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Abstract: The accurate assessment of vitamin A in animal feed and tissues is vital for safeguarding
animal well-being and ensuring high-quality nutritional feed. However, challenges in achieving
precise results persist, necessitating a comprehensive understanding of the influencing factors. This
review delves into the historical progression of analytical techniques, from colorimetric assays and
spectrophotometry to advanced chromatographic methods and non-destructive spectroscopic ap-
proaches. Factors influencing analytical precision are scrutinized, encompassing sample preparation,
storage conditions, interfering substances, and human errors. The crucial role of quality control and
standardized protocols in ensuring the reproducibility and reliability of results is emphasized. More-
over, this review highlights the need for tailored analytical approaches to account for the complexities
of sample matrices and the significance of cutting-edge technologies, including on-site analysis and
data science integration, in enhancing analytical precision. By acknowledging the challenges and
prospects in vitamin A analysis, this paper provides insights for optimizing analytical methodologies
and promoting animal welfare and product safety.
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1. Introduction

Ensuring that animals receive a well-balanced diet and appropriate feed formulation
can significantly enhance animal productivity, improve the quality of their products, and
promote better animal welfare [1]. Vitamin A, also known as retinol, is a vital micronutrient
crucial for maintaining optimal health and well-being in livestock [2,3]. It plays a central
role in various physiological functions, including immune response regulation, vision
maintenance, and cellular differentiation [4]. Consequently, the accurate determination
of vitamin A levels in animal feed and premixes is essential for ensuring animal health
and production. Beyond preventing deficiencies and associated health issues, it forms the
foundation for their overall growth and performance [5–7].

In the realm of animal nutrition, ensuring the precise measurement of vitamin A
content is of utmost importance. It is not merely a matter of scientific accuracy, but a critical
factor in guaranteeing the safety and quality of the end products consumed by livestock [8].
With the increasing emphasis on food safety standards, the precise determination of vi-
tamin A underscores the commitment to providing nutritious and safe feed for animals,
safeguarding their well-being, and subsequently ensuring the quality of animal-derived
products [9]. Likewise, evaluating the retinol levels in animal tissues is crucial for assessing
nutritional status, preventing illnesses, and improving the general health and productivity
of livestock [10].

However, the pursuit of accurate results in vitamin A determination faces several chal-
lenges. Researchers and analysts encounter various obstacles that impede the attainment of
reliable outcomes, presenting a significant predicament in the analysis of animal feed and
other samples [9,11]. Challenges range from intricate sample preparation and extraction
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procedures to the complexities associated with analytical methodologies and the absence of
standardized regulatory guidelines [12]. Achieving precision in vitamin A determination
necessitates a comprehensive understanding of these challenges and their implications.

Therefore, this review paper aims to explore the multifaceted challenges confronted
by researchers and analysts in accurately determining vitamin A in premixes, feed, and bio-
logical tissues. The focus of the synthesis will be specifically on the following key aspects:

1. Historical progress in vitamin A analysis techniques.
2. Quantitative vitamin A analysis: diverse analytical approaches.
3. Deciphering the factors: unveiling the complexities of analytical precision.
4. The crucial role of quality control: navigating the path to reliable results.
5. Reflection and future prospects: charting the course for enhanced analytical precision.

Through comprehensive analysis of these five subjects, this review underscores the
imperative need for standardized protocols and advanced scientific methodologies. These
measures are crucial in guaranteeing the precision and dependability of vitamin A determi-
nation, thereby fostering the overall improvement of animal health and productivity.

2. Historical Progress in Vitamin A Analysis Techniques

Vitamin A has been a focal point of significant interest within the realm of analytical
chemistry. From its initial detection endeavors to the current sophisticated methodologies,
the progression of analytical methods for vitamin A determination has been an evolution
marked by challenges, breakthroughs, and paradigm shifts [8,13–15]. This section offers
an overview of the historical development of these techniques, from their inception to the
contemporary state-of-the-art methodologies.

The journey commenced in the early 20th century, coinciding with the identification of
vitamin A’s chemical structure by Paul Karrer in 1932 [16] (Figure 1). Pivotal studies during
this period focused on the isolation and purification of vitamin A from various natural
sources, laying the foundation for subsequent analytical pursuits [17,18]. Elmer McCollum
and Marguerite Davis’ groundbreaking work in the early 1910s, emphasizing the vital role
of vitamin A in human health, catalyzed the interest in analytical methodologies [16].
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The development of analytical methods faced challenges, primarily due to the intricate
nature of vitamin A’s chemical structure and the existence of multiple isomers [19–21].
These isomers encompass various forms, such as all-trans-, 13-cis-, 11-cis-, 9-cis-, 9,13-
dicis-, and 11,13-dicis-retinol [22]. Initial techniques, including colorimetric assays and
spectrophotometric analyses, provided a starting point, but were restricted by issues related
to specificity and sensitivity [23,24]. The interference posed by other dietary components
further complicated the accurate quantification of vitamin A in complex matrices, such as
food products, feed, and biological samples [25].

