
Citation: Luo, R.; Popp, J.; Bocklitz, T.

Deep Learning for Raman

Spectroscopy: A Review. Analytica

2022, 3, 287–301. https://doi.org/

10.3390/analytica3030020

Academic Editor: Wilfried Rozhon

Received: 23 May 2022

Accepted: 29 June 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Deep Learning for Raman Spectroscopy: A Review
Ruihao Luo 1,2,3, Juergen Popp 1,2,3 and Thomas Bocklitz 1,2,3,*

1 Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany;
ruihao.luo@uni-jena.de (R.L.); juergen.popp@ipht-jena.de (J.P.)

2 Department of Photonic Data Science, Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9,
07745 Jena, Germany

3 Leibniz Centre for Photonics in Infection Research, 07743 Jena, Germany
* Correspondence: thomas.bocklitz@uni-jena.de

Abstract: Raman spectroscopy (RS) is a spectroscopic method which indirectly measures the vibra-
tional states within samples. This information on vibrational states can be utilized as spectroscopic
fingerprints of the sample, which, subsequently, can be used in a wide range of application scenarios
to determine the chemical composition of the sample without altering it, or to predict a sample
property, such as the disease state of patients. These two examples are only a small portion of
the application scenarios, which range from biomedical diagnostics to material science questions.
However, the Raman signal is weak and due to the label-free character of RS, the Raman data is
untargeted. Therefore, the analysis of Raman spectra is challenging and machine learning based
chemometric models are needed. As a subset of representation learning algorithms, deep learning
(DL) has had great success in data science for the analysis of Raman spectra and photonic data in
general. In this review, recent developments of DL algorithms for Raman spectroscopy and the
current challenges in the application of these algorithms will be discussed.

Keywords: deep learning; Raman spectroscopy; chemometrics; machine learning

1. Introduction

In 1928, a new scattering effect was discovered by C. V. Raman [1]. Today, this effect is
called Raman scattering, which is the inelastic scattering of photons on a quantized system
such as the vibrational states within molecules, e.g., in matter. Because the vibrational
states of a molecule are molecule-specific, a Raman spectrum can be used as a “vibrational
fingerprint” of the molecule. If Raman spectroscopy is applied to molecule mixtures, the
Raman spectrum can be used as fingerprint of the respective sample [2]. Due to the intrinsic
low quantum efficiency of the Raman effect, the measurement of high-quality Raman spec-
tra requires long measurement times. Therefore, enhancement techniques, such as coherent
anti-Stokes Raman spectroscopy (CARS) [3] and surface-enhanced Raman spectroscopy
(SERS) [4], were invented. Nowadays, Raman spectroscopy has already widely spread
into different research fields, for example, forensic analysis [5], pharmaceutical product
design [6], material identification [7], disease diagnosis [8], etc. Most of the presented and
similar studies employ the unlabelled version of Raman spectroscopy. For this reason, data
modelling is always necessary for interpreting the untargeted spectral data [9].

The research field of applying mathematical and statistical methods on the data of
chemical measurements has been defined as chemometrics by Kowalski in 1975 [10]. Usu-
ally, chemometrics for Raman spectroscopy can be divided into two main parts: data
pre-processing and data modelling. In terms of data pre-processing, there are correction
steps, including spike correction, wavenumber calibration, baseline correction, etc. [2].
Different pre-processing methods exist, such as traditional pre-processing, e.g., the Vancou-
ver Raman algorithm [11], as well as machine learning options, such as automatic Raman
spectra correction [12]. In terms of data modelling, machine learning (ML) models are

Analytica 2022, 3, 287–301. https://doi.org/10.3390/analytica3030020 https://www.mdpi.com/journal/analytica

https://doi.org/10.3390/analytica3030020
https://doi.org/10.3390/analytica3030020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/analytica
https://www.mdpi.com
https://orcid.org/0000-0003-2778-6624
https://doi.org/10.3390/analytica3030020
https://www.mdpi.com/journal/analytica
https://www.mdpi.com/article/10.3390/analytica3030020?type=check_update&version=1


Analytica 2022, 3 288

prevailing, especially the partial least squares (PLS) algorithm. For instance, Goetz et al.,
used a PLS-based multivariate technique to quantify body chemicals [13]; Hedegaard et al.,
combined PLS and K-means clustering to identify isogenic cancer cells [14]; and Guo et al.,
modified PLS and principal component analysis (PCA) to improve Raman spectroscopy
classification [15]. Besides, other classical machine learning algorithms are also often used
for data modelling. For example, Manoharan et al., determined 12 principal components of
61 Raman spectra for breast cancer diagnosis by singular value decomposition (SVD) [16];
Widjaja et al., applied support vector machine (SVM) into near-infrared (NIR) Raman
spectroscopy for classifying colonic tissue specimens [17]; and Seifert proved that random
forests are efficient for analysing complex biological samples based on SERS data [18].

Apart from the afore-mentioned examples of classical machine learning models, there
is a kind of representation learning, which is most often based on very deep multilayer
perceptrons (MLPs). This kind of representation learning is called deep learning and it
can solve various artificial-intelligence tasks [19] (pp. 1–12). With the rapid development
of computer science, deep learning has changed numerous traditional research fields,
including photonics [20], chemistry [21], and biology [22]. For Raman spectroscopy, deep
learning models are also very helpful in both data pre-processing and data modelling,
which, theoretically, can be applied to all kinds of Raman spectral data. If a large number
of Raman spectra are available, they can be sent directly into deep learning models without
pre-processing. It should be noted here that it is not clear what is a large number for a
given DL model and application. That is, mainly, because no sample-size planning (SSP)
algorithm exists for deep learning. If Raman spectra are utilized without pre-processing,
the DL model should do that implicitly beside the classification or regression task. If there
are different Raman experiments, the models can be retrained or just directly used for a new
experiment or task. Besides, typical deep learning algorithms in this field are convolutional
neural networks (CNNs), residual networks (ResNets), recurrent neural networks (RNNs),
autoencoders, and generative adversarial networks (GANs). Therefore, in the following
sections, these algorithms, their recent applications in Raman spectroscopy, as well as their
current challenges, will be discussed in more detail.

In this article, Section 1 has introduced the background information about Raman
spectroscopy and deep learning; Section 2 will make an overview of several common deep
learning models, including CNNs, ResNets, RNNs- and GANs; and Section 3 will discuss
recent applications of deep learning in combination with Raman spectroscopy. The applica-
tions are grouped into four categories. Section 4 will summarise the existing challenges of
deep learning for Raman spectroscopy. Finally, Section 5 will draw a conclusion.

2. Deep Learning—Overview

In 1986, Rina Dechter introduced the term “deep learning” into the machine learning
community [23]. Because of the recent rise of big data, deep learning (DL) has successfully
infiltrated nearly all major areas of scientific research. DL belongs to the representation
learning subset of artificial intelligence (AI). Most often, feedforward neural networks
(FNNs) are the fundamental basis of deep learning algorithms, which are a kind of artificial
neural networks (ANNs) that always consist of an input layer, hidden layers, and an output
layer. The input layer sends the input data into the network, then the neurons in hidden
layers process the data depending on their weights, and, finally, the processed data is
returned by the output layer. The weights and bias of the network are typically updated
using backpropagation and gradient-based optimization techniques. The basic architecture
of an FNN is shown in Figure 1. This architectural basis makes it possible for a deep learning
network to be capable of representing functions of increasing complexity by adding more
units and layers [19] as long as sufficient large numbers of labelled training samples
are available. Based on this basic architecture, various deep learning-based algorithms
have been recently invented and implemented, for example, CNNs, ResNets, RNNs,
autoencoders, GANs, etc, [9]. Their relationships are illustrated in Figure 2. Although these
algorithms vary from one to another, an optimisation method, a cost function, a dataset,



Analytica 2022, 3 289

and a model defined by its building blocks, e.g., layers, are always the four fundamental
components [9]. These typical deep learning algorithms will be briefly introduced in
the following.

Analytica 2022, 3, FOR PEER REVIEW 3 
 

 

RNNs, autoencoders, GANs, etc, [9]. Their relationships are illustrated in Figure 2. Alt-
hough these algorithms vary from one to another, an optimisation method, a cost function, 
a dataset, and a model defined by its building blocks, e.g., layers, are always the four 
fundamental components [9]. These typical deep learning algorithms will be briefly intro-
duced in the following. 

