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Abstract: We determined the antifungal and antimicrobial sensitivity of Euphorbia tirucalli extracts
in vitro. Antifungal and antibacterial activity was determined based on the M38-A and M26-A proto-
cols, respectively. The methanolic and ethanolic partitions demonstrated antidermatophytic activity
against Trichophyton rubrum (MIC 125 µg/mL for ethanol and MIC 125 µg/mL for methanol) and T.
interdigitalis (MIC 500 µg/mL for ethanol; 125 µg/mL for methanol). These partitions also showed
antibacterial activity—the ethanolic partition had an MIC of 1.56 ± 0.02 mg/mL against methicillin-
resistant Staphylococcus aureus (clinical isolate), 6.25 ± 0.04 mg/mL against Staphylococcus aureus BAA-44,
3.13 ± 0.13 mg/mL against Pseudomonas aeruginosa 27853, and 3.13 ± 0.15 mg/mL against Escherichia
coli ATCC 25922; the methanolic partition showed an MIC of 1.56 ± 0.02 mg/mL against P. aeruginosa
27853 and 1.56 ± 0.043 mg/mL against E. coli ATCC 25922. These partitions show promise as antimicro-
bial agents or adjuvants in the treatment of infections caused by these microorganisms.
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1. Introduction

In the last three decades the pharmaceutical industry has seen a renewed interest in
natural products and their possible applications in the search for new and more efficient
drugs. Plants are an important source for drug production; in effect, numerous studies have
confirmed the biological potential of phytochemical compounds against human diseases,
with antimicrobial [1,2], antiviral [3], antioxidant [2,4], and antidiabetic properties [5],
among others. It is worth mentioning that about 30% of the drugs used in industrialized
countries have been synthesized from plant products [6]. Within the wide range of plants
with pharmacological potential, the Euphorbia genus is among the most used in traditional
medicine in many parts of the world, and reports of its antimicrobial activity has aroused
interest in the scientific community [7]. Euphorbia tirucalli is a native plant of southern Africa,
widely used in Indian and Brazilian ethnomedicine in the treatment of skin conditions such
as excrescences, nodules, abscesses, warts, epithelioma, sarcoma, skin tumors, and leprosy,
among others [8]. The alcoholic extracts of the stem bark and leaves of E. tirucalli have
antimicrobial activity against P. aeruginosa, Candida tropicalis, C. albicans, and Aspergillus niger.
Stem extracts with acetone, hexane, methanol, chloroform, and petroleum are reported to
have antibacterial activity against E. coli and Bacillus megaterium [9], whereas the aqueous
extract of aerial parts eliminates superoxide anions and scavenges hydroxyl radicals [10].
Based on these properties, it is necessary to continue researching the pharmacological
properties of E. tirucalli.
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The number of human diseases caused by microorganisms has increased, which is
mainly attributed to a deficiency in immune function, along with the low bioavailability
of antifungals and antibiotics [11]. According to the WHO, fungal mycoses have a global
prevalence of 20% to 25% for the general population; 5% to 10% of these cases are caused
by dermatophytes, with Trichophyton rubrum and T. interdigitalis being the most frequent
species. The incidence of chronic dermatophytosis has sparked interest in seeking alter-
native solutions to combat these diseases [12–14]. Another pressing issue is presented by
nosocomial infections caused by organisms acquired during stays in health centers, which
are an important cause of morbidity and mortality in hospitals and incur an increase in
medication costs. Global prevalence is relatively high, reaching 10% of the population;
more people die each year from nosocomial diseases caused by multidrug-resistant bacteria
than from homicides and traffic accidents [15]. These infections are commonly caused by
Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, which cause conditions
in the urinary and digestive tracts (diarrhea), toxic shock syndrome, pneumonia, and
septicemia [16–18].

Due to the continued use of medicinal plants, it is necessary to continue using valid
experimental models to demonstrate their therapeutic properties. We evaluated the in vitro
antifungal activity of different partitions of extracts obtained from E. tirucalli against clinical
isolates of dermatophytes (T. rubrum and T. mentagrophytes), as well as against bacterial
strains responsible for nosocomial infections (S. aureus, P. aeruginosa, and E. coli).

2. Materials and Methods
2.1. Microorganisms

Isolates of the fungi Trichophyton rubrum and T. interdigitalis, as well as the bacterial
strains Escherichia coli 25922, Staphylococcus aureus BAA-44, Staphylococcus aureus clinical
isolate, and Pseudomonas aeruginosa 27853, were used. All strains were obtained from the
microorganism collection from the Laboratory of Analytical Chemistry of the College of
Biological Sciences of the Universidad Autónoma de Nuevo León (UANL).