Overcoming these challenges required a collective effort from the scientific community.
One critical hurdle was the development of robust extraction methods capable of efficiently
isolating vitamin A from complex matrices, minimizing loss and cross-contamination [26].
The introduction of chromatographic techniques in the 1960s improved the precision and
specificity of vitamin A determination [27]. However, the analytical landscape contin-



Analytica 2024, 5 56

ued to face obstacles, particularly in quantifying trace amounts of vitamin A in diverse
samples [28].

The integration of advanced spectroscopic methods, such as high-performance liquid
chromatography (HPLC) and gas chromatography (GC), in the late 20th century addressed
the need for heightened sensitivity [29–33]. These innovations facilitated the reliable
detection and quantification of vitamin A at previously unattainable levels, ushering in
a paradigm shift in the analytical approach to vitamin A analysis. Additionally, high-
performance liquid chromatography has made it feasible to separate and determine the
six cis–trans isomers of vitamin A, even in the form of commercially available esters like
acetate, palmitate, and propionate [22].

The modern era has witnessed a renaissance in the field, characterized by the inte-
gration of mass spectrometry with chromatographic separations, providing unparalleled
resolution and specificity in the determination of various vitamin A isomers [34–36]. Tan-
dem mass spectrometry (MS/MS) and high-resolution mass spectrometry (HRMS) have
further enhanced analytical capabilities, enabling the precise identification and quantifica-
tion of vitamin A and its metabolites in intricate biological systems [37].

Furthermore, non-destructive analytical methods, such as nuclear magnetic resonance
(NMR) spectroscopy and near-infrared spectroscopy (NIRS), have expanded the horizons
of retinol analysis, allowing for the non-invasive monitoring of vitamin A dynamics within
living systems as well as in premixes and feed [38,39]. These advancements have not
only fostered a deeper comprehension of the physiological roles of vitamin A, but have
also paved the way for tailored nutritional interventions and personalized healthcare
strategies [40].

In conclusion, the journey through analytical techniques for vitamin A analysis high-
lights the resilience of the scientific community in unraveling the complexities of this
essential micronutrient. The historical evolution, marked by challenges and refinements,
has led to a sophisticated analytical landscape where modern methodologies have tran-
scended the limitations of the past.

3. Quantitative Vitamin A Analysis: Diverse Analytical Approaches

In the field of nutritional science, the precise evaluation of vitamin A plays a pivotal
role in understanding dietary sufficiency and identifying potential deficiencies. Similarly,
the assessment of retinol levels in animal tissues is indispensable for gauging nutritional
well-being, preventing diseases, and enhancing overall animal health and productivity.
This chapter explores the intricate landscape of analytical techniques employed in the
quantification of vitamin A, offering a succinct explanation of the fundamental principles
that underlie these methodologies.

3.1. Colorimetric Assays

Colorimetric assays have long been employed as a dependable means of quantifying
vitamin A or retinol within various samples [41]. The methodology involves introducing a
chromogenic reagent into a soluble fortified food or feed sample, resulting in a reaction
with retinol and the development of a distinctive color complex [42]. The intensity of the
resultant color is directly proportional to the concentration of vitamin A in the sample. The
fundamental principles of colorimetric assays used for measuring vitamin A are represented
by the following methods:

1. The Carr and Price assay: This method involves the quantitative evaluation of retinol
utilizing antimony trichloride (SbCl3) as a crucial component [43].

2. The Sobel and Werbin assay: This assay employs activated 1,3-dichloro-2-propanol
to react with vitamin A, as initially proposed by Sobel and Werbin [44] and later
expounded upon by Blake and Moran [23].

3. Trifluoroacetic acid-based colorimetric determination: This technique relies on the
interaction of a vitamin A solution in food or feed materials with several Lewis acids,
resulting in the transient manifestation of a blue color [41].
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Colorimetric assays offer several advantages. They are a cost-effective and straightfor-
ward alternative to complex methodologies such as high-performance liquid chromatog-
raphy (HPLC) [45]. Additionally, their versatility enables the measurement of vitamin
A in diverse samples, ranging from foods and feeds to biological fluids [46,47]. Never-
theless, utilizing colorimetric assays for measuring vitamin A or retinol does have its
drawbacks. They tend to be less sensitive when compared to more sophisticated techniques
like HPLC [48]. Moreover, the presence of interfering substances within the sample can
significantly impact the accuracy of the results [49]. Lastly, the lack of specificity for vitamin
A or retinol means that these assays can inadvertently identify other compounds forming
stable color complexes with the reagent, leading to potential inaccuracies [50].

