
or shorter than 350 nt were discarded. Potential chimeras identified with Uchime (use-
arch6.0.203_i86linux32) [28] using the Schloss [29] Silva reference sequences were removed
from subsequent analyses. The assembled sequences were aligned and classified with
SINA (1.3.0-r23838) [30] using the 418,497 bacterial sequences in Silva 115NR99 [31] as
a reference configured to yield the Silva taxonomy. The taxonomic annotations were
based on the default lowest common ancestor parameters used by Silva. Closed-reference
operational taxonomic units (OTU) were produced by binning sequences with identical
taxonomic assignments. This process generated a median of 142,764 sequences/sample
(IQR: 122,708-184,270) and all goods coverage scores were ≥99.8%. The software package
Explicet (v2.10.5) [32] was used to calculate the alpha diversity indices at a rarefaction point
of 50,000 sequences.

2.6. Statistical Analysis

The software packages R v4.1.0 [33] and Explicet v2.10.5 [32] were used to ana-
lyze and visualize the data. For microbiome analysis, differences in overall composition
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(i.e., beta diversity) were assessed via permutational ANOVA (PERMANOVA [34,35]) using
the Morisita–Horn dissimilarity index (Bray–Curtis and Jaccard indices were evaluated in
the initial analyses, but generated lower R2 values than Morisita–Horn). PERMANOVA
p-values were inferred via 10 [6] label permutations and FDR-corrected for multiple com-
parisons [36] when multiple pairwise tests were performed. The alpha diversity indices
(i.e., Sobs, Shannon H, Shannon H/Hmax) were assessed using linear regression modeling;
p-values were FDR adjusted when multiple pairwise tests were performed. Individual
taxa differing between patient groups were identified using the ANOVA-like differential
expression (ALDEx2) R package [37,38]. The distribution of taxa in each sequence library
was estimated using 1000 Dirichlet Monte Carlo re-samplings of the sequence count data.
To account for the compositional nature of the microbiome sequence data, the datasets were
then subjected to a center log-ratio transformation with all features used as the denominator.

3. Results
3.1. Baseline Characteristics of Participants

In this study, we obtained informed consent from 100 subjects. Fifty of them, including
33 subjects with a diagnosis of obesity (Ob) and 17 with a diagnosis of metabolic syndrome
(MetS), were included in the final study. Fifty subjects did not submit fecal samples and
were excluded from the analysis (Figure 1).

Figure 1. Flow chart of participants recruited and the samples obtained.

The Ob cohort included 33 subjects with a mean age of 14.7 ± 2.3 years. The MetS
cohort included 17 subjects with a mean age of 14.6 ± 2.5 years. There were no significant
differences in gender, race, waist circumference, and height between the two groups.
Subjects with MetS had higher serum triglycerides, lower HDL-cholesterol, and higher
systolic and diastolic BPi, as well as a higher incidence of a family history of diabetes
mellitus. The baseline characteristics of the subjects are presented in Table 1.

Categorical variables were analyzed using chi-squared analysis and are presented
as percentages (%). Continuous variables were examined using the Student’s t-test for
parametric variables and the Mann–Whitney U test for non-parametric variables. Statistical
significance was set at p-value < 0.05.

All the subjects in our study had higher than normal body mass index (BMI) scores
based on the standard guidelines [39–41]. We further stratified the enrolled subjects into
two groups based on a BMI cut-off of 30. About 29.4% of the Ob group and 27.3% of the
MetS group had a BMI of less than 30, whereas 70.6% of the Ob group and 72.7% of the
MetS group had BMI scores greater than 30.
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Table 1. Baseline characteristics.

Variable OB (N = 33) MetS (N = 17) p Value

Age (Years) 14.7 ± 2.3 14.6 ± 2.5 0.9090t

Males 18 (54.6%) 11 (64.7%) 0.490f

White
Latino
Other

20 (60.6%)
7 (21.2%)
6 (18.2%)

6 (35.3%)
6 (35.3%)

5 (29.41%)
0.237f

Body mass index (kg/m2) 32.5 ± 4.3 35.3 ± 7.8 0.1060t

Waist circumference (cm) 102.7 ± 15.5 105.5 ± 24.6 0.83t

Height (cm) 164.4 ± 8.7 162.6 ± 11.6 0.5477t

Triglycerides 115.3 ± 47.6 218.2 ± 127.5 0.0007t

HDL-cholesterol 47.0 ± 7.4 38.8 ± 13.6 0.0158t

Systolic BPi 0.91 ± 0.06 1.0 ± 0.1 0.0008t

Diastolic BPi 0.84 ± 0.09 0.94 ± 0.12 0.0021t

Hemoglobin A1C (%) 5.5 ± 0.3 5.8 ± 0.5 0.0229t

Family history of diabetes
mellitus 9 (27.3%) 10 (58.8%) 0.029f

Values are presented as median and interquartile range (25th percentile–75th percentile), except for categoric data
shown as count (%). Abbreviations: HDL, high-density lipoprotein; Bpi, blood pressure index.