2.2. Collection of Plant Material

The E. tirucalli (E.t) collection was carried out in northern San Nicolás de los Garza, in
Nuevo León, México. The samples were taxonomically classified in the Botany Department
of the College of Biological Sciences in UANL, and were registered in the herbarium under
folio number: 029755. The plant material was repeatedly washed with distilled water and
dried at 40 ◦C with a white light lamp (150 W). Subsequently, the material was mashed
using a manual grinder.

2.3. Preparation of Extracts

First, 40 g of dried and ground plant material was subjected to continuous extraction
using Soxhlet equipment with hexane, chloroform, ethanol, and methanol (CTR Scientifics).
Partitions were recovered and solvents were removed under reduced pressure (Yamato
rotary evaporator model RE200). The plant material was brought to dryness in a stove
oven at a temperature no higher than 40 ◦C (BTC-9100, TERLAB, Zapopan, México). Once
solvent-free, all four partitions (hexane: E.t-Hex-Part; chloroform: E.t-Clo-Part; ethanol:
E.t-EtOH-Part; methanol: E.t-MeOH-Part) were stored at ambient temperature until use
(Figure 1).

The yield was obtained by the rule of three, considering the initial plant material (40 g)
as 100%.
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Figure 1. Flowchart of obtaining the partitions of E. tirucalli: (A) Filling the extractor by placing the 
dry plant material in a filter jacket. (B) Successive and independent distillations of the vegetal 
framework with different solvents (hexane, chloroform, ethanol, and methanol) to obtain the par-
titions. (C) Evaporation, under reduced pressure, of each partition to recover them free of solvents 
(1 < 2 < 3 < 4). 

The yield was obtained by the rule of three, considering the initial plant material (40 
g) as 100%. 

2.4. Preparation of Treatments 
Plant treatment stocks (20 mg/mL with corresponding solvent) were prepared and 

homogenized by ultrasound (Ney ultrasonic cleaner 19 h) for 20 min. For antibacterial 
activity, initial solutions of 25 mg/mL were prepared via the same procedure. 

2.5. Preparation of Inoculate 
For the dermatophyte strains: Strains were initially activated on potato dextrose agar 

(PDA; CTR Scientifics, Monterrey, México), for 21 days at 28 °C (Quincy lab, Model 12–
140 Bench Top Incubator). Subsequently, fungal colonies were covered with 10 mL of 
sterile distilled water, and their surfaces were gently scraped with a sterile loop. Later, 
the obtained mixtures were filtered with a sterile gauze to separate the conidia from the 
hyphae and agar particles. Before performing biological tests, conidia suspensions were 
adjusted to 1–3 × 103 CFU/mL concentrations after being counted with a hemocytometer 
(CTR Scientifics, Monterrey, México). 

For the bacterial strains: Strains were inoculated in Müller–Hinton (CTR Scientifics, 
Monterrey, Nuevo León, México) broth and incubated at 24 h at 35 °C. Biological tests 
were performed after adjusting the bacterial solution to a concentration of 1 × 108 
CFU/mL (Matiz Melo et al., 2015) [19]. 

2.6. Determination of the Antidermatophytic Activity of the E. tirucalli L. Partitions 
In vitro antifungal sensitivity was determined through modification of the micro-

dilution method described in the M38-A protocol by the Clinical for Laboratory Stand-
ards Institute, 2008 [20], using clotrimazole (Sigma-Aldrich, St. Louis, MI, USA) as a 
control. Partition solutions were diluted from 20,000 µg/mL to 8000 µg/mL to carry out 

Figure 1. Flowchart of obtaining the partitions of E. tirucalli: (A) Filling the extractor by placing
the dry plant material in a filter jacket. (B) Successive and independent distillations of the vegetal
framework with different solvents (hexane, chloroform, ethanol, and methanol) to obtain the parti-
tions. (C) Evaporation, under reduced pressure, of each partition to recover them free of solvents
(1 < 2 < 3 < 4).

2.4. Preparation of Treatments

Plant treatment stocks (20 mg/mL with corresponding solvent) were prepared and
homogenized by ultrasound (Ney ultrasonic cleaner 19 h) for 20 min. For antibacterial
activity, initial solutions of 25 mg/mL were prepared via the same procedure.