3.2. Spectrophotometric Analyses

Spectrophotometric analysis represents a widely utilized approach for the determi-
nation of retinol levels in food and feed samples [43,51]. This technique operates on the
fundamental principle that all-trans-retinol in isopropanol exhibits maximal absorption
at 325 nm [43,51]. The analytical methods for quantifying vitamin A rely on the effective
dispersion of the fortified food, premix, or feed matrix to liberate vitamin A, including its
various esters [42]. To facilitate this process, a UV-light irradiation system is employed,
which serves to degrade the retinol. The setup for this system may include a simple con-
figuration, such as employing a UV lamp along with a protective curtain to safeguard
operators from potential exposure to light [52]. Key to the success of this approach is the
meticulous determination of the optimal duration of irradiation and the precise positioning
of the UV light in relation to the solutions under examination [42].

Spectrophotometric analysis for assessing retinol offers both advantages and chal-
lenges. It is lauded for its simplicity, cost-effectiveness, and high sensitivity to trace amounts
of retinol [43]. Additionally, its non-destructive nature allows for sample reusability, con-
tributing to resource conservation [45]. Extensive validation across various food and feed
matrices underscores its reliability, yet the method is susceptible to yielding inaccurate
results in the presence of interfering substances [43]. Ensuring accurate analysis requires
meticulous sample preparation and the effective extraction of vitamin A from complex
food/feed matrices [40]. The lack of specificity in differentiating retinol from other com-
pounds with similar light absorption characteristics presents a challenge [40]. Notably, it
is less suitable for the simultaneous determination of retinol and its esters, necessitating
alternative analytical approaches in such cases [53].

3.3. Chromatographic Techniques

Chromatographic techniques for the analysis of vitamin A are grounded in the funda-
mental principle of differentiating components based on their distinct interactions with a
stationary phase and a mobile phase [54]. These methodologies capitalize on the varying
affinities exhibited by the different forms of vitamin A towards the stationary phase, facili-
tating their separation and eventual quantification [55,56]. Several types of chromatography
have been employed for the purpose of vitamin A analysis.

a. High-performance liquid chromatography (HPLC)

HPLC is a widely used analytical technique that employs high-pressure pumps to
propel the mobile phase, comprising the sample, through a column containing the stationary
phase [57]. The methodology for determining retinol in food, premix, feed, and biological
samples using HPLC commonly involves an isocratic, aqueous solvent system consisting
of a mixture of methanol and water as the mobile phase, enabling the isolation of retinol
from the extracted sample [58,59]. The column is a crucial element in the HPLC setup,
serving as the site for the separation of sample components [60]. The fundamental principle
behind HPLC separation relies on the distribution of the analyte (sample) between the
mobile phase (eluent) and the stationary phase (packing material) [61]. In the case of
retinol, a reverse-phase column is commonly employed as the stationary phase, facilitating
the segregation of retinol from other sample constituents based on variations in their
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hydrophobicity [62]. Prior to HPLC analysis, the retinol must be extracted from the sample
and prepared for injection into the HPLC system. This typically involves a lipid extraction
step aimed at eliminating interfering lipids and other components [63]. Subsequent to
the separation of retinol by the HPLC system, identification and quantification become
imperative. This task is typically accomplished using a UV detector, which gauges the
absorbance of retinol at a specific wavelength [64].

b. Gas–liquid chromatography (GLC)

GLC is an established analytical technique employed for the separation and analysis
of volatile compounds within a given sample [65]. Prior to the chromatographic process,
the sample undergoes an extraction and purification procedure to eliminate any potentially
confounding substances [65]. The utilization of a glass column, packed with meticulously
chosen glass beads, is imperative to enable the effective separation of retinol from other
compounds within the sample [66].

A crucial aspect of GLC revolves around the selection of an inert carrier gas that does
not interact with the sample constituents. Helium, known for its inert nature, has emerged
as a preferred choice for the carrier gas in GLC [67]. Furthermore, precise regulation of the
column temperature is paramount to ensure optimal separation of the compounds within
the sample. For instance, the introduction of elevated column temperatures and extended
retention times can facilitate the generation of anhydro-retinol during gas chromatography,
thereby serving as an effective assay for retinol analysis [66].

To accurately detect the effluent from the column, the implementation of an appro-
priate detector, such as a mass spectrometer, is fundamental in the GLC process. This
detector aids in the identification and quantification of the separated compounds, thereby
facilitating comprehensive analysis and interpretation [65].

c. Liquid–liquid chromatography (LLC)

LLC is a separation technique in which the stationary phase comprises a liquid sup-
ported on a solid, while the mobile phase is also a liquid. LLC amalgamates the principles
of liquid–liquid extraction and chromatography [68]. Similar to chromatography, one of
the phases involved remains stationary during the separation process. However, several
significant distinctions differentiate LLC from traditional chromatography utilizing solid
stationary phases, such as HPLC [68].