 
Figure 1. The basic structure of a feedforward (deep) neural network. A feedforward (deep) neural 
network consists of three main parts: an input layer (red units), an output layer (green units), and a 
number of hidden layers (blue units). The input data is sent into the network from the input layer, 
and then the hidden layer processes the data, which yields an output. 

 
Figure 2. ANN Venn diagram. This image shows that under the big ANN umbrella, CNNs, GANs, 
ResNets, autoencoders, and RNNs are typical deep learning models. Although they are all inde-
pendent network architectures, it is very common to combine some of them together in real appli-
cations. 

2.1. Convolutional Neural Networks (CNN) 
In 1989, LeCun et al., firstly introduced the CNN for handwritten zip code recogni-

tion [24]. The most important part of a CNN is its convolutional layer. Additionally, batch 
normalization layers and pooling layers as well as fully-connected layers are also com-
monly utilized in a CNN. The input of a convolutional layer is convolved by the kernels 
of a convolutional layer and passed to the next layer acting as input for that layer. During 

Figure 1. The basic structure of a feedforward (deep) neural network. A feedforward (deep) neural
network consists of three main parts: an input layer (red units), an output layer (green units), and a
number of hidden layers (blue units). The input data is sent into the network from the input layer,
and then the hidden layer processes the data, which yields an output.

Analytica 2022, 3, FOR PEER REVIEW 3 
 

 

RNNs, autoencoders, GANs, etc, [9]. Their relationships are illustrated in Figure 2. Alt-
hough these algorithms vary from one to another, an optimisation method, a cost function, 
a dataset, and a model defined by its building blocks, e.g., layers, are always the four 
fundamental components [9]. These typical deep learning algorithms will be briefly intro-
duced in the following. 

 
Figure 1. The basic structure of a feedforward (deep) neural network. A feedforward (deep) neural 
network consists of three main parts: an input layer (red units), an output layer (green units), and a 
number of hidden layers (blue units). The input data is sent into the network from the input layer, 
and then the hidden layer processes the data, which yields an output. 

 
Figure 2. ANN Venn diagram. This image shows that under the big ANN umbrella, CNNs, GANs, 
ResNets, autoencoders, and RNNs are typical deep learning models. Although they are all inde-
pendent network architectures, it is very common to combine some of them together in real appli-
cations. 

2.1. Convolutional Neural Networks (CNN) 
In 1989, LeCun et al., firstly introduced the CNN for handwritten zip code recogni-

tion [24]. The most important part of a CNN is its convolutional layer. Additionally, batch 
normalization layers and pooling layers as well as fully-connected layers are also com-
monly utilized in a CNN. The input of a convolutional layer is convolved by the kernels 
of a convolutional layer and passed to the next layer acting as input for that layer. During 

Figure 2. ANN Venn diagram. This image shows that under the big ANN umbrella, CNNs, GANs,
ResNets, autoencoders, and RNNs are typical deep learning models. Although they are all indepen-
dent network architectures, it is very common to combine some of them together in real applications.

2.1. Convolutional Neural Networks (CNN)

In 1989, LeCun et al., firstly introduced the CNN for handwritten zip code recog-
nition [24]. The most important part of a CNN is its convolutional layer. Additionally,
batch normalization layers and pooling layers as well as fully-connected layers are also
commonly utilized in a CNN. The input of a convolutional layer is convolved by the
kernels of a convolutional layer and passed to the next layer acting as input for that layer.
During the process of weight updating, the convolution kernel of each layer is learned,
thus, feature maps which are generated by the kernels are updated. Additionally, pooling
layers are utilized to reduce data dimension and computational complexity by subsampling.
There are two most common types of pooling methods: max pooling and average pooling.
Usually, a fully-connected layer is at the end of a CNN, which connects every single neuron



Analytica 2022, 3 290

of its previous layer to the output. Figure 3 illustrates the typical structure of a CNN model.
It should be noted here that CNNs have two special concepts: parameter sharing and local
connectivity. These concepts reduce the number of parameters and make the computations
more efficient.

Analytica 2022, 3, FOR PEER REVIEW 4 
 

 

the process of weight updating, the convolution kernel of each layer is learned, thus, fea-
ture maps which are generated by the kernels are updated. Additionally, pooling layers 
are utilized to reduce data dimension and computational complexity by subsampling. 
There are two most common types of pooling methods: max pooling and average pooling. 
Usually, a fully-connected layer is at the end of a CNN, which connects every single neu-
ron of its previous layer to the output. Figure 3 illustrates the typical structure of a CNN 
model. It should be noted here that CNNs have two special concepts: parameter sharing 
and local connectivity. These concepts reduce the number of parameters and make the 
computations more efficient. 

 
Figure 3. The typical structure of a CNN. In this diagram, the yellow square (left) and the grey circle 
(right) represent the input data and the output data, respectively. Besides, the green and blue 
squares represent the first and second convolutional layers, and there is a pooling step (grey dashed 
arrow) in between for subsampling. Before the output, a fully-connected layer (purple dotted line) 
is utilised at the end of the CNN. 

2.2. Residual Network (ResNet) 
In 2015, He et al., published a paper to use residual learning for image recognition 

[25]. This is the first application of ResNet, containing a 34-layer network architecture. The 
core structure of a ResNet is its residual block, which is shown in Figure 4. The residual 
block utilises a shortcut to jump over layers. This design can avoid the vanishing gradient 
problem, which might completely stop the neural network from further learning in the 
training process. According to the network length, the most commonly used ResNets are 
ResNet-50, ResNet-101, and ResNet-152, which can be categorized as CNN variants. 

 
Figure 4. A residual block. There is a shortcut between the input x and the desired output H(x). If 
the output of the nonlinear stacked layers is defined as F(x): = H(x) − x, then H(x) = F(x) + x. This 
network design enables a skip connection, which allows gradient information to pass through the 
layers and can avoid the vanishing gradient problem. 

Figure 3. The typical structure of a CNN. In this diagram, the yellow square (left) and the grey circle
(right) represent the input data and the output data, respectively. Besides, the green and blue squares
represent the first and second convolutional layers, and there is a pooling step (grey dashed arrow)
in between for subsampling. Before the output, a fully-connected layer (purple dotted line) is utilised
at the end of the CNN.

2.2. Residual Network (ResNet)

In 2015, He et al., published a paper to use residual learning for image recognition [25].
This is the first application of ResNet, containing a 34-layer network architecture. The
core structure of a ResNet is its residual block, which is shown in Figure 4. The residual
block utilises a shortcut to jump over layers. This design can avoid the vanishing gradient
problem, which might completely stop the neural network from further learning in the
training process. According to the network length, the most commonly used ResNets are
ResNet-50, ResNet-101, and ResNet-152, which can be categorized as CNN variants.

Analytica 2022, 3, FOR PEER REVIEW 4 
 

 

the process of weight updating, the convolution kernel of each layer is learned, thus, fea-
ture maps which are generated by the kernels are updated. Additionally, pooling layers 
are utilized to reduce data dimension and computational complexity by subsampling. 
There are two most common types of pooling methods: max pooling and average pooling. 
Usually, a fully-connected layer is at the end of a CNN, which connects every single neu-
ron of its previous layer to the output. Figure 3 illustrates the typical structure of a CNN 
model. It should be noted here that CNNs have two special concepts: parameter sharing 
and local connectivity. These concepts reduce the number of parameters and make the 
computations more efficient. 

 
Figure 3. The typical structure of a CNN. In this diagram, the yellow square (left) and the grey circle 
(right) represent the input data and the output data, respectively. Besides, the green and blue 
squares represent the first and second convolutional layers, and there is a pooling step (grey dashed 
arrow) in between for subsampling. Before the output, a fully-connected layer (purple dotted line) 
is utilised at the end of the CNN. 

2.2. Residual Network (ResNet) 
In 2015, He et al., published a paper to use residual learning for image recognition 

[25]. This is the first application of ResNet, containing a 34-layer network architecture. The 
core structure of a ResNet is its residual block, which is shown in Figure 4. The residual 
block utilises a shortcut to jump over layers. This design can avoid the vanishing gradient 
problem, which might completely stop the neural network from further learning in the 
training process. According to the network length, the most commonly used ResNets are 
ResNet-50, ResNet-101, and ResNet-152, which can be categorized as CNN variants. 

 
Figure 4. A residual block. There is a shortcut between the input x and the desired output H(x). If 
the output of the nonlinear stacked layers is defined as F(x): = H(x) − x, then H(x) = F(x) + x. This 
network design enables a skip connection, which allows gradient information to pass through the 
layers and can avoid the vanishing gradient problem. 