2.5. Preparation of Inoculate

For the dermatophyte strains: Strains were initially activated on potato dextrose agar
(PDA; CTR Scientifics, Monterrey, México), for 21 days at 28 ◦C (Quincy lab, Model 12–140
Bench Top Incubator, Waltham, MA, USA). Subsequently, fungal colonies were covered with
10 mL of sterile distilled water, and their surfaces were gently scraped with a sterile loop.
Later, the obtained mixtures were filtered with a sterile gauze to separate the conidia from
the hyphae and agar particles. Before performing biological tests, conidia suspensions were
adjusted to 1–3 × 103 CFU/mL concentrations after being counted with a hemocytometer
(CTR Scientifics, Monterrey, México).

For the bacterial strains: Strains were inoculated in Müller–Hinton (CTR Scientifics,
Monterrey, Nuevo León, México) broth and incubated at 24 h at 35 ◦C. Biological tests were
performed after adjusting the bacterial solution to a concentration of 1 × 108 CFU/mL
(Matiz Melo et al., 2015) [19].

2.6. Determination of the Antidermatophytic Activity of the E. tirucalli L. Partitions

In vitro antifungal sensitivity was determined through modification of the microdi-
lution method described in the M38-A protocol by the Clinical for Laboratory Standards
Institute, 2008 [20], using clotrimazole (Sigma-Aldrich, St. Louis, MI, USA) as a control.
Partition solutions were diluted from 20,000 µg/mL to 8000 µg/mL to carry out subsequent
dilutions. With respect to the positive controls, 1000 mg/mL dilutions were obtained from
stock solutions (1000 µg/mL).

Initially, 100 mL of MH (Müller–Hinton) medium was prepared, and 0.02 mg of phenol
red was added before sterilization (MH-Ph). Subsequently, the biological testing was carried
out through serial dilutions in flat-bottomed 96-well microplates, using MH-Ph broth as a
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diluent from an initial partition concentration of 8000 µg/mL. To the MH-Ph-Part broth
initially placed in the microplate, 100 mL of conidia solution was added in order to obtain
final concentrations of 0.0076–2000 µg/mL. With respect to the control with clotrimazole
(CLSI, 2008), final concentrations of 0.0001–25 µg/mL were obtained. Dilutions without
inoculum were used as blanks; methanol dilutions were used as negative controls. For
growth control, 100 µL of each strain was inoculated in 100 µL of medium. The obtained
mixtures were incubated at 28 ◦C for 120 h (Figure 2).
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Figure 2. Flowchart to determine the antifungal activity.

Antifungal activity was determined using the minimum inhibitory concentration
(MIC), according to the CLSI as the concentration capable of inhibiting the fungal growth
(% H) at 80% compared to the control growth. Revelation was determined with a microplate
ELx800 universal microtiter plate reader (BioTek, Santa Clara, CA, USA) at 550 λ, and the
inhibition percentage (% H) was determined using the following formula

%H = [Control(Abs)− (Treatment(Abs)− blank(Abs))/Control(Abs)]× 100

2.7. Antibacterial Activity of E. tirucalli L. Partitions

MIC values for plant extracts were determined according to the M26-A protocol
(CLSI, 1999) [21]. The inocula were prepared from 18 h broth cultures, and suspensions
were adjusted to 0.5 McFarland standard turbidity. Partitions were first diluted to the
highest concentration, and then serial 2-fold dilutions were carried out in a concentration
range from 25–0.781 mg/mL (final concentrations: 12.5–0.391 mg/mL). MIC values against
bacteria were determined based on a micro-well dilution method. Microbial growth was
determined by absorbance values at 540 nm using an ELx800 universal microtiter plate
reader (BioTek, Santa Clara, CA, USA). The MIC was defined as the lowest compound
concentration to inhibit microorganism growth. In order to reveal whether a partition had
bacteriostatic or bactericidal activity, a sample was removed from the MIC and inoculated
in Müller–Hinton agar. Growth in the medium was considered bacteriostatic, whereas no
growth was considered bactericidal. All assays were carried out in triplicate.

3. Results
3.1. Percentage of Extraction Yield

Successive extractions were carried out from 40 g of dry plant material. The partition
yield for hexane was 4.63%; for chloroform, 3.028%; for ethanol, 7.775%, and for methanol,
12.423% (Table 1).
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Table 1. Percentages of extraction yield, efficacy, and performance, after 48 h of extraction.

Solvents IQ (g) OQ (g) R (%) Efficacy (%) Performance (%)

Hexane 40 1.852 4.630 4.630 4.630
Chloroform 38.789 1.211 3.028 3.122 3.122
Ethanol 37.578 3.110 7.775 8.276 8.276
Methanol 34.468 4.969 12.423 14.416 14.416

IQ: quantity of plant material at each stage; OQ: quantity of obtained extract; R: yield. The yield was calculated
from the initial amount of plant material (40 g).