In the extraction of retinol from the sample, a suitable solvent is employed. The
selection of the solvent is contingent upon the characteristics of the sample and the specific
type of liquid chromatography utilized. Within this method, the compounds are segregated
based on their distribution between the two immiscible liquid phases [62,69].

d. Waters UltraPerformance Convergence Chromatography (UPC)

UPC represents a modern separation technique that harnesses compressed carbon
dioxide as the primary mobile phase [70]. This method capitalizes on the utilization of sub-2
µm particle chromatography columns, taking advantage of the low-viscosity properties
of CO2 and a sophisticated chromatography system. This approach distinguishes itself
from conventional HPLC and notably enhances the sensitivity of the assay. Moreover,
UPC demonstrates a significant reduction in solvent waste generation in comparison to
traditional liquid chromatography [70].

e. Ultra-high-performance liquid chromatography–tandem triple quadrupole mass spec-
trometry (UHPLC-MS/MS)

UHPLC, an advanced form of HPLC known for its enhanced capabilities in terms of
resolution, analysis speed, and sensitivity [71], has paved the way for more sophisticated
analytical methodologies. One such prominent application is the utilization of UHPLC-
MS/MS for the precise determination of vitamin A levels in biological tissues, particularly
in blood samples [72]. The approach demonstrates rapidity, accuracy, and heightened
sensitivity, coupled with straightforward preprocessing procedures. Mass spectrometric
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analysis is carried out in the positive ion mode using the multiple reaction monitoring
mode, while quantification is facilitated through the utilization of the internal standard
method [72].

Generally, chromatographic techniques offer a multitude of benefits in the assessment
of vitamin A, including superior sensitivity and specificity, adaptability across various sam-
ple types, and reduced sample preparation requirements [73,74]. Despite these advantages,
chromatography methodologies also exhibit certain drawbacks, such as prolonged analysis
time, significant financial investment, and susceptibility to matrix effects [45,73].

3.4. Nuclear Magnetic Resonance (NMR) Spectroscopy

NMR spectroscopy is a powerful analytical technique employed in the determination
of retinol, leveraging the magnetic properties of hydrogen nuclei [75]. Grounded in the
principle of resonance, it involves the matching of electromagnetic radiation frequencies to
specific energy transitions of the nuclei, thereby facilitating the comprehensive analysis
of the chemical structure and environment of retinol [76]. The phenomenon of chemical
shift, denoting the displacement of the resonance frequency relative to a standard reference,
plays a critical role in discerning the functional groups and molecular constituents of
retinol [75]. Additionally, the integration of NMR signals allows for quantitative insights
into the relative abundance of distinct types of hydrogen atoms within various retinol
molecules [77].

NMR spectroscopy offers several advantages for the precise quantification of vitamin
A in samples, owing to its high sensitivity, versatility, and dependable analytical capabili-
ties [78]. However, it comes with certain drawbacks, including significant financial costs
and the requirement for specialized equipment and expertise [79].

3.5. Near-Infrared Spectroscopy (NIRS)

NIRS is a non-invasive analytical technique widely used for studying the molecular
structure, composition, and concentration of various substances [80]. It functions on the
basis of the unique light absorption properties of different molecules at specific wavelengths,
enabling the identification and quantification of compounds of interest. Near-infrared light,
falling within the 800- to 2500-nanometer wavelength range, is particularly favored for its
ability to penetrate biological samples effectively, making it a suitable tool for analyzing
complex biological materials [81].

In practical applications, NIRS involves the transmission of near-infrared light through
a sample, followed by the measurement of the absorbed or reflected light [82]. Through
the analysis of absorption and reflection patterns, researchers can discern the presence
and concentration of specific compounds or functional groups within the sample. Notably,
NIR spectroscopy has also found utility in the examination of retinol within vitamin
compositions [38].

NIRS is recognized as a non-destructive, expedient, and cost-effective technique for
determining retinol in diverse samples [83,84]. Nevertheless, its sensitivity and accuracy
are relatively restricted compared to standard reference methods such as HPLC, necessi-
tating calibration with these methods [85]. It is imperative to note that NIRS might not
be universally applicable across all sample types, as certain samples could potentially
introduce interference during the analysis process [83].

3.6. Enzyme-Linked Immunosorbent Assays (ELISAs) for Biological Tissues

ELISA kits are used to measure the amount of a specific substance, such as vitamin
A, in a sample. The kits use antibodies to detect and measure the substance, and there
are different types of ELISA kits available depending on the specific needs of the exper-
iment [86]. For example, the competitive EIA ELISA kit uses a competitive inhibition
method to measure the amount of vitamin A in a sample [87,88], while the sandwich ELISA
kit uses a sandwich method [89]. ELISA kits can be used to measure vitamin A in a variety
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of biological tissues, including plasma, serum, tissue homogenates, cell lysates, and cell
culture supernatants [90].