Figure 4. A residual block. There is a shortcut between the input x and the desired output H(x). If
the output of the nonlinear stacked layers is defined as F(x): = H(x) − x, then H(x) = F(x) + x. This
network design enables a skip connection, which allows gradient information to pass through the
layers and can avoid the vanishing gradient problem.

2.3. Autoencoder

Unsupervised learning can be realised with an autoencoder, which has a bottleneck
structure, as shown in Figure 5. An autoencoder has two main parts: an encoder and a
decoder, which are designed for input and output data, respectively. The data flows from
the input through a bottleneck, which forms a feature representation of the input data



Analytica 2022, 3 291

to model the output. An important application of an autoencoder structure constructed
by means of a CNN is the U-Net, which was firstly introduced by Ronneberger et al., for
biomedical image segmentation [26].

Analytica 2022, 3, FOR PEER REVIEW 5 
 

 

2.3. Autoencoder 
Unsupervised learning can be realised with an autoencoder, which has a bottleneck 

structure, as shown in Figure 5. An autoencoder has two main parts: an encoder and a 
decoder, which are designed for input and output data, respectively. The data flows from 
the input through a bottleneck, which forms a feature representation of the input data to 
model the output. An important application of an autoencoder structure constructed by 
means of a CNN is the U-Net, which was firstly introduced by Ronneberger et al., for 
biomedical image segmentation [26]. 

 
Figure 5. The bottleneck structure of an autoencoder. The first half is an encoder (yellow), which 
maps the input X to the bottleneck H; while the second half is a decoder (green), which maps the 
bottleneck H to the output X’. Firstly, the encoder processes X and generates H (containing im-
portant features); then, the decoder translates H into the desired output X’. 

2.4. Generative Adversarial Network (GAN) 
Goodfellow et al., introduced a very interesting deep learning architecture called 

generative adversarial network (GAN), which consists of a generator G and a discrimina-
tor D [27]. During the process of training, G aims to maximise the probability of D making 
a mistake, while D wants to separate real from generated data instances. The training is 
performed sequentially using the minimax loss, which is, actually, a minimax two-player 
game. As a result, G learns to generate data that comes from on approximated distribution 
similar to the distribution of the original input. Meanwhile, D try to distinguish real im-
ages in the training dataset between generated fake images. Figure 6 shows a typical GAN 
architecture. 

Figure 5. The bottleneck structure of an autoencoder. The first half is an encoder (yellow), which
maps the input X to the bottleneck H; while the second half is a decoder (green), which maps the
bottleneck H to the output X’. Firstly, the encoder processes X and generates H (containing important
features); then, the decoder translates H into the desired output X’.

2.4. Generative Adversarial Network (GAN)

Goodfellow et al., introduced a very interesting deep learning architecture called
generative adversarial network (GAN), which consists of a generator G and a discriminator
D [27]. During the process of training, G aims to maximise the probability of D making
a mistake, while D wants to separate real from generated data instances. The training is
performed sequentially using the minimax loss, which is, actually, a minimax two-player
game. As a result, G learns to generate data that comes from on approximated distribution
similar to the distribution of the original input. Meanwhile, D try to distinguish real
images in the training dataset between generated fake images. Figure 6 shows a typical
GAN architecture.

2.5. Recurrent Neural Network (RNN)

In 1997, Hochreiter and Schmidhuber invented the long short-term memory (LSTM)
network, which is a form of a RNN [28]. LSTM networks have feedback connections, so
they are able to process entire sequences of data and avoid the vanishing gradient problem.
RNNs are capable of adding memory to the network over time, thus, they have succeeded
widely in time-series processing, such as speech signal recognition. More specifically,
according to Pradhan et al., RNN architectures can be separated into three groups: many-
to-one architecture, one-to-many architecture, and many-to-many architecture [9]. The way
of unfolding a basic RNN is shown in Figure 7.



Analytica 2022, 3 292Analytica 2022, 3, FOR PEER REVIEW 6 
 

 

 
Figure 6. The typical architecture of a GAN (source: [9]). There are two parts: a generator G and a 
discriminator D. After enough training epochs of this minimax two-player game, G can generate 
high quality fake images just from random noises, and D try to distinguish real and fake images. 

2.5. Recurrent Neural Network (RNN) 
In 1997, Hochreiter and Schmidhuber invented the long short-term memory (LSTM) 

network, which is a form of a RNN [28]. LSTM networks have feedback connections, so 
they are able to process entire sequences of data and avoid the vanishing gradient prob-
lem. RNNs are capable of adding memory to the network over time, thus, they have suc-
ceeded widely in time-series processing, such as speech signal recognition. More specifi-
cally, according to Pradhan et al., RNN architectures can be separated into three groups: 
many-to-one architecture, one-to-many architecture, and many-to-many architecture [9]. 
The way of unfolding a basic RNN is shown in Figure 7. 

 
Figure 7. Unfolding a basic RNN. U, V, and W are the weights of the input layer, the output layer 
and the hidden state, respectively; Ht, It, and Ot are the hidden state, input vector, and output result 
at time t, respectively. Because of the loop in RNN, gradients can flow backwards through unlimited 
numbers of virtual layers unfolded in space, so that they can be prevented from vanishing or ex-
ploding. And this loop also makes it possible for the RNN to process entire sequences of data. 

Figure 6. The typical architecture of a GAN (source: [9]). There are two parts: a generator G and a
discriminator D. After enough training epochs of this minimax two-player game, G can generate high
quality fake images just from random noises, and D try to distinguish real and fake images.

Analytica 2022, 3, FOR PEER REVIEW 6 
 

 

 
Figure 6. The typical architecture of a GAN (source: [9]). There are two parts: a generator G and a 
discriminator D. After enough training epochs of this minimax two-player game, G can generate 
high quality fake images just from random noises, and D try to distinguish real and fake images. 

2.5. Recurrent Neural Network (RNN) 
In 1997, Hochreiter and Schmidhuber invented the long short-term memory (LSTM) 

network, which is a form of a RNN [28]. LSTM networks have feedback connections, so 
they are able to process entire sequences of data and avoid the vanishing gradient prob-
lem. RNNs are capable of adding memory to the network over time, thus, they have suc-
ceeded widely in time-series processing, such as speech signal recognition. More specifi-
cally, according to Pradhan et al., RNN architectures can be separated into three groups: 
many-to-one architecture, one-to-many architecture, and many-to-many architecture [9]. 
The way of unfolding a basic RNN is shown in Figure 7. 

 
Figure 7. Unfolding a basic RNN. U, V, and W are the weights of the input layer, the output layer 
and the hidden state, respectively; Ht, It, and Ot are the hidden state, input vector, and output result 
at time t, respectively. Because of the loop in RNN, gradients can flow backwards through unlimited 
numbers of virtual layers unfolded in space, so that they can be prevented from vanishing or ex-
ploding. And this loop also makes it possible for the RNN to process entire sequences of data. 

Figure 7. Unfolding a basic RNN. U, V, and W are the weights of the input layer, the output layer
and the hidden state, respectively; Ht, It, and Ot are the hidden state, input vector, and output
result at time t, respectively. Because of the loop in RNN, gradients can flow backwards through
unlimited numbers of virtual layers unfolded in space, so that they can be prevented from vanishing
or exploding. And this loop also makes it possible for the RNN to process entire sequences of data.

3. Recent Applications for Raman Spectroscopy

Classical machine learning techniques have been widely used for Raman spectroscopy.
Generally, data pre-processing, feature extraction (or feature selection), and data modelling
are necessary steps. On the contrary, with deep learning, the workload of such complicated
steps can all be done by a single neural network on condition that there exist sufficient train-
ing data. Based on the output types, deep learning applications for Raman spectroscopy
can be separated into four main parts: pre-processing, classification, regression, and high-
lighting, which are shown in Figure 8. After model training using a Raman spectrum
as input, a pre-processing model outputs another Raman spectrum (usually filtered or
denoised); a classification model outputs a label; a regression model outputs a number or
probabilistic value; and a highlighting model divides the input into different parts and



Analytica 2022, 3 293

usually outputs a certain region of interest (ROI) of the 1D spectral data. In this section,
recent achievements about these major applications will be introduced, as demonstrated in
Table 1.