3.2. Analysis of Gut Microbiota Composition

Fecal bacteria were profiled cross-sectionally in 50 enrolled subjects using bacterial 16S
rRNA gene sequencing. As expected, four phyla accounted for the most bacterial diversity
in each study participant: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria
(Figure 2).

Figure 2. Intestinal microbiota differed in overall composition (β diversity) according to BMI and
MetS category. Relative abundances of taxa are summarized at the phylum and genus levels and
stratified using both body mass index (BMI; kg/m2) and occurrence of metabolic syndrome (MetS).
Between-group differences in β diversity were evaluated using permutational ANOVA. Significant
results are indicated by asterisks. Abbreviations: Ob, obese; MetS, metabolic syndrome; BMI-A (<30);
BMI-B (≥30). Note: • = p < 0.1, * = p < 0.05, ** = p < 0.01.

We analyzed the gut microbiota among the subjects based on two stratification crite-
ria: (1) enrollment group of obese (Ob) vs. metabolic syndrome (MetS) and (2) BMI < 30
(BMI-A) vs. BMI ≥ 30 (BMI-B). We initially examined associations between these variables,
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as well as other clinical and demographic variables, nutrient intake (Table 2), and overall
microbiota composition (beta diversity) at both the genus and phylum levels. Univari-
able PERMANOVA tests (Table 3) were significant, or trended towards significance, for
BMI category (P[genus] = 0.013 and P[phylum] = 0.0028), age (P[genus] = 0.054), and
ethnicity (P[genus] = 0.046 and P[phylum] = 0.052). In contrast, neither MetS diagnosis,
sex, HISBPI, HIDBP, nor abBP were significant in the PERMANOVA tests. Multivariable
PERMANOVA tests that included BMI category, age, and ethnicity revealed that BMI
category and age, but not ethnicity, remained significant after adjusting for other covari-
ates. The final bivariable models documented significant, independent effects of both
BMI category (P[genus] = 0.0037 and P[phylum] = 0.00045) and age (P[genus] = 0.014 and
P[phylum] = 0.033) on fecal microbiota. Lastly, when subjects were stratified using both
MetS diagnosis and BMI category (Figure 2), the effects of BMI on genus-level microbiota
were observed primarily in the MetS group (p = 0.0019). At the phylum level, both the non-
MetS and MetS groups exhibited differences in microbiota according to the BMI category
(p = 0.0071 and p = 0.053, respectively).

Table 2. Nutrient intake and dietary analysis for seven days.