3.2. Antifungal Activity

The methanolic and ethanolic partitions had inhibitory effects on the growth of clinical
dermatophyte isolates. The two dermatophytic strains had an MIC of 125 µg/mL for the
methanolic partition, whereas for ethanolic partitions the MIC for T. rubrum was 125 µg/mL,
while for T. interdigitalis it was 500 µg/mL (Table 2). No inhibitory effect was observed on
dermatophyte growth in solvent controls (methanol and ethanol); therefore, the solvents do
not contribute to the partitions’ activity. Moreover, using a blank in the formula to evaluate
the inhibition eliminated the absorbance effect of the extract.

Table 2. Fungal activity of the methanolic and ethanolic partitions of E. tirucalli against clinical
isolates of dermatophytes.

Dermatophytic Strains
E.t-MeOH-Part E.t-EtOH-Part Clotrimazole

% H MIC (µg/mL) % H MIC (µg/mL) % H MIC (µg/mL)

T. rubrum 80.25 ± 2.06 125 81.11 ± 2 125 82.30 ± 0.94 0.1
T. interdigitalis 86.12 ± 4.08 125 81.99 ± 3.53 500 92.57 ± 3.11 0.0004

n = 3. Results in µg/mL—E.t-MeOH-Part: methanolic partition of E. tirucalli; E.t-EtOH-Part: ethanolic partition of
E. tirucalli; % H: inhibition percentage.

The same MICs were obtained in both the ethanolic and methanolic partitions against
T. rubrum, whereas a highly significant difference was found between the MICs of T. rubrum
and T. mentagrophytes (Table 2). Qualitatively, changes in the color of culture medium to
fuchsia red indicated the growth of fungus, whereas slight changes in color showed a low
inhibition of fungal growth.

3.3. Antibacterial Activity

Both partitions showed growth inhibition of both Gram-positive and -negative strains,
but only the ethanolic partition had activity against MRSA strains (ATCC and Clinical
Isolates). For the methanolic partition, the bacteriostatic activity is shown in Table 3. The
ethanolic partitions demonstrated bactericidal activity against P. aeruginosa ATCC 27853
(3.125 ± 0.129) and S. aureus BAA-44, (6.25 ± 0.038 mg/mL). These results are interesting
because these bacteria are usually common etiological agent for nosocomial diseases.

Table 3. Determination of the minimum inhibitory concentrations (MICs) of the alcoholic partitions
of E. tirucalli, and the corresponding types of biological activity.

Clinically Important Strain Partition (Part.) MIC (mg/mL) Biological Activity

P. aeruginosa ATCC 27853 E.t-MeOH 1.56 ± 0.02 Bacteriostatic
P. aeruginosa ATCC 27853 E.t-EtOH 3.13 ± 0.13 Bactericidal

E. coli ATCC 25922 E.t-MeOH 1.56 ± 0.04 Bacteriostatic
E. coli ATCC 25922 E.t-EtOH 3.13 ± 0.15 Bacteriostatic
S. aureus BAA-44 E.t-EtOH 6.25 ± 0.04 Bactericidal

S. aureus clinical isolate E.t-EtOH 1.56 ± 0.02 Bacteriostatic
n = 3; E.t-MeOH: methanolic partition; E.t-EtOH: ethanolic partition.
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4. Discussion

The methanolic and ethanolic partitions obtained in this study showed both bacte-
ricidal and bacteriostatic activity against antibiotic-resistant microorganisms; the ethano-
lic partition showed a greater bactericidal potential against P. aeruginosa ATCC 27853
(3.125 mg/mL). This compares to the agar plating method used by Kumar et al. 2010 [10],
who found that a concentration of 2.5 mg/mL inhibited approximately 40% of growth. For
S. aureus, our methods showed 100% inhibition, whereas Kumar et al. (2010) [10] showed
an inhibition of 30.76% at a concentration of 2.5 mg/mL compared to its inhibition control
(streptomycin). It should be noted that the strain used in our work is considered multidrug-
resistant, and did not present any resistance; however, at 6.25 mg/mL it already had a
100% inhibition, which translates into a bactericidal effect. In relation to the methanolic
partitions, our results show greater inhibitory potential at concentrations below 2.5 mg/mL.
The differences between studies suggest that when partitioning from nonpolar solvents to
methanol, the metabolites present behave either as bacteriostatic or bactericidal, because
they are separated by their polarity gradients.