Analytica 2022, 3, FOR PEER REVIEW 7 
 

 

3. Recent Applications for Raman Spectroscopy 
Classical machine learning techniques have been widely used for Raman spectros-

copy. Generally, data pre-processing, feature extraction (or feature selection), and data 
modelling are necessary steps. On the contrary, with deep learning, the workload of such 
complicated steps can all be done by a single neural network on condition that there exist 
sufficient training data. Based on the output types, deep learning applications for Raman 
spectroscopy can be separated into four main parts: pre-processing, classification, regres-
sion, and highlighting, which are shown in Figure 8. After model training using a Raman 
spectrum as input, a pre-processing model outputs another Raman spectrum (usually fil-
tered or denoised); a classification model outputs a label; a regression model outputs a 
number or probabilistic value; and a highlighting model divides the input into different 
parts and usually outputs a certain region of interest (ROI) of the 1D spectral data. In this 
section, recent achievements about these major applications will be introduced, as demon-
strated in Table 1. 

 
Figure 8. Four types of deep learning applications for Raman spectroscopy. Based on outputs, there 
are four types of models: pre-processing, classification, regression, and highlighting. In a pre-pro-
cessing model, the output is another Raman spectrum; in a classification model, the output is a label 
(e.g., “healthy”); in a regression model, the output is a number or probabilistic value (e.g., “0.95”); 
in a highlighting model, the output is a certain spectral region of interest (ROI) of the input spec-
trum. 

3.1. Pre-Processing 
As mentioned above, because the Raman effect is a weak effect, it can be easily con-

taminated by noise and other corrupting effects. Thus, pre-processing is, traditionally, a 
must. According to Bocklitz et al., and Guo et al., after getting raw spectra, spike correc-
tion, wavenumber calibration, intensity calibration, baseline correction, and spectral 
smoothing, spectral normalisation as well as dimension reduction are always needed 
[2,29]. Because the computational complexity of the above-mentioned pre-processing se-
quence is high, and simply no universal pre-processing technique exists, the definition 
and implementation of the pre-processing (sequence) becomes a heavy burden [30]. Be-
sides, there does not exist standard pre-processing protocol for different laboratories and 
devices, and some pre-processing sequences could be inappropriate [2]. Due to these facts, 
it is of vital importance to find another way to solve the pre-processing challenge. Luckily 
enough, recent research results have shown that deep learning is a powerful alternative 
for Raman spectral pre-processing. 

1D CNNs are commonly applied for Raman spectral pre-processing. For example, 
Wahl et al., presented a single-step automated Raman spectral pre-processing method us-
ing CNN [31]. In this method, signal peaks, baselines, and background noise are, firstly, 

Figure 8. Four types of deep learning applications for Raman spectroscopy. Based on outputs,
there are four types of models: pre-processing, classification, regression, and highlighting. In a
pre-processing model, the output is another Raman spectrum; in a classification model, the output
is a label (e.g., “healthy”); in a regression model, the output is a number or probabilistic value
(e.g., “0.95”); in a highlighting model, the output is a certain spectral region of interest (ROI) of the
input spectrum.

3.1. Pre-Processing

As mentioned above, because the Raman effect is a weak effect, it can be easily
contaminated by noise and other corrupting effects. Thus, pre-processing is, traditionally, a
must. According to Bocklitz et al., and Guo et al., after getting raw spectra, spike correction,
wavenumber calibration, intensity calibration, baseline correction, and spectral smoothing,
spectral normalisation as well as dimension reduction are always needed [2,29]. Because
the computational complexity of the above-mentioned pre-processing sequence is high, and
simply no universal pre-processing technique exists, the definition and implementation
of the pre-processing (sequence) becomes a heavy burden [30]. Besides, there does not
exist standard pre-processing protocol for different laboratories and devices, and some
pre-processing sequences could be inappropriate [2]. Due to these facts, it is of vital
importance to find another way to solve the pre-processing challenge. Luckily enough,
recent research results have shown that deep learning is a powerful alternative for Raman
spectral pre-processing.

1D CNNs are commonly applied for Raman spectral pre-processing. For example,
Wahl et al., presented a single-step automated Raman spectral pre-processing method
using CNN [31]. In this method, signal peaks, baselines, and background noise are, firstly,
randomly added in order to create synthetic spectra. After that, a CNN model is trained
for mapping a set of input Raman spectra to the corresponding ideal spectrum. This CNN
model consists of a feature extraction block (four convolutional layers followed by batch
normalization and rectified linear unit (ReLU) layers; the first two are also followed by
average pooling layers) as well as a regression block (a dropout layer, a fully-connected
layer, and a regression layer). As a result, most pre-processed outputs had better signal
quality under these three criteria: root mean square error (RMSE), structural similarity
index measure (SSIM), and signal-to-noise ratio (SNR). Additionally, Valensise et al., also
implemented a 1D CNN model to remove non-resonant background (NRB) from broadband
coherent anti-Stokes Raman scattering (B-CARS) spectra [32], as demonstrated in Figure 9.
This model is called SpecNet, which consists of five convolutional layers followed by
three fully-connected layers. The convolutional layers have 128, 64, 16, 16, and 16 filters,



Analytica 2022, 3 294

respectively; the fully-connected layers have 32, 16, and 640 neurons, respectively, and each
layer has a rectified linear unit (ReLU) as activation function. After going through this
model, the distorted line shapes and the degraded chemical information can be corrected,
so that the analysis of B-CARS spectra can be greatly simplified and accelerated.

Analytica 2022, 3, FOR PEER REVIEW 8 
 

 

randomly added in order to create synthetic spectra. After that, a CNN model is trained 
for mapping a set of input Raman spectra to the corresponding ideal spectrum. This CNN 
model consists of a feature extraction block (four convolutional layers followed by batch 
normalization and rectified linear unit (ReLU) layers; the first two are also followed by 
average pooling layers) as well as a regression block (a dropout layer, a fully-connected 
layer, and a regression layer). As a result, most pre-processed outputs had better signal 
quality under these three criteria: root mean square error (RMSE), structural similarity 
index measure (SSIM), and signal-to-noise ratio (SNR). Additionally, Valensise et al., also 
implemented a 1D CNN model to remove non-resonant background (NRB) from broad-
band coherent anti-Stokes Raman scattering (B-CARS) spectra [32], as demonstrated in 
Figure 9. This model is called SpecNet, which consists of five convolutional layers fol-
lowed by three fully-connected layers. The convolutional layers have 128, 64, 16, 16, and 
16 filters, respectively; the fully-connected layers have 32, 16, and 640 neurons, respec-
tively, and each layer has a rectified linear unit (ReLU) as activation function. After going 
through this model, the distorted line shapes and the degraded chemical information can 
be corrected, so that the analysis of B-CARS spectra can be greatly simplified and acceler-
ated. 

 
Figure 9. An example of using 1D CNN for Raman data pre-processing (source: [32]). The visualised 
1D CNN model contains three convolutional layers (blue) and two fully-connected layers (red), and 
it outputs a cleaned Raman spectrum. 

Apart from the above-mentioned basic 1D CNNs, autoencoders and ResNets are also 
widely used for Raman spectral pre-processing. A very typical example is the 1D ResUNet 
implemented by Horgan et al., which is designed for the process of Raman spectral de-
noising [33]. In their study, MDA-MB-231 breast cancer cells were cultured to obtain both 
low SNR (0.1 s integration time per spectrum) and high SNR (1 s integration time per 
spectrum) Raman spectra, so that the 1D ResUNet could then be trained for enhancing the 
low SNR ones. This model has 20 convolutional layers, each of them is with a ReLU layer, 
and they make up five residual blocks consisting of an encoder and a decoder. In addition, 
Gebrekidan et al., used a similar ResUNet model to efficiently remove noise and back-
ground from raw Raman spectra to increase signal quality [34]. The encoder of this 
ResUNet consists of four repeated sequences (each has two 5 × 1 convolutional layers, one 
batch normalization layer, and one max-pooling layer) followed by two 5 × 1 convolu-
tional layers; the decoder of this ResUNet also consists of four repeated sequences (each 
has two 5 × 1 convolutional layers, one up-sampling layer, and one concatenation layer), 
followed by a 1 × 1 convolutional layer at the end. 

Some other impressive studies about deep learning for Raman pre-processing have 
also been developed by researchers. For example, Pan et al., used a CNN with seven 2-
dimentional convolutional layers (each has 100 filters of the size 100 × 1 and is followed 
by a 100-channel batch normalization layer, a ReLU layer, and a max-pooling layer) and 
one fully-connected layer at the end [35]; Houhou et al., compared a long short-term 
memory network (LSTM) made up of the input gate, the forget gate, the output gate, and 
the cell state with maximum entropy method (MEM) and Kramers-Kronig relation (KK) 
for CARS phase retrieval, which performs well and does not need background removal in 
advance [36]. 