ELISA kits for measuring vitamin A in biological tissues offer the advantages of
high sensitivity and user-friendliness for processing multiple samples simultaneously, but
they can be time-consuming and may lack sensitivity for detecting low levels of vitamin
A [91]. Cross-reactivity with other substances in the sample can also lead to occasional
false positives.

4. Deciphering the Factors: Unveiling the Complexities of Analytical Precision

Historically, the analysis of vitamin A has been recognized for its challenging repro-
ducibility and repeatability [8]. For instance, AAFCO [92] states that there is an accepted
analytical fluctuation of 30% in the measurement of vitamin A within feed samples. This
deviation is typically encountered when analyzing a sample on two separate occasions,
corresponding to twice the coefficient of variation or relative standard deviation [1]. Addi-
tionally, VDLUFA [93] provides a detailed reference, highlighting the allowable range for
different concentrations of vitamin A within a sample (Table 1). Despite this acknowledged
permissible fluctuation, the precise measurement of vitamin A in biological tissues, feed,
and premixes remains essential for upholding the optimal nourishment and overall health
of livestock and pets [4]. Numerous factors intricately influence the accuracy of this de-
termination, rendering the analytical process complex [11]. In this section, we explore the
various elements that significantly impact the accurate determination of vitamin A, shed-
ding light on the difficulties encountered by analysts in maintaining analytical precision
within this domain.

Table 1. Vitamin A analysis leeway for premix and feed investigations [93].

Ascertained Level (c), IU/kg Relative Leeway Absolute Leeway Extrapolated Leeway

2000–<3720 - - 2.1696·c0.8495 IU

3720–<7800 - - 2340 IU

7800–<100,000 30% - -

100,000–<125,000 - 30,000 IU -

125,000–<375,000 24% - -

375,000–<450,000 - 90,000 IU -

450,000–<1,020,000 20% - -

1,020,000–<7,570,000 - - 20%

7,570,000–≤460,000,000 - - 2.1696·c0.8495 IU

>460,000,000 - - 2309·c0.5 IU

The determination of vitamin A activity is not a straightforward process, and its
accuracy is influenced by numerous complex factors:

1. Source of vitamin A: The susceptibility of various sources or commercial products
of vitamin A to degradation can vary significantly due to differences in their formu-
lation [94] (Figure 2). Factors such as light, oxygen, temperature, and moisture play
crucial roles in the degradation process. Consequently, these variations can potentially
influence the analytical outcomes, even if the initial activity of multiple vitamin A
sources in an identical premix composition is similar. Furthermore, repeatability
in retinol analysis is influenced by the physical properties of the vitamin A source
(beadlet) utilized during the production of the premix or feed [8]. It is inversely
correlated with the concentration of vitamin A present in the sample.
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Figure 2. Stability of four different commercial vitamin A sources stored for up to 56 days in a broiler
vitamin–mineral premix (incl., choline chloride) at 35 ◦C and 60–70% r.h. [94]. Values are presented as
mean ± SD (n = 3). The premixes were prepared to contain 4.4 Mio IU vitamin A per kg. a–c within a
time frame of 0, 28, or 56 d. Values not sharing a common superscript letter are significantly different
(p < 0.05).

2. Type of sample: Different types of samples, such as premix, feed, blood, or other
tissues, may necessitate distinct analytical methodologies [43].

3. Quality of the sample: The accuracy of analytical procedures can be significantly
impacted by the quality of the sample. Contaminants or interfering substances within
the sample can exert substantial influence on the physicochemical processes utilized
during analysis [23].

4. Representativeness of the sample: Ensuring a representative sample is imperative.
Ideally, the laboratory should only determine the amount of vitamin A present in
the sample. If the sample does not accurately reflect the entire batch, the precision
achieved is rendered ineffective.

5. Method of analysis: The precision of the outcomes can be influenced by the analytical
approach employed [95]. Various methodologies may exhibit varied sensitivities to
distinct configurations of vitamin A [23]. Furthermore, variations in the adherence of
analysts to established and sanctioned protocols within a specific methodology may
also exert an influence [96].

6. Laboratory: An empirical analysis reveals that the discrepancy in the precision of
vitamin A analysis among different laboratories surpasses the variation attributed to
differences in analytical methods [96]. Certain techniques or procedures can signifi-
cantly contribute to substantial interlaboratory variation [96]. Examples of such tech-
niques include the inconsistent reporting or calculation of results, particularly when
comparing retinol palmitate with retinyl acetate. Furthermore, modifications made to
the vitamin A analysis procedure, which lack validation through rigorous interlabora-
tory collaborative studies or statistically sound within-laboratory comparisons with
validated test methods, can also be a source of significant variability. Additionally,
within-laboratory sampling techniques may further compound this issue.

7. Storage conditions: The stability of vitamin A is known to be influenced by various
storage conditions, including temperature, light exposure, and oxygen levels [97].
The improper storage of laboratory samples under such conditions can significantly
impact the precision and reliability of the analysis.