The in vitro sensitivity of partitions obtained from E. tirucalli against clinical isolates
of dermatophytes and multidrug-resistant bacteria were determined using clotrimazole
as a control. The E.t-MeOH-Part and E.t-EtOH-Part were found to have antifungal activ-
ity against dermatophyte clinical isolates (T. rubrum and T. interdigitalis) and multidrug-
resistant bacterial strains; T. rubrum showed an MIC of 125 µg/mL with the E.t-EtOH-Part,
while T. interdigitalis had an MIC of 500 µg/mL. Both dermatophytic strains had an MIC
of 125 µg/mL with the E.t-MeOH-Part (Table 2). It should be noted that these results are
similar to those obtained by Kumar et al. in 2010, who introduced a methanolic extract of E.
tirucalli to strains of clinical importance such as Candida albicans, C. tropicalis, Aspergillus
niger, A. fumigatus, A. flavus, and Fusarium oxysporum [10]. Our MICs obtained with E.t-
MeOH-Part were similar to those obtained by Parekh and Chanda (2008) for different
strains of Candida [22]. However, the slight improvement in MIC that we found could be
related to the partitions obtained, which could favor the solubility of secondary metabo-
lites, thereby increasing the contact surface on microorganisms. According to Savjani et al.
(2012), the phenomenon of creating dilutions from a stock solution with the purpose of
obtaining a homogeneous system is one of the important parameters used to achieve the
desired concentration for a strong pharmacological response [23]. Furthermore, secondary
metabolites such as tannins and other phenolic compounds are classified as highly active
antimicrobial compounds [24]. Extract partitions from E. tirucalli L. revealed the presence
of tannins, flavonoids, triterpenes, and sterols, which are biologically active against various
microbial agents responsible for human diseases [24–26].

Although the two partitions had different minimum fungicide concentrations, they
presented equal MICs (125 µg/mL) against T. rubrum (Table 2). This is related to the
small differences in their phytochemical profiles, given that the E.t-EtOH-Part showed
the presence of tannins, flavonoids, triterpenes, and sterols, whereas the phytochemical
profile of the E.t-MeOH-Part exhibited the presence of tannins, flavonoids, sterols, and
sesquiterpenes, in addition to those previously mentioned. According to the results ob-
tained by Miron et al. (2014) [27], the antifungal activity of these partitions may be related
to the presence of terpenes. Dermatophytes (e.g., T. rubrum, T. mentagrophytes, Microspurum
gypseum, and M. canis) are considerably sensible to terpenes (i.e., monoterpenes). Qasim
and Rasool [28,29] found that the terpenes taraxerano and cycloeuphordenol are present in
the aerial parts of E. tirucalli L. Because the main difference between the E.t-EtOH-Part and
the E.t-MeOH-Part is the presence of sesquiterpenes in the latter, the sensitivity shown by
T. interdigitalis may be related to this compound. Duong et al. (2019) reported the presence
of sesquiterpenes in E. tirucalli L.; these compounds have shown antibiotic activity against
different organisms, and this may be the case for T. interdigitalis [30]. In a previous study,
the methanolic partition of E. tirucalli L. showed antimicrobial activity against B. subtilis,
E. coli, E. faecalis, and C. albicans [31]. Partitions obtained from E. tirucalli L. also contain
flavonoids and tannins—compounds generally recognized for their antioxidant and antimi-
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crobial potential, as well as their role in collagen synthesis [32,33]. It is possible that synergy
against dermatophytic strains occurs between the compounds present in the partitions [34].

5. Conclusions

In the present study, ethanolic and methanolic partitions of E. tirucalli L. showed
antimicrobial potential against clinical isolates of dermatophytes (T. rubrum and T. inter-
digitalis) and bacteria (E. coli 25922, S. aureus BAA44, S. aureus MRSA, and P. aeruginosa
27853). We found that the ethanolic partition had the highest biological activity against
bacteria, whereas the methanolic partition was most effective against dermatophytes. These
biological activities were related to the phytochemical profiles of each of the partitions.
The secondary metabolites of E. tirucalli are promising antimicrobial agents that could
be used in the treatment of the diseases caused by these microorganisms. Although the
pharmacological potential of these partitions was evidenced, it is worth mentioning that
even though Soxhlet extraction offers numerous advantages, the use of high temperatures
in this method increases the possibilities of thermal degradation of compounds such as
polyphenols and alkaloids, generally known for their antimicrobial potential. Therefore, in
the future we will try to evaluate the same biological tests using partitions of E. tirucalli
obtained via other extraction methods that use more tolerable temperatures.
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