Figure 9. An example of using 1D CNN for Raman data pre-processing (source: [32]). The visualised
1D CNN model contains three convolutional layers (blue) and two fully-connected layers (red), and
it outputs a cleaned Raman spectrum.

Apart from the above-mentioned basic 1D CNNs, autoencoders and ResNets are
also widely used for Raman spectral pre-processing. A very typical example is the 1D
ResUNet implemented by Horgan et al., which is designed for the process of Raman spectral
denoising [33]. In their study, MDA-MB-231 breast cancer cells were cultured to obtain
both low SNR (0.1 s integration time per spectrum) and high SNR (1 s integration time per
spectrum) Raman spectra, so that the 1D ResUNet could then be trained for enhancing
the low SNR ones. This model has 20 convolutional layers, each of them is with a ReLU
layer, and they make up five residual blocks consisting of an encoder and a decoder. In
addition, Gebrekidan et al., used a similar ResUNet model to efficiently remove noise and
background from raw Raman spectra to increase signal quality [34]. The encoder of this
ResUNet consists of four repeated sequences (each has two 5 × 1 convolutional layers, one
batch normalization layer, and one max-pooling layer) followed by two 5 × 1 convolutional
layers; the decoder of this ResUNet also consists of four repeated sequences (each has two
5 × 1 convolutional layers, one up-sampling layer, and one concatenation layer), followed
by a 1 × 1 convolutional layer at the end.

Some other impressive studies about deep learning for Raman pre-processing have
also been developed by researchers. For example, Pan et al., used a CNN with seven
2-dimentional convolutional layers (each has 100 filters of the size 100 × 1 and is followed
by a 100-channel batch normalization layer, a ReLU layer, and a max-pooling layer) and
one fully-connected layer at the end [35]; Houhou et al., compared a long short-term
memory network (LSTM) made up of the input gate, the forget gate, the output gate, and
the cell state with maximum entropy method (MEM) and Kramers-Kronig relation (KK)
for CARS phase retrieval, which performs well and does not need background removal in
advance [36].

3.2. Classification and Regression

To the best knowledge of the author, most applications of deep learning algorithms
for Raman spectroscopy are usually about spectral classification. When the output of a
deep learning algorithm is a value describing the (estimated) probability of belonging to a
certain class, it can be seen as a regression problem. If a classification threshold is added
to such a regression algorithm, then it can become a classification algorithm. Therefore,
in most applications, classification and regression are usually mixed in practice. So, these
two types of applications will be introduced together in this section. 1D CNNs are the
most commonly applied models among these algorithms, and ResNets are very popular as
well. Most of the studies train the model from the very beginning, while few use transfer
learning to simplify the weight-updating process and to adapt to the small dataset size.
Usually, these deep learning-based Raman spectral classification models feature good test
performances in terms of their accuracies or receiver operating characteristic (ROC) curves.
In the following, a number of recent classification examples are summarised.



Analytica 2022, 3 295

Same as pre-processing, 1D CNNs also play a very important role in Raman spectral
classification. For example, to distinguish human and animal blood, Dong et al., used
a simplified network modified from LeNet-5 architecture with only two convolutional
layers for feature extraction followed by one fully-connected layer for classification, which
achieved an accuracy of 96.33% [37]; to detect prostate cancer, Lee et al., used another 1D
CNN for Raman spectra from extracellular vesicles (EVs) [38]; to assess the disease activity
of ulcerative colitis (UC), Kirchberger-Tolstik et al., used a 1D CNN as well and reached
a mean sensitivity of 78% and a mean specificity of 93% for the four Mayo endoscopic
scores [39]. Besides, an accuracy of 93% has been reached for classifying lymph node
carcinoma of the prostate (LNCaP), prostate cancer cell line (PC3), and red blood cell
(RBC) and platelet. This model does not require any external data pre-processing step, its
three convolution-max pooling layers extract features from spectral data, and then its four
fully-connected layers output classification labels at the end of neural network. To detect
microbial contamination, Maruthamuthu et al., used a 1D CNN for distinguishing Raman
spectra of Chinese hamster ovary (CHO) cells from 12 types of microbes, which achieved
the accuracy of 95–100% after training by Adam optimizer and the five-fold leave-one-out
cross-validation (LOOCV) strategy [40]. This model is composed of three parts: an initial
convolutional layer with the kernel size of 7 (followed by a batch normalization layer and a
ReLU layer), eight residual blocks with the kernel size of 3 and a fully-connected layer at
the end. To identify materials rapidly, Boonsit et al., implemented a 1D CNN as well for
low-resolution Raman spectra collected from NaNO3, BaSO4, Ba(NO3)2, KNO3, Pb(NO3)2,
and CH4N2O, and the accuracy of which was found to be 96.7% [7]. This model consists of
four convolutional blocks (each contains a convolutional layer, a ReLU layer, and a max-
pooling layer) for feature extraction and one output layer for spectral classification. Apart
from the above, a 1D CNN composed of only two convolutional layers was applied into
a nanoplasmonics biosensing chip (NBC) by Cheng et al., which could correctly identify
91% of the 100 spectra on validation dataset for hepatocellular carcinoma (HCC) or healthy
patients [41]. The two convolutional layers of this model are with 8 or 16 kernels of the size
3 × 1, respectively. A batch normalization layer is attached to each convolutional layer,
and a 2-by-1 max-pooling layer additionally follows the first convolutional layer. At the
end, a concatenate layer, a fully-connected layer as well as a softmax function are used for
outputting the classification results. Furthermore, a novel approach called “deep learning-
based component identification” (DeepCID) was invented by Fan et al., for successfully
detecting 167 types of pure components (methanol, ethanol, acetonitrile, etc.) based on
Raman spectral information [42], as illustrated in Figure 10. DeepCID is a four-layer CNN
model consisting of two convolutional layers (each with a 5 × 1 convolutional kernel and
a 2-by-1 max-pooling operation) and two fully-connected layers. As a result, DeepCID
achieved an accuracy of 98.8% for all 167 components and 160 of them achieved 99.5%.
Because of this satisfying result, the non-negative least squares (NNLS) algorithm and
DeepCID were later combined by Fu et al., which also worked impressively well in their
lactose-dominated drug (LLD) quantitative model [43].

Apart from the 1D CNN algorithms in the above, autoencoders and ResNets are also
quite popular for Raman spectral classification. For example, in terms of autoencoder,
Houston et al., combined one with a locally connected neural network (LCNN) to create a
two-step classification model for being accurate and robust in the presence of negative out-
liers [44]. In this model, the LCNN was designed for training data, while the autoencoder
was utilised for outlier detection. In terms of ResNet, Ho et al., implemented one network
with 25 convolutional layers for rapid bacteria identification [45]. The antibiotic treatment
identification accuracies of their model were 97.0 ± 0.3%. In addition, a new framework
entitled “diverse spectral band-based deep residual network” (DSB-ResNet) was proposed
by Ding et al., which had the best performance of detecting tongue squamous cell carci-
noma (TSCC) with 97.38%, 98.75%, and 98.25% for sensitivity, specificity, and accuracy,
respectively [46]. DSB-ResNet has a global convolution and slice (CS) layer after input, and
then is equally divided into four quarters. The outputs of the CS layer and four quarters



Analytica 2022, 3 296

are sent into five 34-layer ResNets, respectively, which are followed by a concatenation and
dropout layer and a fully-connected layer before the final output. Additionally, another
new framework using residual blocks named “multi-feature fusion convolutional neural
network” (MCNN) was designed by Chen et al., which had the highest accuracy among its
competitors for thyroid dysfunction diagnosis with serum Raman spectra collected from
199 patients [47]. MCNN has three 1D convolutional layers immediately after the input,
and these three layers also contain two residual blocks. The fourth layer of MCNN is a
concatenate layer, which is followed by a flatten layer as well as two fully-connected layers
before the final softmax output layer.

Analytica 2022, 3, FOR PEER REVIEW 11 
 

 

 
Figure 10. An example of using 1D CNN for Raman data classification (source: [42]). For classifying 
167 different components, a set of DeepCID models with the same architecture were used. Each 
DeepCID model is a 1D CNN, which consists of four convolutional layers and two fully-connected 
layers. For training and evaluating each model, 20,000 samples were split into three datasets: train-
ing dataset, validation dataset, and test dataset. 