8. Target tissue cellularity, integrity, and function (for biological tissues): Vitamin A
status is characterized by the cellular structure, integrity, and functional capabilities
of the target tissues. Unlike some biochemical indicators, any compromise in these
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aspects may require several weeks of restoration following vitamin A repletion or
depletion [98].

9. Sample preparation approaches: It is crucial to emphasize the importance of obtaining
an adequately sized initial sample for the evaluation. Moreover, it is essential to refrain
from presuming uniform dispersion of vitamin A throughout the sample during the
analysis [11]. Following the grinding process, it is imperative to ensure comprehensive
remixing of the ground sample and repeat this process before proceeding with the
weighing of a test portion [11].

10. Sample quantity for analysis: The precision of the chemical analysis of vitamin A
in feed or premix samples is significantly affected by the weight of the sample. Dry
vitamin A supplements are composed of beadlets (Figure 3 and Table 2) that contain
multiple units of retinyl acetate [99]. When assessing a small sample of the feed,
there might be a limited number of particles per sample [100]. A recent study by
Inerowicz et al. [8] indicated that the relative standard deviations for vitamin A deter-
minations in feed varied between 10.5–24.7% and 2.26–10.7% for sample sizes of 10
g and 100 g, respectively (Table 3). The findings of the study suggest that the mass
of the sample can considerably influence the accuracy of vitamin A testing in animal
feed materials.

Table 2. Results of microscopic particle size measurements obtained through microscopic examination [8].

Vitamin A
Source

Initial
Mass, g

Density, g/cm3

@ 21.9 ◦C c

Number of
Particles

Measured

Particle Size Measurements a,b

Average,
mm

Median,
mm

Minimum,
mm

Maximum,
mm SD

1 221.0 0.60 2074 a 0.466 0.456 0.065 1.179 0.156

2 109.5 0.63 2415 b 0.333 0.323 0.047 0.738 0.102
a Particle size measurement by microscopic examination, n = 20. Test portion masses ranged approximately from
0.3 to 0.5 g for Source1. b Particle size measurement by microscopic examination, n = 20. Test portion masses
ranged approximately from 0.3 to 0.5 g for Source 2 B. c n = 3; SD = standard deviation.
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Table 3. Vitamin A content in 10 g and 100 g test portions with various samples [8].

Sample
Vitamin A, IU/kg

Poultry Feed
(Conditioner)

Poultry Feed
(Texturized) Mineral Mix

Quantity, g 10 100 10 100 10 100

1 6112 5898 20,875 24,476 164,762 176,587

2 5230 5748 18,851 18,443 163,719 171,192

3 5352 5654 24,575 21,794 184,971 173,370

4 4875 5779 15,140 22,853 176,246 177,037

5 6736 6223 23,810 19,640 180,409 168,987

6 7801 6346 22,685 19,642 203,235 180,078

7 6575 6430 34,162 16,716 138,778 173,772

8 7294 5923 26,550 19,186 184,375 180,673

9 6818 4926 22,687 23,999 170,451 170,817

10 5768 5490 18,112 19,503 151,056 171,569

11 5682 5153 25,915 21,724 185,745 180,100

12 4646 5283 31,337 18,976 168,742 181,044

13 6904 6181 22,925 19,556 190,880 170,998

14 5907 5228 28,815 18,182 205,806 177,503

15 5746 5870 16,339 20,145 183,401 177,366

16 5389 5400 14,127 22,279 204,112 175,273

Average 1 6052 5721 22,930 20,450 178,500 175,400

SD 893 448 5673 2181 18,670 3972

RSD, % 14.8 7.82 24.7 10.7 10.5 2.26
1 Rounded to 4 significant figures; RSD = relative standard deviation; SD = standard deviation.

11. Analytical standards as benchmarks for the identification and quantification of retinol:
The variability in the purity of these standards is a critical factor contributing to the
observed inconsistencies among laboratories engaged in vitamin A analysis. In the
comparison with the recognized US Pharmacopeia (USP) standard retinyl acetate,
varying standards often display significant disparities in measurements, with values
fluctuating between 50% and 140% of the officially stated value [11]. Regrettably,
certain laboratories fail to validate the vitamin A content of the reference materials
and exhibit insufficient quality control protocols for their analytical methods [96].
Laboratories exhibiting exemplary accuracy and precision continuously validate refer-
ence materials and incorporate in-house quality control samples, employing robust
statistical methodologies to ensure and confirm the reliability of their results [96].