Variable Ob (N = 20) MetS (N = 10) t

Age (years) 14 ± 2.3 16.2 ± 1.4 0.01

Male 11(55%) 5 (50%) 0.99f

Latino 7 (35%) 2 (20%) 0.55f

BMI 31.9 (IQR 28.7, 34) 33.7 (IQR 32.6, 35.8) 0.12k

Average Intake Per Day

Kilocalories 1670.9 ± 555.6 1557.4 ± 380.7 0.57t

Protein (g) 68.2 ± 18.6 69.6 ± 12.8 0.83t

Carbohydrate (g) 210.1 (IQR 133.7, 289.4) 190.9 (IQR 166.8, 199.2) 0.96k

Sugar, Total (g) 88.0 (IQR 31.5, 109.4) 68.4 (IQR 46.1, 76.4) 0.92k

Total Dietary Fiber (g) 12.5 ± 4.8 15.7 ± 6.6 0.14t

Fat (g) 62.7 (IQR 47.2, 78.8) 55.9 (IQR 51.6, 55.6) 0.21k

Saturated fat (g) 23.1 ± 9.1 18.6 ± 4.2 0.16t

Sodium (mg) 2656.9 ± 765.7 2563.4 ± 471.4 0.73t

Potassium (mg) 1383.7 ± 458.9 1766.5 ± 520.4 0.049t

Vitamin D (IU) 100.5 (IQR 39.6, 163.7) 170.5 (IQR 146.3, 174.2) 0.02k

Folate (ug) 216.7 (IQR 122.5, 305.4) 409.6 (IQR 273.5, 476.5) 0.005k

Caffeine (mg) 15.7 (IQR 0, 22.1) 1.2 (IQR 0, 3.6) 0.19k
Values are presented as median and interquartile range (25th percentile–75th percentile), except for categoric
data shown as count (%). Abbreviations: Ob, obese; MetS, metabolic syndrome; g, grams; BMI, body mass index
(kg/m2); f, Fisher’s exact test; t, Student t test; k, Kruskal–Wallis; IQR, interquartile range.

As was the case for beta diversity, no significant differences in microbial community
richness (Sobs), evenness (Shannon H/Hmax), or diversity indices (Shannon H) were
observed between the Ob and MetS groups (Figure 3A). Similarly, the BMI category was
not associated with any of these three alpha diversity indices (Figure 3B).
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Table 3. Summary of permutational ANOVA (PERMANOVA) tests of β diversity.

PERMANOVA p-Value

Variable Genus Phylum Notes

Disease
Category 0.32 0.77 Ob vs. MetS

BMI 0.013 0.0028 BMI < 30 vs. BMI ≥ 30
Age 0.054 0.31 Years
Sex 0.75 0.93 F vs. M

Ethnicity 0.046 0.052 Asian, Black, Latino, White, and other
SBPI 0.55 0.56 High vs. Low SBPI (SBPI > 1)
DBPI 0.36 0.59 High vs. Low DBPI (DBPI > 1)
abBP 0.24 0.68 Low BP vs. High (SBPI OR DBPI)

Abbreviations: Ob, obese; MetS, metabolic syndrome; BMI, body mass index (kg/m2); BMI-A (<30) and BMI-B
(≥30); SBPI, systolic blood pressure index; DBPI, diastolic blood pressure index; abBP, abnormal blood pressure.

Figure 3. α diversity indices do not differ by MetS or BMI categories. Violin plots of α diver-
sity indices, including richness, evenness, and Shannon diversity, stratified using (A) disease cat-
egory of obesity and metabolic syndrome and (B) BMI-A (<30) and BMI-B (≥30). Abbreviations:
Div., diversity; BMI, body mass index.

We next assessed whether individual bacterial taxa differed between the MetS and
BMI categories (Figure 4). At the genus level, there was a greater abundance of Doria and
Gordonibacter among subjects with obesity compared to children with MetS (Figure 4A).
In contrast, the MetS group was characterized by relatively higher abundances of the
genera Haemophilus, Faecalibacterium, and Escherichia (Figure 4A). Children with BMI < 30
had relatively higher abundances in several genera including Flavonifractor, Bacteroides,
Parabacteroides, Bacteroidales, Eggerthella, Sutterella, and Bilophilla (Figure 4B). At the phylum
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level, a greater relative abundance of Actinobacteria was observed among the subjects
with Ob (Figure 4C). In addition, we found that the phylum Bacteroidetes was diminished
among subjects with a BMI ≥ 30, irrespective of their clinical diagnosis (Figure 4D).

Figure 4. Differentially abundant taxa according to the MetS and BMI categories. The left column of
panels shows volcano plots of fold-change (FC; Log2 transformed) vs. p-values (−Log10 transformed)
ascertained via ALDEx2 analysis. Vertical and horizontal dashed lines represent cut-offs of FC ≥ 1.5
and p-value ≤ 0.1, respectively. The right column of panels shows the ALDEx2-calculated effect
sizes of taxa meeting FC and p-value cutoffs. In all panels, taxa enriched in the reference group
(Ob or BMI-A) are highlighted in ed with FC and effect sizes less than zero, while taxa enriched in
comparison groups (MetS or BMI-B) are highlighted in blue with FC and effect sizes greater than
zero. (A) Genus-level differences between the Ob and MetS groups. (B) Genus-level differences in the
BMI-A vs. BMI-B groups. (C) Phylum-level differences in the Ob vs. MetS groups. (D) Phylum-level
differences in the BMI-A vs. BMI-B groups. Abbreviations: Ob, obese; MetS, metabolic syndrome;
g, grams; BMI, body mass index (kg/m2); BMI-A (<30); BMI-B (≥30).
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4. Discussion