When it comes to the limitation of dataset size, some other researchers have shown 
that using transfer learning is very helpful to the training process of classification models 
for Raman spectroscopy. For example, Thrift and Ragan tried a CNN-based single mole-
cule SERS quantification method that transferred the knowledge from Rhodamine 800 
(R800) domain to methylene blue (MB) domain. Their SERS quantification method could 
be highly satisfactory even with only 50 new MB training samples [53]. Their CNN model 
is inspired from the classic LeNet architecture, which begins with an entry flow of four 
convolutional layers followed by two max-pooling layers, respectively, and ends with an 
exit flow of a flatten layer, a dropout layer and two fully-connected layers. Furthermore, 
Zhang et al., pretrained a source dataset made of Bio-Rad and RRUFF databases and in-
creased their CNN classification accuracy by 4.1% with just 216 new spectra from the tar-
get dataset [54]. However, these applications of transfer learning greatly depend on a 
spectroscopic source dataset, therefore the feasibility of using more general source da-
tasets (e.g., ImageNet) still remains to be analysed. 

3.3. Spectral Data Highlighting 
As introduced above, most deep learning models can directly predict the classes of 

Raman spectra in a classification approach or predict continuous values, even without 
pre-processing and spectral highlighting, consequently, the need of highlighting im-
portant regions of spectra is not that high. Therefore, spectral data highlighting is not that 
often seen for Raman spectroscopy as the three afore-mentioned application scenarios. 

Figure 10. An example of using 1D CNN for Raman data classification (source: [42]). For classifying
167 different components, a set of DeepCID models with the same architecture were used. Each
DeepCID model is a 1D CNN, which consists of four convolutional layers and two fully-connected
layers. For training and evaluating each model, 20,000 samples were split into three datasets: training
dataset, validation dataset, and test dataset.

There are many other types of CNN-related algorithms for Raman spectroscopic
classification in the research field as well. For example, an optimal Scree-CNN model was
implemented for classifying salivary NS1 SERS spectra with 100% accuracy [48]. This Scree-
CNN consists of a feature extraction part and a classification part. The feature extraction
part contains an input layer, a convolutional layer, and a ReLU layer; the classification
part contains a multilayer perceptron (MLP) and a softmax output layer. Besides, Pan
and his colleagues even increased the Raman data dimension from 1D to 2D by wavelet
transform before classification [49,50]. In addition, a single-layer multiple-kernel-based
convolutional neural network (SLMK-CNN) containing one convolutional layer with five
different kernels, one flatten layer, and two fully-connected layers was created for Raman
spectra obtained from porcine skin samples [51]. Notably, for pathogen classification, Yu
et al., even combined Raman spectroscopy with GAN to achieve high accuracy when the



Analytica 2022, 3 297

training dataset size is limited [52]. In their GAN model, the generator G (a multilayer
perceptron) worked for data augmentation and the discriminator D (a multilayer deep
neural network) acted as a classifier.

When it comes to the limitation of dataset size, some other researchers have shown
that using transfer learning is very helpful to the training process of classification models
for Raman spectroscopy. For example, Thrift and Ragan tried a CNN-based single molecule
SERS quantification method that transferred the knowledge from Rhodamine 800 (R800)
domain to methylene blue (MB) domain. Their SERS quantification method could be highly
satisfactory even with only 50 new MB training samples [53]. Their CNN model is inspired
from the classic LeNet architecture, which begins with an entry flow of four convolutional
layers followed by two max-pooling layers, respectively, and ends with an exit flow of a
flatten layer, a dropout layer and two fully-connected layers. Furthermore, Zhang et al.,
pretrained a source dataset made of Bio-Rad and RRUFF databases and increased their
CNN classification accuracy by 4.1% with just 216 new spectra from the target dataset [54].
However, these applications of transfer learning greatly depend on a spectroscopic source
dataset, therefore the feasibility of using more general source datasets (e.g., ImageNet) still
remains to be analysed.

3.3. Spectral Data Highlighting

As introduced above, most deep learning models can directly predict the classes of
Raman spectra in a classification approach or predict continuous values, even without
pre-processing and spectral highlighting, consequently, the need of highlighting important
regions of spectra is not that high. Therefore, spectral data highlighting is not that often
seen for Raman spectroscopy as the three afore-mentioned application scenarios. But there
exist a few studies on the topic, e.g., answering the question of which spectral features are
important for a given task. To give an instance, Fukuhara and his team highlighted the
important regions of a given Raman spectrum by a CNN [55]. This CNN begins with two
convolutional blocks (each has a convolutional layer followed by a max-pooling layer) and
ends with two fully-connected layers. In their model, Raman peaks were extracted, and
near-zero feature values at background region were obtained. From another perspective,
the Raman spectral highlighting task can as well be considered as the supplement or
preparation for pre-processing steps. Therefore, further research about deep learning
algorithms purely for Raman spectral highlighting still needs to be conducted.

Table 1. Examples of typical deep learning applications for Raman spectroscopy.

Application Examples

Pre-processing Wahl et al. [31], Valensise et al. [32], Horgan et al. [33], Gebrekidan et al.
[34], Pan et al. [35], and Houhou et al. [36]

Classification/
Regression

Boonsit et al. [7], Dong et al. [37], Lee et al. [38], Kirchberger-Tolstik
et al. [39], Maruthamuthu et al. [40], Cheng et al. [41], Fan et al. [42], Fu
et al. [43], Houston et al. [44], Ho et al. [45], Ding et al. [46], Chen et al.
[47], Saifuzzaman et al. [48], Pan et al. [49,50], Sohn et al. [51], Yu et al.
[52], Thrift and Ragan [53], and Zhang et al. [54]

Highlighting Fukuhara et al. [55]

4. Challenges and Shortcomings

Although deep learning has already improved Raman spectroscopic research, there
still exist many challenges connected with the application of deep learning for Raman
spectra. The most important issue is about training and data preparation. First of all, deep
learning algorithms are highly data-demanding, but it is quite hard to acquire large sets of
(independent) Raman spectroscopic data. Therefore, small sample sizes of Raman datasets
might lead to low algorithm performance. Secondly, currently there no large open-source
Raman spectroscopic dataset exists to pre-train DL models for transfer learning, and the



Analytica 2022, 3 298

effectiveness of using more general datasets, such as ImageNet, still remains unknown.
Thirdly, the generalisation ability of the trained models is questionable, because a model
that performs quite well on one dataset might produce disappointing results on another
dataset due to overfitting. Last but not least, because Raman spectra are often of low quality
and contaminated with noise, extra pre-processing and enhancing steps are often needed,
which increase the complexity of data analysis.

5. Conclusions

As introduced above, deep learning is a representation learning method and it has
been widely used in the research field of Raman spectroscopy, especially during recent
years. Generally, there are different (and often applied) deep learning models, such as
CNNs, ResNets, autoencoders, GANs, RNNs, etc, which were introduced in this contribu-
tion. We grouped the applications of these models into four major Raman spectroscopic
application scenarios where these models are usually implemented: pre-processing, clas-
sification, regression, and (spectral) segmentation. The two most common applications
are pre-processing and classification, and the least common application is Raman spectral
segmentation/variable highlighting. In terms of Raman spectroscopy, segmentation often
merely plays a preparatory role before pre-processing or classification steps. Regarding
pre-processing, deep learning methods have already shown the great ability to surpass their
conventional counterparts, especially that the time requirement of deep learning methods
is lower than their classical counterparts. Many types of 1D CNNs, especially variants
of ResNets and autoencoders, are largely used for Raman pre-processing. These recent
achievements are significantly helpful to the next steps of Raman spectral data analysis.

On the other hand, deep learning even makes it possible to reduce the complexity of
pre-processing and allows for an automatic pre-processing solution in comparison with
subjective pre-processing workflows. Some deep learning models directly combine all the
pre-processing steps together with the ultimate goal, such as classification or regression, in
just one single network. For these scenarios, 1D CNNs and ResNets are very popular tools
as well, and sometimes GANs and autoencoders are also applied. Notably, there always
exists the problem of Raman spectral dataset size limitation, thus, implementing GANs for
data augmentation can be highly effective but needs further systematic research. Besides,
transfer learning has become another option to avoid this data size problem by reusing the
knowledge gained from source datasets of other domains. However, currently these source
datasets only concentrate on Raman spectra databases, so it still remains to be analysed in
respect of the feasibility of applying more general options similar to large, annotated image
datasets, e.g., ImageNet.