12. Extraction during analytical procedure: In certain instances, the presence of signif-
icant quantities of carotenoids following hydrolysis in the solution, coupled with a
low concentration of vitamin A, might necessitate the implementation of multiple
extraction procedures [102]. In the context of high-fat samples, the formation of extra
soaps during the saponification process has the potential to influence the partition
coefficient, thereby favoring the aqueous alcohol phase. Consequently, in such sce-
narios, it becomes imperative to conduct multiple extractions to ensure the efficient
separation of retinol into the solvent [11]. According to Moore et al. [96], the primary
cause of variation in retinol analysis in feed among various laboratories is, in fact, the
vitamin extraction procedure.
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13. Evaporation in the analytical phase: During the process of solvent evaporation, the
thermal degradation of retinol solutions can occur, particularly at temperatures exceed-
ing 40 degrees Celsius [11]. Thus, it is vital to control and maintain the temperature
below this threshold to prevent the degradation of retinol. Additionally, it is essential
to minimize the exposure of the retinol residues to ambient air, as this could potentially
compromise the stability of the solution [11].

14. Other factors: During the analytical process, other factors, such as the isomerization of
all-trans retinol, quality control protocols, precise equipment calibration, potential hu-
man errors, systematic and bias errors, and various other influences, could potentially
impact the final analytical results [11].

In summary, analyzing vitamin A in different samples is a complex process that
requires careful consideration of various factors. Factors such as sample type, quantity,
storage conditions, analytical determinants, and a range of other parameters pose chal-
lenges for maintaining accurate measurements of retinol. Understanding and managing
these factors are crucial for producing high-quality animal feed and premixes that meet
nutritional requirements. Figure 4 illustrates an Ishikawa diagram detailing the factors
influencing the determination of vitamin A.
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5. The Crucial Role of Quality Control: Navigating the Path to Reliable Results

As the field of animal production increasingly emphasizes the need for precise and
reliable chemical analytical results, the critical significance of quality control and assurance
in safeguarding the integrity of these outcomes is underscored [103]. Within the context of
complex laboratory analyses, the looming potential for errors remains a significant concern,
as they possess the capability to distort results and undermine the credibility of the entire
analytical process [104].

5.1. The Pivotal Role of Quality Control

Quality control plays a pivotal role in upholding the precision and accuracy of vitamin
analysis within the field. It serves as a foundational safeguard, ensuring that all analytical
procedures adhere to the highest standards of scientific rigor and reproducibility [105].
Through the establishment of a robust system of checks and balances, quality control not
only preserves the integrity of analytical outcomes, but also cultivates confidence and trust
in the obtained results.

In the context of animal production, where chemical analysis is integral to dietary
formulations and achieving optimal nutritional levels in animal feed, the absence of de-
pendable quality control mechanisms could have severe consequences. Such consequences
encompass potential harm to animal performance and well-being, challenges in meeting
regulatory requirements, and a loss of trust among customers and stakeholders [4,7].

5.2. Implementing Stringent Protocols and Standard Operating Procedures

To maintain analytical rigor, laboratories globally have embraced the adoption of
rigorous protocols and standard operating procedures. These protocols are intricately
designed to standardize each phase of the analytical process in animal nutrition, from
sample collection and preparation to instrumental analysis and data interpretation [106].
The scrupulous crafting of these protocols guarantees that each analyst adheres to a consis-
tent methodology, thus minimizing the introduction of discrepancies and variations that
could compromise the accuracy of the final outcomes. Furthermore, these protocols act as a
guiding principle, enhancing the path to uniformity and reproducibility, both of which are
fundamental to ensuring dependable analytical results [107].

Drawing insights from established practices in the field, it becomes evident that the
adoption of stringent protocols is not solely a matter of compliance, but rather, a proactive
measure to enhance overall analytical performance and accuracy [108]. The integration of
automated systems, advanced instrumentation, and sophisticated data management tools
further strengthens the implementation of these protocols, facilitating real-time monitoring
and streamlined data analysis [109]. Laboratories that prioritize the adoption of such
protocols often position themselves at the forefront of analytical excellence, poised to deliver
results that not only meet but surpass the expectations of precision and reliability [110].

5.3. Navigating the Challenges of Consistency and Accuracy

The pursuit of analytical precision in laboratory settings is a complex endeavor that
is not without its challenges. Various factors, such as the dynamic nature of analytical
processes and the continuous advancements in technology, contribute to a formidable
environment that necessitates ongoing vigilance and adaptability [111]. In this fast-paced
setting, the importance of regular monitoring and proficiency testing becomes increasingly
evident [112].

Laboratories are required to actively conduct regular performance assessments and
proficiency testing on animal feed, premixes, and biological samples to ensure the effec-
tiveness of their analytical procedures and the competence of their staff [112–114]. These
evaluations act as benchmarks, assessing the efficacy of current protocols and identifying
areas that require refinement and adjustment. Insights gained from such assessments not
only enable laboratories to proactively address potential shortcomings, but also foster a
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culture of continuous improvement, where the pursuit of analytical excellence in vitamin
analysis becomes a sustained commitment rather than a fleeting goal [115–117].