In the present study, we carried out a comparative analysis of the fecal microbiome
of 50 children ranging in age from 10 to 18 years old and with Ob and MetS. The di-
etary intake was similar between the two groups. The estimates of Vitamin D and Folate
consumption was higher among subjects with metabolic syndrome. We confirmed that
children with MetS had high triglycerides, low HDL-cholesterol, hypertension, type 2 dia-
betes, and insulin resistance. However, when we broadly compared the two enrollment
groups, we did not find significant differences in the complexity or distribution of the
fecal microbiome profiles. In this broad comparison, we incorporated the dietary intake
and clinical/biochemical parameters of the two groups of children. Similar patterns of
microbial richness, evenness, and diversity were observed in each cohort. This is similar
to a previous study in which obese and normal-weight school-age children did not show
differences in alpha diversity [42]. In further support of our findings, a recent study of adult
patients with MetS in which similar clinical and biochemical parameters were examined
found no differences in the alpha diversity of the fecal microbiome [43].

Next, we compared the composition of the gut microbiota between the two enrollment
cohorts. The phylum Actinobacteria was relatively less abundant among subjects with MetS.
A study among adults with Mets revealed relatively lower abundances of genera within the
phylum Bacteroidetes, including Alistipes and Bacteroides, compared to healthy controls [44].
We observed that genera including Doria and Gordonibacter were more abundant among
subjects without a diagnosis of MetS, whereas greater abundances of the genera including
Heamophilus, Faecalibacterium, and Escherichia were observed among children with MetS
(Figure 4). These findings contrasted with the outcomes of a previous study, in which MetS
patients were observed to have a higher abundance of the genera Bacteroides, Eubacterium,
and Lactobacillus. Consistent with other studies, Faecalibacterium prausnitzi abundance was
depleted in our cohort of children with MetS [45].

The range in BMI varied from 25.22 to 44.28 in the obese cohort and from 24.98
to 51.61 in the MetS cohort. When we stratified our analysis using a BMI cut-off of 30,
we found significant differences in beta diversity. Bacteroidetes were significantly more
abundant in fecal samples from children with a BMI < 30 compared to samples from
children with a BMI > 30 (see Figure 4A). Children with a BMI greater than 30 in the
Ob and MetS groups had greater abundances of Ruminococcaceae compared to children
with a BMI < 30. Subjects with a BMI < 30 had higher abundances of genera including
Flavonifractor, Bacteroides, Parabacteroides, Bacteroidales, Eggerthella, Sutterella, and Bilophilla,
whereas subjects with a BMI > 30 had higher abundances of unclassified Firmicutes. It
was previously reported that higher abundances of Actinobacteria and Firmicutes and
lower abundances of Bacteroidetes are observed among children and adults with obesity
compared to those with a normal BMI [7,46,47]. A recent study of children with MetS
reported greater abundances of Firmicutes, Proteobacteria, and Actinobacteria and a lower
abundance of Bacteroidetes [7,48]. The outcomes from our study and others illustrate that
children with obesity have gut microbiota profiles that more closely resemble those of adults
with obesity [20]. More studies are required to delineate the mechanisms underlying this
phenotype. Studies should also examine the long-term outcomes of dysbiosis, particularly
among children with BMI scores greater than 30.

Our study highlights important differences between children with obesity and with
metabolic syndrome, especially children with BMI scores greater than 30. Children may be
more amenable and responsive to interventions that alter the progression of obesity and
MetS. This is consistent with the worldwide morbidity and mortality rates [49]. A better
understanding of the gut microbiome in children with obesity may reveal specific measures
for intervention. We acknowledge several limitations in our study. Stool collection proved
to be very difficult and limited our study size. We did not include a healthy control group
of the same age with a normal BMI. This may have increased our detection of differences
in microbiome profiles between the subsets. Moreover, diet logs from the subjects were
obtained for only a period of seven days and were subject to recall bias.
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In summary, we present a comparative profile of fecal microbiome diversity and com-
position among school-age children with obesity and metabolic syndrome. We observed
significant differences in the diversity and composition of the fecal microbiome when
children with obesity and metabolic syndrome were stratified using a BMI cut-off of 30.
Children with a BMI value greater than 30 had a lower abundance of Bacteroidetes and a
greater abundance of Actinobacteria and Firmicutes. This gut microbiota signature more
closely resembles that of adults with obesity compared to healthy children of the same age
and may represent accelerated GIT aging. We propose that larger studies be conducted to
identify specific factors that drive early gut microbiota maturation and disturbances in the
temporal gut microbiome development among children with obesity.
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