With the rapid development of computer science, there arise more and more deep
learning-related algorithms conquering other fields, but their effectiveness for Raman
spectral data is unknown. In brief, although deep learning has already demonstrated its
great potential for Raman spectroscopy, there are still many open questions to be answered,
especially relating to the estimation of the prediction quality of deep-leaning models on
small datasets with complex co-variance structures. There are other questions about the
influence of GAN-based data augmentation and how transfer learning can be applied
reliably for Raman spectroscopy.

Author Contributions: Literature research, R.L.; writing—original draft preparation, R.L. and T.B.;
writing—review and editing, T.B. and J.P. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the Ministry for Economics, Sciences, and Digital Society
of Thuringia (TMWWDG), under the framework of the Landesprogramm ProDigital (DigLeben-
5575/10-9) and the Federal Ministry of Education and Research of Germany (BMBF), funding program
Photonics Research Germany (FKZ: 13N15466, 13N15710, and 13N15708) and is integrated into the
Leibniz Center for Photonics in Infection Research (LPI). The LPI initiated by Leibniz-IPHT, Leibniz-
HKI, UKJ and FSU Jena is part of the BMBF national roadmap for research infrastructures.



Analytica 2022, 3 299

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the abovementioned funding bodies as well as
the reviewers for the time and effort they spent to improve the quality of this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raman, C.V. A new radiation. Indian J. Phys. 1928, 2, 387–398. [CrossRef]
2. Bocklitz, T.W.; Guo, S.; Ryabchykov, O.; Vogler, N.; Popp, J. Raman based molecular imaging and analytics: A magic bullet for

biomedical applications!? Anal. Chem. 2016, 88, 133–151. [CrossRef] [PubMed]
3. Maker, P.D.; Terhune, R.W. Study of optical effects due to an induced polarization third order in the electric field strength. Phys.

Rev. 1965, 137, 801–818. [CrossRef]
4. Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974,

26, 163–166. [CrossRef]
5. Penido, C.A.F.O.; Pacheco, M.T.T.; Lednev, I.K.; Silveira, L., Jr. Raman spectroscopy in forensic analysis: Identification of cocaine

and other illegal drugs of abuse. J. Raman Spectrosc. 2016, 47, 28–38. [CrossRef]
6. Paudel, A.; Raijada, D.; Rantanen, J. Raman spectroscopy in pharmaceutical product design. Adv. Drug Deliv. Rev. 2015, 89, 3–20.

[CrossRef]
7. Boonsit, S.; Kalasuwan, P.; van Dommelen, P.; Daengngam, C. Rapid material identification via low-resolution Raman spectroscopy

and deep convolutional neural network. J. Phys. Conf. Ser. 2021, 1719, 012081. [CrossRef]
8. Ryzhikova, E.; Ralbovsky, N.M.; Sikirzhytski, V.; Kazakov, O.; Halamkova, L.; Quinn, J.; Zimmerman, E.A.; Lednev, I.K.

Raman spectroscopy and machine learning for biomedical applications: Alzheimer’s disease diagnosis based on the analysis of
cerebrospinal fluid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119188. [CrossRef]

9. Pradhan, P.; Guo, S.; Ryabchykov, O.; Popp, J.; Bocklitz, T.W. Deep learning a boon for biophotonics? J. Biophotonics 2020, 13,
e201960186. [CrossRef]

10. Kowalski, B.R. Chemometrics: Views and propositions. J. Chem. Inf. Comput. Sci. 1975, 15, 201–203. [CrossRef]
11. Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Automated autofluorescence background subtraction algorithm for biomedical Raman

spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [CrossRef] [PubMed]
12. Witjes, H.; van den Brink, M.; Melssen, W.J.; Buydens, L.M.C. Automatic correction of peak shifts in Raman spectra before PLS

regression. Chemom. Intell. Lab. Syst. 2000, 52, 105–116. [CrossRef]
13. Goetz, M.J., Jr.; Coté, G.L.; Erckens, R.; March, W.; Motamedi, M. Application of a multivariate technique to Raman spectra for

quantification of body chemicals. IEEE Trans. Biomed. Eng. 1995, 42, 728–731. [CrossRef]
14. Hedegaard, M.; Krafft, C.; Ditzel, H.J.; Johansen, L.E.; Hassing, S.; Popp, J. Discriminating isogenic cancer cells and identifying

altered unsaturated fatty acid content as associated with metastasis status, using K-means clustering and partial least squares-
discriminant analysis of Raman maps. Anal. Chem. 2010, 82, 2797–2802. [CrossRef]

15. Guo, S.; Rösch, P.; Popp, J.; Bocklitz, T. Modified PCA and PLS: Towards a better classification in Raman spectroscopy-based
biological applications. J. Chemom. 2020, 34, e3202. [CrossRef]

16. Manoharan, R.; Shafer, K.; Perelman, L.; Wu, J.; Chen, K.; Deinum, G.; Fitzmaurice, M.; Myles, J.; Crowe, J.; Dasari, R.R.; et al.
Raman spectroscopy and fluorescence photon migration for breast cancer diagnosis and imaging. Photochem. Photobiol. 1998, 67,
15–22. [CrossRef]

17. Widjaja, E.; Zheng, W.; Huang, Z. Classification of colonic tissues using near-infrared Raman spectroscopy and support vector
machines. Int. J. Oncol. 2008, 32, 653–662. [CrossRef]

18. Seifert, S. Application of random forest based approaches to surface-enhanced Raman scattering data. Sci. Rep. 2020, 10, 5436.
[CrossRef]

19. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 1–481. ISBN 978-026-203-561-3.
20. Ma, W.; Liu, Z.; Kudyshev, Z.A.; Boltasseva, A.; Cai, W.; Liu, Y. Deep learning for the design of photonic structures. Nat. Photonics

2021, 15, 77–90. [CrossRef]
21. Mater, A.C.; Coote, M.L. Deep learning in chemistry. J. Chem. Inf. Model. 2019, 59, 2545–2559. [CrossRef]
22. Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K.; Kalinin, A.A.; Do, B.T.; Way, G.P.; Ferrero, E.; Agapow, P.M.; Zietz, M.;

Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387.
[CrossRef] [PubMed]

23. Dechter, R. Learning while searching in constraint-satisfaction-problems. In Proceedings of the 5th National Conference on
Artificial Intelligence (AAAI-86), Philadelphia, PA, USA, 11–15 August 1986; pp. 178–183.

24. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten
zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]

http://doi.org/10.1007/BF03052651
http://doi.org/10.1021/acs.analchem.5b04665
http://www.ncbi.nlm.nih.gov/pubmed/26653883
http://doi.org/10.1103/PhysRev.137.A801
http://doi.org/10.1016/0009-2614(74)85388-1
http://doi.org/10.1002/jrs.4864
http://doi.org/10.1016/j.addr.2015.04.003
http://doi.org/10.1088/1742-6596/1719/1/012081
http://doi.org/10.1016/j.saa.2020.119188
http://doi.org/10.1002/jbio.201960186
http://doi.org/10.1021/ci60004a002
http://doi.org/10.1366/000370207782597003
http://www.ncbi.nlm.nih.gov/pubmed/18028702
http://doi.org/10.1016/S0169-7439(00)00085-X
http://doi.org/10.1109/10.391172
http://doi.org/10.1021/ac902717d
http://doi.org/10.1002/cem.3202
http://doi.org/10.1111/j.1751-1097.1998.tb05160.x
http://doi.org/10.3892/ijo.32.3.653
http://doi.org/10.1038/s41598-020-62338-8
http://doi.org/10.1038/s41566-020-0685-y
http://doi.org/10.1021/acs.jcim.9b00266
http://doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pubmed/29618526
http://doi.org/10.1162/neco.1989.1.4.541


Analytica 2022, 3 300

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR 2006), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 1–12.

26. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015,
arXiv:1505.04597.

27. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. arXiv 2014, arXiv:1406.2661.

28. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
29. Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based

modeling. Nat. Protoc. 2021, 16, 5426–5459. [CrossRef]
30. Gerretzen, J.; Szymańska, E.; Jansen, J.J.; Bart, J.; van Manen, H.J.; van den Heuvel, E.R.; Buydens, L.M. Simple and effective way

for data preprocessing selection based on design of experiments. Anal. Chem. 2015, 87, 12096–12103. [CrossRef]
31. Wahl, J.; Sjödahl, M.; Ramser, K. Single-step preprocessing of Raman spectra using convolutional neural networks. Appl. Spectrosc.