Furthermore, the intricate interplay of human factors and the inherent variability of an-
alytical instruments necessitate a comprehensive approach to monitoring and control [118].
Laboratories must invest in comprehensive training programs to cultivate a skilled work-
force proficient in adhering to standardized protocols and equipped with the knowledge to
recognize and mitigate potential sources of error [1,119]. By nurturing a culture of precision
and accountability, laboratories can instill a sense of collective responsibility, where each
individual understands their role in maintaining the integrity of analytical data.

Given the evolving regulatory frameworks and the persistent demand for heightened
precision, laboratories must remain resolute in their commitment to quality control and
assurance [108]. The journey towards reliable results is fraught with challenges and intri-
cacies; however, it is through unwavering dedication to stringent protocols, continuous
monitoring, and proficiency testing that laboratories can navigate this path confidently,
emerging as bastions of analytical excellence in an ever-evolving landscape of scientific
exploration and innovation.

6. Reflection and Future Prospects: Charting the Course for Enhanced
Analytical Precision

One of the key findings highlighted in this overview emphasizes the crucial importance
of recognizing the complex interplay between the sampling of test materials, sample
preparation, and the selected analytical approach in the analysis of retinol. Variations
in sample matrices, including diverse feeds like total mixed ration and complimentary
feed, as well as various biological samples, consistently underscore the need for tailored
methodologies. It is apparent that a standardized approach often falls short in capturing the
intricacies within these matrices [120–122]. Furthermore, the need for robust preservation
protocols to account for the stability and potential degradation of vitamin A during storage
and analysis has been highlighted in recent research [94].

Delving deeper into the range of influencing factors, the role of method validation
has emerged as a crucial factor in ensuring the reliability and accuracy of vitamin A
determination [123,124]. A meticulous validation process, including considerations for
specificity, linearity, and precision, serves as a safeguard against erroneous results [122].
Moreover, the recognition that calibration strategies must be adapted to the characteristics
of the analytical technique employed underscores the necessity for a nuanced and adaptable
approach [125].

A significant aspect gleaned from the review of historical progress in vitamin A anal-
ysis techniques is the continual evolution of analytical technologies. Traditional HPLC
has evolved into more advanced methodologies such as chromatography on-line cou-
pled to mass spectrometry, offering greater precision and sensitivity [59,76,78,126]. The
integration of novel separation techniques, alongside advanced detection methodologies,
shows promise in mitigating the challenges posed by complex matrices and low concentra-
tions [127,128]. Embracing these cutting-edge technologies is crucial to achieving enhanced
analytical precision.

Envisioning the future, interdisciplinary collaboration and technological advance-
ments will serve as the foundation for achieving unparalleled precision in vitamin A
determination [109,129,130]. Recognizing the multifaceted nature of the challenges at
hand, interdisciplinary collaboration, including experts from nutrition science, analytical
chemistry, and bioinformatics, presents an opportunity to develop a holistic approach to
understanding vitamin A analysis [131–133]. By creating a collaborative ecosystem that
facilitates the exchange of knowledge and methodologies, comprehensive frameworks for
accurate determination can be synthesized.

Simultaneously, the rapid advancement of miniaturized and portable analytical de-
vices offers the potential for on-site analysis and real-time monitoring, minimizing the risk
of sample degradation and allowing for immediate intervention [48,134]. Additionally, the
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integration of data science and analytical chemistry can leverage advanced algorithms and
machine learning techniques to interpret complex datasets, unravel intricate patterns, and
enhance the predictive capabilities of retinol determination [135,136].

Moving forward, it is crucial to prioritize research and development initiatives that
bring together the strengths of various disciplines and harness the potential of cutting-edge
technologies. By fostering an ecosystem that promotes collaborative innovation and em-
braces technological advancements, the goal of achieving unparalleled analytical precision
in vitamin A determination can be realized. Pursuing this vision not only promises to
revolutionize the field of nutritional analysis, but also has the potential to drive advance-
ments in analytical methodologies across various domains, paving the way for a future
characterized by unprecedented precision and reliability.

7. Conclusions

Based on the information provided in this scientific review paper, the following
conclusions can be drawn:

1. The accurate determination of vitamin A is crucial for animal health and product quality.
2. Historical advancements in analysis techniques have evolved from basic methods to

sophisticated chromatographic and spectroscopic approaches, improving precision
and sensitivity.

3. Various factors, including sample quality, the method of analysis, and storage condi-
tions, significantly impact analytical precision in retinol determination, necessitating a
comprehensive understanding and careful consideration.

4. Emphasizing the critical role of quality control through stringent protocols and regular
proficiency testing is essential for ensuring consistent and reliable results.

5. Future progress in analytical precision lies in the integration of advanced technologies,
such as miniaturized devices and data-driven approaches, promising to overcome
current challenges and enhance accuracy in vitamin A analysis.

In light of these insights, a concerted focus on addressing the complexities of vitamin
A analysis through continued advancements in technology and stringent quality control
measures is imperative to ensuring precise and reliable determination, thereby bolstering
animal welfare and feed safety standards.
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