2020, 74, 427–438. [CrossRef]
32. Valensise, C.M.; Giuseppi, A.; Vernuccio, F.; de la Cadena, A.; Cerullo, G.; Polli, D. Removing non-resonant background from

CARS spectra via deep learning. APL Photonics 2020, 5, 061305. [CrossRef]
33. Horgan, C.C.; Jensen, M.; Nagelkerke, A.; St-Pierre, J.P.; Vercauteren, T.; Stevens, M.M.; Bergholt, M.S. High-Throughput

molecular imaging via deep learning enabled Raman spectroscopy. Anal. Chem. 2021, 93, 15850–15860. [CrossRef]
34. Gebrekidan, M.T.; Knipfer, C.; Braeuer, A.S. Refinement of spectra using a deep neural network: Fully automated removal of

noise and background. J. Raman Spectrosc. 2021, 52, 723–736. [CrossRef]
35. Pan, L.; Pipitsunthonsan, P.; Daengngam, C.; Channumsin, S.; Sreesawet, S.; Chongcheawchamnan, M. Noise reduction technique

for Raman spectrum using deep learning network. arXiv 2020, arXiv:2009.04067.
36. Houhou, R.; Barman, P.; Schmitt, M.; Meyer, T.; Popp, J.; Bocklitz, T. Deep learning as phase retrieval tool for CARS spectra. Opt.

Express 2020, 28, 21002–21024. [CrossRef] [PubMed]
37. Dong, J.; Hong, M.; Xu, Y.; Zheng, X. A practical convolutional neural network model for discriminating Raman spectra of human

and animal blood. J. Chemom. 2019, 33, e3184. [CrossRef]
38. Lee, W.; Lenferink, A.T.M.; Otto, C.; Offerhaus, H.L. Classifying Raman spectra of extracellular vesicles based on convolutional

neural networks for prostate cancer detection. J. Raman Spectrosc. 2020, 51, 293–300. [CrossRef]
39. Kirchberger-Tolstik, T.; Pradhan, P.; Vieth, M.; Grunert, P.; Popp, J.; Bocklitz, T.W.; Stallmach, A. Towards an interpretable classifier

for characterization of endoscopic Mayo scores in ulcerative colitis using Raman spectroscopy. Anal. Chem. 2020, 92, 13776–13784.
[CrossRef]

40. Maruthamuthu, M.K.; Raffiee, A.H.; de Oliveira, D.M.; Ardekani, A.M.; Verma, M.S. Raman spectra-based deep learning: A tool
to identify microbial contamination. Microbiol. Open 2020, 9, e1122. [CrossRef]

41. Cheng, N.; Fu, J.; Chen, D.; Chen, S.; Wang, H. An antibody-free liver cancer screening approach based on nanoplasmonics
biosensing chips via spectrum-based deep learning. Nano Impact 2021, 21, 100296. [CrossRef]

42. Fan, X.; Ming, W.; Zeng, H.; Zhang, Z.; Lu, H. Deep learning-based component identification for the Raman spectra of mixtures.
Analyst 2019, 144, 1789–1798. [CrossRef]

43. Fu, X.; Zhong, L.; Cao, Y.; Chen, H.; Lu, F. Quantitative analysis of excipient dominated drug formulations by Raman spectroscopy
combined with deep learning. Anal. Methods 2021, 13, 64–68. [CrossRef]

44. Houston, J.; Glavin, F.G.; Madden, M.G. Robust classification of high-dimensional spectroscopy data using deep learning and
data synthesis. J. Chem. Inf. Model. 2020, 60, 1936–1954. [CrossRef] [PubMed]

45. Ho, C.S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.E.; Ermon, S.; Dionne, J. Rapid
identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [CrossRef]
[PubMed]

46. Ding, J.; Yu, M.; Zhu, L.; Zhang, T.; Xia, J.; Sun, G. Diverse spectral band-based deep residual network for tongue squamous cell
carcinoma classification using fiber optic Raman spectroscopy. Photodiagn. Photodyn. Ther. 2020, 32, 102048. [CrossRef] [PubMed]

47. Chen, H.; Chen, C.; Wang, H.; Chen, C.; Guo, Z.; Tong, D.; Li, H.; Li, H.; Si, R.; Lai, H.; et al. Serum Raman spectroscopy combined
with a multi-feature fusion convolutional neural network diagnosing thyroid dysfunction. Optik 2020, 216, 164961. [CrossRef]

48. Saifuzzaman, T.A.; Lee, K.Y.; Radzol, A.R.M.; Wong, P.S.; Looi, I. Optimal scree-CNN for detecting NS1 molecular fingerprint
from salivary SERS spectra. In Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC 2020), Montreal, QC, Canada, 20–24 July 2020; pp. 180–183.

49. Pan, L.; Pipitsunthonsan, P.; Daengngam, C.; Channumsin, S.; Sreesawet, S.; Chongcheawchamnan, M. Method for classifying a
noisy Raman spectrum based on a wavelet transform and a deep neural network. IEEE Access 2020, 8, 202716–202727. [CrossRef]

50. Pan, L.; Pipitsunthonsan, P.; Daengngam, C.; Channumsin, S.; Sreesawet, S.; Chongcheawchamnan, M. Identification of complex
mixtures for Raman spectroscopy using a novel scheme based on a new multi-label deep neural network. IEEE Sens. J. 2021, 21,
10834–10843. [CrossRef]

51. Sohn, W.B.; Lee, S.Y.; Kim, S. Single-layer multiple-kernel-based convolutional neural network for biological Raman spectral
analysis. J. Raman Spectrosc. 2020, 51, 414–421. [CrossRef]

52. Yu, S.; Li, H.; Li, X.; Fu, Y.V.; Liu, F. Classification of pathogens by Raman spectroscopy combined with generative adversarial
networks. Sci. Total Environ. 2020, 726, 138477. [CrossRef]

http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1038/s41596-021-00620-3
http://doi.org/10.1021/acs.analchem.5b02832
http://doi.org/10.1177/0003702819888949
http://doi.org/10.1063/5.0007821
http://doi.org/10.1021/acs.analchem.1c02178
http://doi.org/10.1002/jrs.6053
http://doi.org/10.1364/OE.390413
http://www.ncbi.nlm.nih.gov/pubmed/32680149
http://doi.org/10.1002/cem.3184
http://doi.org/10.1002/jrs.5770
http://doi.org/10.1021/acs.analchem.0c02163
http://doi.org/10.1002/mbo3.1122
http://doi.org/10.1016/j.impact.2021.100296
http://doi.org/10.1039/C8AN02212G
http://doi.org/10.1039/D0AY01874K
http://doi.org/10.1021/acs.jcim.9b01037
http://www.ncbi.nlm.nih.gov/pubmed/32142271
http://doi.org/10.1038/s41467-019-12898-9
http://www.ncbi.nlm.nih.gov/pubmed/31666527
http://doi.org/10.1016/j.pdpdt.2020.102048
http://www.ncbi.nlm.nih.gov/pubmed/33017657
http://doi.org/10.1016/j.ijleo.2020.164961
http://doi.org/10.1109/ACCESS.2020.3035884
http://doi.org/10.1109/JSEN.2021.3059849
http://doi.org/10.1002/jrs.5804
http://doi.org/10.1016/j.scitotenv.2020.138477


Analytica 2022, 3 301

53. Thrift, W.J.; Ragan, R. Quantification of analyte concentration in the single molecule regime using convolutional neural network.
Anal. Chem. 2019, 91, 13337–13342. [CrossRef]

54. Zhang, R.; Xie, H.; Cai, S.; Hu, Y.; Liu, G.; Hong, W.; Tian, Z. Transfer-Learning-Based Raman spectra identification. J. Raman
Spectrosc. 2020, 51, 176–186. [CrossRef]

55. Fukuhara, M.; Fujiwara, K.; Maruyama, Y.; Itoh, H. Feature visualization of Raman spectrum analysis with deep convolutional
neural network. Anal. Chim. Acta 2019, 1087, 11–19. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.analchem.9b03599
http://doi.org/10.1002/jrs.5750
http://doi.org/10.1016/j.aca.2019.08.064
http://www.ncbi.nlm.nih.gov/pubmed/31585558

	Introduction 
	Deep Learning—Overview 
	Convolutional Neural Networks (CNN) 
	Residual Network (ResNet) 
	Autoencoder 
	Generative Adversarial Network (GAN) 
	Recurrent Neural Network (RNN) 

	Recent Applications for Raman Spectroscopy 
	Pre-Processing 
	Classification and Regression 
	Spectral Data Highlighting 

	Challenges and Shortcomings 
	Conclusions 
	References

